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Abstract: Drones are commonly used in numerous applications, such as surveillance, navigation,
spraying pesticides in autonomous agricultural systems, various military services, etc., due to their
variable sizes and workloads. However, malicious drones that carry harmful objects are often
adversely used to intrude restricted areas and attack critical public places. Thus, the timely detection
of malicious drones can prevent potential harm. This article proposes a vision transformer (ViT) based
framework to distinguish between drones and malicious drones. In the proposed ViT based model,
drone images are split into fixed-size patches; then, linearly embeddings and position embeddings
are applied, and the resulting sequence of vectors is finally fed to a standard ViT encoder. During
classification, an additional learnable classification token associated to the sequence is used. The
proposed framework is compared with several handcrafted and deep convolutional neural networks
(D-CNN), which reveal that the proposed model has achieved an accuracy of 98.3%, outperforming
various handcrafted and D-CNNs models. Additionally, the superiority of the proposed model is
illustrated by comparing it with the existing state-of-the-art drone-detection methods.

Keywords: vision transformer; deep convolutional neural networks; deep learning; malicious drones;
classification; drones

1. Introduction

With recent development in remote sensing technology, drones play an essential role
in developing smart cities and innovative industries due to their numerous applications,
including automated irrigation, spraying pesticides and fertilizers in agriculture [1], water
management [2], food services [3], UAS-based image velocimetry [4], flying base stations [5],
etc. Drones of variable sizes and different shapes have been deployed in the military for
navigation and surveillance purposes [6].

In spite of numerous useful applications, drones are often used for spying and carrying
dangerous loads. Such drones are termed malicious drones, which enter in the restricted
non-fly zones avoiding radar detection due to their low-altitude flight path. The schematic
in Figure 1a,b shows the normal use cases of drones, and Figure 1c depicts the intrusion of
malicious drones in the restricted zones.

Hence, it is critical to develop an autonomous system that can efficiently detect the
intrusion of malicious drones to avoid any potential damage. In that regard, machine
learning (ML) and computer vision (CV) can allow us to develop automated systems
that can detect malicious drones. The existing techniques in the literature usually rely on
audios, images, videos, and radio frequency signals to detect drones. In [7], the authors
proposed a DL-based hybrid audio and integrated visual framework for detecting malicious
drones, which achieved an accuracy of 98.5% for the combined audio and visual dataset.
However, the main drawback of the model was that it was limited to drone detection, and
the model was unable to differentiate between drones with loads and without loads. Along
similar lines, in [8], the authors proposed a mel frequency cepstral coefficient (MFCC)
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with a SVM-based model for detecting malicious drones; however, the performance model
deteriorates when detecting amateur drones in adverse weather conditions and noisy
environments. Moreover, in [9], the authors proposed a handcrafted feature extraction-
based technique to detect drones using audios and images. The method achieved 81%
accuracy, but deteriorates when detecting drones in adverse weather conditions. In [10],
Dumitrescu et al. designed a DL-based system for drone detection by employing acoustic
signals. However, the authors did not consider malicious drones as a separate class
and the article only addressed drone detection. In [11], Digulescu et al. investigated a
radio frequency signal-based advanced signal processing model to detect the movement
of drones. The model performed relatively well in the controlled environment. In [12],
Singha et al. proposed a YOLOv4-based model for detecting drones. The model achieved
mean average precision (mAP) of 74.36%. Furthermore, in [13], the authors proposed a
DL-based detection and identification of the drones using audio signals. The technique
achieved the highest accuracy of 85.26%; however, the model showed limited performance
in adverse weather conditions. In [14], the authors distinguished drones from birds using
the laser. The framework detected drones with less than five kilograms of mass. However,
the technique was not used to detect drones with loads. In a subsequent study [15], the
authors proposed a YOLOv3 based model for detecting drones and birds. The model
performance varies with the variation in the shape of drones and the visibility of the drones.
In [16], Swinney et al. analyzed the impact of real-world interference in the classification of
drones, using CNNs and radio frequency signals.
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From the aforementioned discussion, it is clear that although several existing DL
models can classify and detect drones based on acoustic, radio frequency, and visual signals,
they may not be useful in challenging scenarios of distinguishing between several subject
classes, such as drones, malicious drones, birds, airplanes, helicopters, etc. Furthermore,
none of the existing ML and deep learning (DL) models address the issue of drone detection
with loads.

