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Abstract: Melanoma skin cancer is one of the most dangerous types of skin cancer, which, if not
diagnosed early, may lead to death. Therefore, an accurate diagnosis is needed to detect melanoma.
Traditionally, a dermatologist utilizes a microscope to inspect and then provide a report on a biopsy for
diagnosis; however, this diagnosis process is not easy and requires experience. Hence, there is a need
to facilitate the diagnosis process while still yielding an accurate diagnosis. For this purpose, artificial
intelligence techniques can assist the dermatologist in carrying out diagnosis. In this study, we
considered the detection of melanoma through deep learning based on cutaneous image processing.
For this purpose, we tested several convolutional neural network (CNN) architectures, including
DenseNet201, MobileNetV2, ResNet50V2, ResNet152V2, Xception, VGG16, VGG19, and GoogleNet,
and evaluated the associated deep learning models on graphical processing units (GPUs). A dataset
consisting of 7146 images was processed using these models, and we compared the obtained results.
The experimental results showed that GoogleNet can obtain the highest performance accuracy on
both the training and test sets (74.91% and 76.08%, respectively).

Keywords: deep learning; convolutional neural networks; dermatology; skin cancer; melanoma
medical images

1. Background

At present, cancer diseases are among the most dangerous types of diseases that
threaten human life. One of the most dangerous cancers is melanoma skin cancer, which
may lead to death if not diagnosed early. Early diagnosis of melanoma skin cancer reduces
mortality rates and reduces the complications of the treatment process. The diagnosis
process is conducted by taking a biopsy sample from the patient, which is then examined
by a dermatologist. The examination result depends on the doctor’s experience and the
tools used. Figure 1 shows the various types of skin cancers [1,2].

Figure 1. An overview of melanoma skin cancers. Figure created with Biorender.com.
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Accurately diagnosing such diseases may require experience and accurate techniques
that improve the accuracy of the diagnosis. Therefore, the availability of precise instru-
ments is of great importance to dermatologists, allowing for good diagnostic results, better
treatment, and a reduction in the number of biopsies needed from patients. Hence, the role
of artificial intelligence and its various techniques in this issue have been considered. Gener-
ally speaking, using AI techniques (and, particularly, deep learning) when diagnosing such
diseases can help doctors to make diagnoses and make the process easier for patients [3–6].
From the above, it is clear that using these techniques in such cases can save much effort
and time for doctors, while still allowing for accurate diagnosis, which is the main objective.
However, we must not overlook the patients and their comfort. Deep learning has achieved
great success in helping to solve such problems that require experience in the field and
accuracy and speed in decision-making, which may not always be available to the doctor.
Figure 2 presents a comparison between the stages of the manual diagnosis process and
the diagnosis process based on deep learning technology.

Figure 2. Comparison of the stages of the manual diagnostic process and the diagnostic process
based on deep learning technology. Figure created with Biorender.com.

Artificial intelligence plays a significant role in solving many problems at present,
especially in the medical field. Its techniques involve machine learning and deep learning,
but the latter may outperform machine learning in several cases when ample data are avail-
able [7,8], thus facilitating complex diagnostic operations that require many processes [9].

One type of deep learning technique is convolutional neural networks, which have
achieved good results in studying images and finding relationships between them by
extracting features [10–13]. Deep convolutional neural networks are often valuable for ana-
lyzing images in general and medical images in particular, one example being diagnosing
melanoma from images in our field of study. However, more studies and experiments may
be needed in order to reach highly accurate results. Therefore, employing convolutional
neural networks for diagnosing tumors, especially melanoma skin cancer, can provide
quality diagnostics for the associated disease and, thus, improve patient care. This study
focuses on this technique, which can achieve good results. It is worth noting that several
studies [13,14] have described convolutional neural networks as black-box models.

After considering the problem of diagnosing skin cancer and the procedures that
follow, based on experience, it is necessary to search for solutions to diagnose this disease
with high accuracy, speed, and flexibility in dealing with the patient, for example avoiding
medical biopsies. Therefore, the current study aims to improve the diagnosis process,
compared to the current traditional method. Deep learning is one of the fields of artificial
intelligence, being a modern area in data science and an extension of machine learning;
however, the flexibility of deep learning approaches, compared to machine learning ap-
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proaches, has been shown [15–17]. The advent of big data has created a fertile environment
for growth and progress in this field [18,19]. Deep learning models are inspired by the
human brain, for example based on the large number of deep retinal neurons [16,20–22].
Therefore, convolutional neural networks have emerged in many fields, due to their good
performance in image processing. Among these areas is the medical field, where they
have been considered in diagnosis or treatment. With the advancement of technology and
the significant expansion in the use of deep learning techniques to perform many tasks
with high quality results, at the forefront of these areas is the medical field, which relates
to human life through the diagnosis and treatment of diseases, especially diseases that
threaten human life. These include cancers in general and melanoma in particular, which
requires significant effort to reach an accurate diagnosis [23]. Hence, there exists a need to
employ rapid techniques for early and accurate prediction of melanoma skin cancer based
on skin images. Convolutional neural network algorithms have shown better results than
other algorithms in this field [24]. Therefore, many researchers have attempted to develop
relevant computational methods for detecting skin cancer utilizing skin images.

For example, Hekler et al. [25] adapted ResNet50 to discriminate melanoma from
nevi using histopathological images. Furthermore, experiments demonstrated the good
performance of this architecture.

Jojoa et al. [26] proposed a deep learning approach composed of segmentation and
classifying a cropped image as benign or malignant. Moreover, one architecture was
applied in their experiment. The results of the experiment indicated the good performance
of the proposed approach.

The objective of Brinker et al. [27] was to compare a convolutional neural network
architecture with dermatologists (157) in classifying melanoma skin cancer. Experimen-
tal results showed that the deep learning approach outperformed 136 dermatologists from
12 university hospitals in Germany; however, it can be seen that the criteria for selecting derma-
tologists play a role, as experience and skill are two essential aspects in the diagnosis process.
In general, it can be said that the deep learning approach showed superior performance.
In another study [25], conducted in Germany by selecting eleven physicians with different
areas of expertise, the results also indicated the superiority of a deep learning approach
over physicians. However, doctors diagnosed the images through desktop screens, which
may have played a role through the lower-than-normal resolution.

Another work [28] used 600 images divided into 117, 90, and 393 melanoma, seborrheic
keratoses, and nevus images. The accuracy obtained by the deep learning approach was
81.6%, while two dermatologists obtained accuracies of 65.56% and 66.0%.

In another study [29], the authors proposed a new DermoDeep system consisting of
five layers, namely a construction of visual features feature layer (VF-L), a deep feature
layer (DF-L), a feature fusion layer (FF-L), an optimization of features layer (OF-L), and a
prediction layer (FF-PL). They used a dataset of 2800 images divided equally between nevus
and malignant lesions. This study compared the proposed method with other techniques
and demonstrated that it can ensure better accuracy.

Other approaches have been proposed to detect and analyze melanoma skin
cancer [25,30–35]. Table 1 lists the differences between the most important studies in
this field.

Contributions: We list the main contributions of this work as follows:

• Unlike existing studies, we include recent (and previous state-of-the-art) deep learning
(DL) architectures to comprehensively investigate their performance differences. The
utilized DL architectures in this study include DenseNet201, MobileNetV2, ResNet50V2,
ResNet152V2, Xception, VGG16, VGG19, and GoogleNet.

• As the accurate prediction performance is of great importance in the melanoma skin
cancer classification task, therefore, we aimed to identify the best-performing deep
learning model to assist dermatologists in finding the appropriate AI tool.
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• We report training results of all DL architectures in this study. Moreover, we record
the generalization performance results using the ISIC benchmark dataset pertaining
to the melanoma skin cancer classification task.

• Although large networks such as DenseNet201 and ResNet152V2 have notably more
deep layers than GoogleNet and the other ones, experimental results demonstrate
that GoogleNet generated the best performance results when measured using the
standard performance measures. These results show the superiority of GoogleNet
when tackling the melanoma skin cancer classification task.

Table 1. Summary of the most important previous studies.