In order to address the aforementioned shortcomings and drawbacks, the current
article proposes a vision transformer (ViT) based framework for classifying drones, ma-
licious drones, airplanes, birds, and helicopters. The idea of ViT was introduced by [17].
We compare the proposed framework with various handcrafted feature extraction such as
histogram of oriented gradient (HOG) [18], locally encoded transform feature histogram
(LETRIST) [19], local binary pattern (LBP) [20], gray level co-occurrence matrix (GLCM) [21],
non-redundant local binary pattern (NRLBP) [22], completed joint-scale local binary pat-
tern (CJLBP) [23], local tetra pattern (LTrP) [24], and D-CNN models, such as AlexNet [25],
ShuffleNet [26], ResNet-50 [27], SqueezeNet [28], MobileNet-v2 [29], Inceptionv3 [30],
GoogleNet [31], EfficientNetb0 [32], Inception-ResNet-v2 [33], DarkNet-53 [34] and Xcep-
tion [35]. We also compare the feature extractions’ performance with several classifiers,
such as support vector machine [36,37], decision tree, k-nearest neighbors, ensemble, Naive
Bayes, multi-layer perceptron (MLP) [38,39], radial basis function (RBF) and group method
of data handling (GMDH). The comparisons demonstrate that the proposed model can
significantly outperform existing state-of-the-art models in terms of classification accuracy
and can be employed as a robust classification model for malicious drones’ detection. The
remainder of the paper is organized as follows: Section 2 describes the proposed methodol-
ogy, different handcrafted descriptor models, and dataset description; Section 3 deals with
the relevant finding and discussion of the proposed classifier. Finally, the conclusions and
prospects of the current work are discussed in Section 4.

2. Proposed Methodology

Drones have different visual characteristics, such as color, shape, load, and size. Thus,
the images are useful for distinguishing malicious drones from the other classes, such
as drones without load, aeroplanes, helicopters, and birds. The images are fed into the
handcrafted descriptors, D-CNNs, and ViT-classifier. Handcrafted descriptors and D-CNNs
are used to extract features that are used to train the classifier. The schematic in Figure 2
shows the flow diagram of the framework.
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2.1. Handcrafted Descriptors

The images are resized to 224 × 224 and after that, features are extracted with the help
of HOG, LETRIST, LBP, GLCM, NRLBP, CJLBP, and LTrP. The features are stored in the
feature vectors, which are used to train ML classifiers.

2.2. D-CNN Models

The images are resized to the input size of each D-CNNs and after that, features are
extracted with the help of AlexNet, ShuffleNet, ResNet-50, SqueezeNet, MobileNet-v2,
Inceptionv3, GoogleNet, EfficientNetb0, Inception-ResNet-v2, DarkNet-53, and Xception.
The features are saved in the feature vectors, which are used to train ML classifiers.
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2.3. ViT-Based Classification

Initially, the images are resized to 224 × 224 and then fed into ViT. ViT splits images
into 14 × 14 vectors with patches of 16 × 16. These patch embedding vectors are followed
by adding learnable position embedding vectors. These embedded vectors are further
fed into the transformer encoder (TE), which is proposed in [40]. In TE, the embedded
vectors are divided into a query (a), key (b), and value (c) after being expanded by a fully
connected (fc) layer. Then, a, b, and c are further divided and fed to the parallel attention
heads (AH). Outputs from AHs are concatenated to form the vectors whose shape is the
same as the encoder input. The vectors go through an fc, a layer normalization, and a
multi-layer perceptron MLP block with two fc layers. TE encodes the embedding vector
and outputs a vector of the same size. The output vector of the TE is fed into the MLP head
to make the final classification. The complete schematic diagram of the ViT is shown in
Figure 3.
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2.4. Dataset

In the present study, a customized dataset consisting of five different classes (i.e., aero-
planes, birds, drones, helicopters, and malicious drones) is utilized. The dataset is chal-
lenging due to the presence of occluded images, night images, low visibility of object
images, and adverse weather condition images. The dataset has a total of 776 images. The
aeroplane and bird classes have 105 images in each class. Similarly, the drone, helicopter,
and malicious drone classes have 200, 167, and 199 images, respectively. All the images are
resized to 224 × 224. The dataset is publicly available on Kaggle, and the link can be found
in the data availability section. The dataset is divided into a train set with 70% images
and a test set with 30% images. Some of the typical images from the dataset are shown in
Figure 4.
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3. Results