Authors and Year Datasets Architecture Images Results

Hekler et al., 2019 [25]
The largest regional

dermatohistopathological
institute in Germany

ResNet50 350 nevi and
345 melanomas

Misclassification rates of
the trained CNN were 0.18
for melanomas 95%, 0.20
for nevi 95%, and 0.19 for
the full set of images 95%

Jojoa et al., 2021 [26] ISIC 2017 challenge ResNet152 Training: 1995,
validation: 149

eVida M6 model
accuracy = 90.4%,
sensitivity = 82%,
specificity = 0.925

Brinker et al., 2019 [27] ISIC ResNet50

Training: 1888 mel, 10,490
nevi; validation: 210 mel,

1049 nevi; test: 20 mel,
80 nevi

sensitivity = 84.5%, chief
physician’s sensitivity:

73.3%

Bisla et al., 2019 [28] ISIC 2017–2018, PH2,
Edinburgh U-Net, ResNet50

ISIC 2017 (803,2107,288);
PH2 (40,80,0); Edinburgh
(76,331,257); Testing: ISIC

2017–2018 (147,470,182)
(mel, nevus, and

seborrheic keratosis,
respectively)

The accuracy was 81.6%,
while two dermatologists
had accuracies of 65.56%

and 66.0%

Jose et al., 2020 [35] ISIC 2018
VGG-16, VGG-19,

MobileNet, ResNet50,
Xception, DenseNet201

HAM10000 10,015
(actinic keratosis, basal

cell carcinoma,
dermatofibroma, mel,

nevus, pigmented benign
keratosis, vascular)

accuracy of 92.4%, IBA of
0.80, and MCC of 0.7953

2. Materials and Methods
2.1. Dataset

The International Skin Imaging Collaboration (ISIC) Dataset 2019 version was used
in our experiment [36–38] (data downloaded from https://challenge.isic-archive.com/
accessed on 6 October 2021). It contains 25,333 images, 7146 of which are relevant to the
current field of study, with 4522 images of melanoma skin cancer.

2.2. Deep Learning Approach

We employed eight popular deep learning architectures to investigate their perfor-
mance differences. VGG16 consists of 13 convolutional layers interleaved with 5 max-
pooling layers for feature extraction, followed by 3 fully connected layers for the classi-
fication [39]. VGG19 consists of 16 convolutional layers interleaved with 5 max-pooling
layers for the feature extraction, followed by 3 fully connected layers for the classifica-
tion [39]. GoogleNet contains nine inception modules (each consisting of two layers of
six convolutional layers and a max-pooling layer) for feature extraction, as well as fully
connected layers for classification [40]. In Xception, the inception module is replaced by
depthwise separable convolutions, to be finally followed by fully connected layers for clas-
sification [41]. DenseNet201 starts with a convolutional layer, a max-pooling layer, followed
by four dense blocks consisting of [6, 12, 48, 32] layers, transition layers between a pair of

https://challenge.isic-archive.com/
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dense blocks, and a classification layer [42]. Unlike ResNet50 (consisting of 49 convolutional
layers, 1 max-pooling, 1 average pooling layer, and 1 fully connected layer for classifica-
tion) [43], ResNet50V2 is a modified version using a different residual unit [44]. Similarly,
ResNet152V2 is a modified version of ResNet152 (consisting of 151 convolutional layers,
1 max-pooling, 1 average pooling layer, 1 fully connected layer for classification) [43,44].
MobileNetV2 is different from MobileNet, as it has a different layer module, leading to
efficient models on mobile apps [45]. We used pre-trained models to extract features from
the images, and we modified the fully connected layers to deal with the binary classification
problem in our study.

In Figure 3, we show the computational deep learning approach for distinguishing
between melanoma skin cancer images and non-melanoma skin cancer images [9]. We used
the python script TensorFlow, Colaboratory, and convolutional neural networks as deep
learning architectures to develop an efficient network for diagnosing melanoma skin cancer.
Our objective was to train a specialized convolutional neural network model to detect
whether an image showed melanoma skin cancer or not. The primary responsibility of this
function is to draw common characteristics from the images and predict which category
they belong to. This approach extracts features from the image and converts them into a
new image, which is more efficient than the previous one for classification. Furthermore,
it reduces the dimensions of the images to a good representation. The classification in
our subject is binary; therefore, (1) indicated the case of melanoma skin cancer, and the
reference (0) denoted non-melanoma skin cancer. At first, the data were read from the
dataset file, and then, the image size was converted to 224 × 224 for the extraction of
features. We explored and applied the model, then evaluated and analyzed the effect of the
convolutional neural network architectures on the prognosis of melanoma skin cancer. The
eight architectures that were used in this study, which are reviewed below, were as follows:
DenseNet201, MobileNetV2, ResNet50V2, ResNet152V2, Xception, VGG16, VGG19, and
GoogleNet. The data were divided into training, validation, and test sets. The first set
was used to train the networks, and the second set was used to monitor and improve the
model performance during the training process. Training, validation, and testing were
performed using all the images in each architecture. At the same time, the third set was
used to test the trained model; see Figure 4. The implementation of the project was carried
out in Google Colaboratory. Python libraries including TensorFlow, Keras, pandas, NumPy,
matplotlib, sklearn, scipy, torch, and seaborn were used, among others. Finally, we obtained
performance measures for the trained models, including the accuracy, precision, recall,
F1-score, training and validation losses, accuracy graphs, and confusion matrix.

Figure 3. The computational deep learning framework for distinguishing between melanoma skin
cancer images and non-melanoma skin cancer images. Skin cancer images from [36–38].
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Figure 4. Division of the dataset into training, verification, and testing sets.

The stages of the experiment can be summarized in six stages. The first stage began
by taking data from the dataset separately. Then, processing of the images was carried
out, followed by data division. Then, the model building stage was conducted for several
architectures, and the associated results were assessed in the following two stages. Finally,
the testing phase was carried out, where the testing operations were performed on the
testing set sample. Several measures were recorded in order to compare the architectures
used in building the models, as well as the implementation process after saving the model,
through checking the best obtained values after making comparisons between them.

3. Results

We display the analysis results of the experiment in three main parts, as follows.

3.1. Classification Methodology

We adopted eight deep learning architectures, including DenseNet201, MobileNetV2,
ResNet50V2, ResNet152V2, Xception, VGG16, VGG19, and GoogleNet. All of these previ-
ous architectures operate under a supervised learning framework. First, the model trains
using a subset of the full dataset, verifying and adjusting the model’s performance in the
process. Then, the third set (i.e., the testing set) was used to test the model. The model
can generate specific predictions from 1 (positive) or 0 (negative). Several performance
measures were used to evaluate the model performance, including accuracy, precision,
recall, and F1-score. In addition, the training loss, validation loss, accuracy graphs, and
confusion matrix were also considered, in order to carry out comprehensive evaluation of
the models.

3.2. Implementation Details

We used Anaconda Python Version 3.7.4 with a Jupyter Notebook and several libraries,
such as Keras and Sklearn. In addition, Google Colaboratory GPU was used to process the
execution of the experiment.

3.3. Classification Results

The summary of the experimental results for all the architectures used on the dataset
is provided in Table 2. It can be seen that GoogleNet generated the best performance
results, as shown in bold. Its training accuracy was 74.91%, and the test accuracy was
76.08%. Then, DenseNet201 and ResNet50V2 achieved the next-highest accuracy results,
with slightly lower training accuracy (73.96% and 73.74%, respectively) and test accuracy
(74.68% and 73.42%, respectively). The worst accuracy performance was obtained by
VGG16 and VGG19. The rest of the architectures achieved average results, ranging between
70and 74% for both training and test accuracy.
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Table 2. Performance comparison between different convolutional neural network models.