In order to evaluate the performance of the proposed classifier, various performance
metrics, including accuracy, specificity, sensitivity, and F1 − score are considered. The
accuracy of the classifier can be obtained as follows:

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

where, in Equation (1), tn and tp denote true negative and true positive, respectively, while
fn and fp represent false negative and false positive, respectively. The accuracy of the
classifier indicates the ability to distinguish malicious drone classes correctly. Sensitivity
(se) is the proportion of actual positives that are correctly predicted as positives and is
determined as

se =
tp

tp + fn
(2)

Precision or specificity
(
sp
)

is the proportion of actual positives that are correctly
predicted as negatives and is calculated as follows:

sp =
tn

tn + fp
(3)
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From the definition of se and sp in Equations (2) and (3), the F1 − score can be obtained as

F1 − score = 2 ×
[ (

se ∗ sp
)(

se + sp
)] (4)

Additionally, Cohen’s kappa (κ) is considered to further evaluate the performance of
the proposed model, which can be calculated as

κ = 2 ×
[ (

tp·tn − fp· fn
)(

tp + fp
)
·
(

fp + tn
)
+
(
tp + fn

)
·( fn + tn)

]
(5)

The experiments are conducted on the local system with 12 GB RAM and Tesla T4
GPU. The model complexity and hyperparameters of the model are shown in Table 1.

Table 1. Model complexity and hyperparameters.

Parameter Value

Trainable Parameters 85.8 M
Model Parameters size 171.605 MB

Learning rate 2 × 10−5

Optimizer Adam
Mini Batch Size 8

From the classification result, it is found that the proposed ViT classifier has achieved
98.28% overall accuracy. The accuracy values for aeroplanes, birds, and helicopters are
100%, 100%, and 100%, respectively, indicating excellent robustness of the model for these
classes. However, the accuracy values for the drone and malicious drone classes slightly
drop to 96.8% and 96.8%, respectively. The confusion matrix of the ViT classifier is shown
in Figure 5.
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The ViT classifier achieves the overall se, sp, F1 − score, and κ values of 99.00%, 99.00%,
99.00%, and 99.00%, respectively. The se, sp and F1 − score of aeroplane, bird, and helicopter
classes are 100%, 100%, and 100% respectively. The se, sp, and F1 − score for drone and
malicious drone classes are 97.0%, 97.0%, and 97.0%, respectively. Figure 6 shows the
comparison bar chart of various classification metrics obtained from the ViT classifier for
different classes.
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This section reports the performance comparison of various handcrafted descriptors
considering different classifiers. The accuracy of the HOG, LETRIST, LBP, GLCM, NRLBP,
CJLBP, and LTrP with different classifiers such as SVM with linear kernel, kNN, DT,
Ensemble, NB, MLP, RBF, and GMDH are shown in Table 2.

Analyzing Table 2, it is evident that the performance of handcrafted descriptors is quite
low compared to ViT classifier, as the highest accuracy is 78.90% using HOG and ensemble
classifier. The accuracy of HOG with the SVM classifier is 76.70% whereas, with kNN, NB
and DT, it is 37.90%, 57.30%, and 58.60%, respectively. Similarly, Table 3 shows the test
accuracy of the AlexNet, ShuffleNet, ResNet-50, SqueezeNet, MobileNet-v2, Inceptionv3,
GoogleNet, EfficientNetb0, Inception-ResNet-v2, DarkNet-53, and Xception models with
different classifiers. All the D-CNNs are trained with 1000 epochs and the best number of
the epochs are achieved by monitoring the validation accuracy of the models and adding
early stopping.
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Table 2. Performance comparison of various handcrafted descriptors considering different classifiers.