Architecture Training Accuracy Test Accuracy Training Loss Test Loss

DenseNet201 0.7396 0.7468 0.5167 0.5174
MobileNetV2 0.7188 0.7398 0.5371 0.5325
ResNet50V2 0.7374 0.7342 0.5187 0.5090
ResNet152V2 0.7039 0.7384 0.5950 0.5601

Xception 0.708 0.7062 0.5555 0.5419
VGG16 0.6436 0.7146 0.6325 0.5547
VGG19 0.6550 0.6867 0.6095 0.5793

GoogleNet 0.7491 0.7608 0.4991 0.5015

A confusion matrix is needed to measure the overall classification performance. In
Figure 5, we show confusion matrices for the eight architectures used in this study. The
test data included 466 positive melanoma skin cancer images and 249 negative melanoma
skin cancer images. In the GoogleNet model, the number of correctly predicted examples
was 538; thus, this CNN model misclassified 177 out of 715 images. When examining
the results obtained by the DenseNet201 model, 535 images were classified correctly and
180 images were classified incorrectly. ResNet50V2 had good results, similar to the two
above-mentioned architectures. In detail, Table 3 displays the confusion matrices for
all the architectures performed in this experiment, in addition to the number of images
rated by the model that were correct or miscategorized (whether false positive or false
negative). TP denotes true positive, referring to the number of melanoma skin cancer
images that were correctly predicted as melanoma skin cancer images. FN denotes false
negative, referring to the number of melanoma skin cancer images that were incorrectly
predicted as non-melanoma skin cancer images. TN denotes true negative, referring to
the number of non-melanoma skin cancer images that were correctly predicted as non-
melanoma skin cancer images. FP denotes false positive, referring to the number of
non-melanoma skin cancer images that were incorrectly predicted as melanoma skin cancer
images. Furthermore, Table 4 presents the performance results for all architectures, based
on the metrics of balanced accuracy, F1-score, precision, and recall.

Table 3. Confusion matrix data for all architectures used in the experiment. TP, true positive. FN,
false negative. TN, true negative. FP, false positive.

Architecture TN FN TP FP Total TN&TP FN&FP

DenseNet201 139 70 396 110 715 535 180
MobileNetV2 129 77 389 120 715 518 197
ResNet50V2 133 65 401 116 715 534 181
ResNet152V2 116 64 402 133 715 518 197

Xception 112 58 408 137 715 520 195
VGG16 106 60 406 143 715 512 203
VGG19 85 53 413 164 715 498 217

GoogleNet 155 94 383 83 715 538 177

Table 4. Performance results for all architectures based on various metrics.

Architecture Balanced Accuracy F1-score Precision Recall

DenseNet201 0.70 0.81 0.78 0.85
MobileNetV2 0.68 0.80 0.76 0.83
ResNet50V2 0.70 0.82 0.78 0.86
ResNet152V2 0.66 0.80 0.75 0.86

Xception 0.66 0.81 0.75 0.88
VGG16 0.65 0.80 0.74 0.87
VGG19 0.61 0.79 0.72 0.89

GoogleNet 0.73 0.81 0.82 0.80
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Figure 5. Confusion matrices for all architectures used in the experiment.

Additionally, we display the training and validation loss of the CNN models used in
the experiment, as shown in Figures 6–9.
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Figure 6. Training and validation performance for DenseNet 201 and GoogleNet.

Figure 7. Training and validation performance for MobileNetV2 and ResNet50V2.
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Figure 8. Training and validation performance for ResNet152V2 and VGG16.

Figure 9. Training and validation performance for VGG19 and Xception.

Table 5 presents the best number of epochs obtained for all architectures used in the
experiment. A total of 50 epochs was applied for each architecture; however, if the accuracy
decreased, the implementation process was exited and the best epoch was selected.
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Table 5. The best epoch obtained for the architectures used in the experiment.

Architecture Best Epoch

DenseNet201 16
MobileNetV2 14
ResNet50V2 19
ResNet152V2 9

Xception 6
VGG16 5
VGG19 8

GoogleNet 29

4. Discussion

The main objective of this study was to develop various deep learning techniques for
the classification of melanoma skin cancer and then to compare the performance results of
these architectures. We adapted several deep learning architectures, including a custom
CNN for the binary classification of melanoma. We resized the 7146 images in the dataset
to 224 × 224 pixels. ImageDataGenerator technology was used to overcome the data
volume problem. We then evaluated and compared the model performance for all of the
architectures that were considered, based on common performance measures. It is worth
noting that GoogleNet performed the best, when compared to the other deep learning
models. When comparing this study with previous empirical studies, such as [27,28], we
found that the distinction of this study is that we used several CNN architectures (i.e.,
eight architectures). The results differed between studies, and the results of this study
may be good, to some extent. We may also be more comprehensive in adapting several
architectures, as the results may be improved by using a larger dataset. Some research
studies [46–48] have indicated that deep learning approaches requires massive data in
order to train the network well and, thus, provide more accurate results. However, one
of the challenges associated with this is the availability of high-quality hardware, such as
GPUs. For example, our experiment on a modestly sized dataset (7146 images) took about
six and a half hours to perform all operations with eight architectures, even though we
used GPUs using Colaboratory. The larger the dataset, the more time that must be spent.
Some studies [49] have indicated that CNNs should be trained on high-quality data, as
noisy image data may increase misclassification rates. We noticed, throughout the course of
the experiment, that some images contained some noise, such as shadows and hair, which
may have reduced their quality. Thus, the extraction of essential features may be affected
when training the network, which can lead to the wrong training on some features. Thus,
ensuring only high-quality images are available in the dataset is a critical matter.

It can be seen from Table 4 and Figure 5 that ResNet-based architectures utilized (and
promoted) in previous studies [25–28] did not outperform GoogleNet used in this study.
GoogleNet performed better than MobileNetV2, which was promoted and used in [35]. It
is worth noting that GoogleNet was not utilized in [25–28,35], and we utilized improved
versions of ResNet-based architectures such as ResNet50V2 and ResNet152V2.

We used a moderate amount of the training and evaluation data in the experiment,
which may play a role in training and testing deep neural network models. Therefore, we
intend to expand upon this experiment through the use of larger image datasets, as several
studies have indicated that convolutional neural networks should be fed extensive data to
obtain results with very high accuracy.

Through the results of this study, we aimed to develop technological systems for use
in daily life and to assist dermatologists in effectively detecting skin cancer. Moreover, the
more images of melanoma of different types that the CNN is exposed to, the higher its
accuracy in recognizing different features. This topic may be interesting in future research.
However, unlike previous studies, we performed a detailed experimental study by adopting
a range of deep learning architectures to comparatively assess their performance behavior
and to identify the best-performing deep learning model for the classification task of
melanoma skin cancer using medical images. As each DL architecture had a different
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number of processing layers, it can be observed that GoogleNet (with 22 layers) performed
better than the others with more (or less) deep layers considered in this study, when
considering the melanoma skin cancer classification task [50].

Deep learning (DL) requires hardware resources such as GPU to speed up the training
time [51]. Unlike existing studies, we included recent DL architectures using the ISIC
benchmark dataset to identify the appropriate DL architecture when specifically tackling
the melanoma skin cancer classification task. It is worth noting that training was performed
on an end-to-end basis using melanoma and non-melanoma skin cancer images. Therefore,
we show the feasibility of DL when finding whether skin has melanoma or not without the
need for the domain expert’s intervention for the feature engineering part.

5. Conclusions and Future Work

At present, the health field is one of the most prominent areas that has adopted
the use of deep learning techniques. In this work, we performed binary classification
of skin images using convolutional neural networks for the diagnosis of melanoma skin
cancer. Several CNN architectures were adapted, including DenseNet201, MobileNetV2,
ResNet50V2, ResNet152V2, Xception, VGG16, VGG19, and GoogleNet. One dataset was
used for training these models, a second set to validate and adjust the training process, and
finally, a third set to test each trained model, in order to assess the validity of its predictions.
The experiment included 7146 images as the whole dataset. The experimental results on
this dataset demonstrated that GoogleNet outperformed all the other models.

Future work will include: (1) proposing a hybrid approach based on machine learning
and deep learning to improve the prediction performance; (2) incorporating different data
augmentation techniques to enhance the prediction performance; (3) testing the perfor-
mance under different learning settings, including active learning and transfer learning;
and (4) boosting the performance of GoogleNet, as detailed in [51].
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