Descriptor Classifier Accuracy

HOG

SVM (Linear Kernel) 1 76.70%
kNN 2 37.90%
DT 3 58.60%
NB 4 57.30%

Ensemble 78.90%
MLP 70.50%
RBF 75.60%

GMDH 74.50%

LETRIST

SVM (Linear Kernel) 1 31.90%
kNN 2 39.70%
DT 3 36.60%
NB 4 43.50%

Ensemble 52.20%
MLP 30.90%
RBF 32.30%

GMDH 30.40%

LBP

SVM (Linear Kernel) 1 45.30%
kNN 2 38.40%
DT 3 34.90%
NB 4 39.70%

Ensemble 45.70%
MLP 39.10%
RBF 44.20%

GMDH 43.10%

GLCM

SVM (Linear Kernel) 1 49.60%
kNN 2 36.60%
DT 3 39.20%
NB 4 34.50%

Ensemble 44.40%
MLP 43.40%
RBF 48.50%

GMDH 47.40%

NRLBP

SVM (Linear Kernel) 1 28.00%
kNN 2 16.80%
DT 3 30.60%

Ensemble 30.60%
MLP 22.00%
RBF 27.00%

GMDH 26.00%

CJLBP

SVM (Linear Kernel) 1 36.20%
kNN 2 30.20%
DT 3 38.40%
NB 4 36.60%

Ensemble 50.90%
MLP 30.00%
RBF 35.10%

GMDH 34.00%

LTrP

SVM (Linear Kernel) 1 29.70%
kNN 2 34.10%
DT 3 37.90%
NB 4 44.80%

Ensemble 47.80%
MLP 23.50%
RBF 28.60%

GMDH 27.50%
1 SVM = support vector machine, 2 kNN = k nearest neighbor, 3 DT = decision tree, 4 NB = naïve Bayes.
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Table 3. Performance values in terms of accuracy obtained from different D-CNN models.

D-CNN Model Classifier Accuracy

AlexNet

SVM 1 88.80%
kNN 2 75.90%
DT 3 59.50%
NB 4 71.10%

Ensemble 83.30%
MLP 82.60%
RBF 87.70%

GMDH 86.60%

ShuffleNet

SVM 1 86.20%
kNN 2 77.60%
DT 3 63.80%
NB 4 76.30%

Ensemble 86.20%
MLP 80.00%
RBF 85.10%

GMDH 84.00%

ResNet-50

SVM 1 89.20%
kNN 2 77.20%
DT 3 73.70%
NB 4 72.80%

Ensemble 86.60%
MLP 83.00%
RBF 88.10%

GMDH 87.00%

SqueezeNet

SVM 1 61.60%
kNN 2 64.20%
DT 3 66.40%
NB 4 63.80%

Ensemble 82.80%
MLP 55.40%
RBF 60.50%

GMDH 59.40%

MobileNet-v2

SVM 1 91.80%
kNN 2 84.50%
DT 3 62.90%
NB 4 83.60%

Ensemble 85.30%
MLP 85.60%
RBF 90.70%

GMDH 89.60%

Inceptionv3

SVM 1 90.90%
kNN 2 88.40%
DT 3 70.70%
NB 4 85.30%

Ensemble 88.40%
MLP 84.70%
RBF 89.80%

GMDH 88.70%



AI 2022, 3 269

Table 3. Cont.

D-CNN Model Classifier Accuracy

GoogleNet

SVM 1 87.90%
kNN 2 82.30%
DT 3 64.20%
NB 4 84.50%

Ensemble 87.50%
MLP 83.70%
RBF 86.80%

GMDH 85.70%

EfficientNetb0

SVM 1 92.20%
kNN 2 84.50%
DT 3 66.40%
NB 4 86.20%

Ensemble 89.20%
MLP 86.00%
RBF 91.10%

GMDH 90.00%

Inception-ResNet-v2

SVM 1 91.80%
kNN 2 87.90%
DT 3 72.00%
NB 4 80.20%

Ensemble 89.70%
MLP 85.60%
RBF 90.70%

GMDH 89.60%

DarkNet-53

SVM 1 68.50%
kNN 2 62.50%
DT 3 75.00%
NB 4 74.60%

Ensemble 91.40%
MLP 62.30%
RBF 67.40%

GMDH 66.30%

Xception

SVM 1 93.50%
kNN 2 87.90%
DT 3 72.40%
NB 4 87.50%

Ensemble 88.80%
MLP 87.30%
RBF 92.40%

GMDH 91.30%

Proposed ViT classifier 98.28%
1 SVM = support vector machine, 2 kNN = k nearest neighbor, 3 DT = decision tree, 4 NB = naïve Bayes.

The results in Table 3 indicate that the performance of the D-CNN models is better
than handcrafted descriptors. However, the highest accuracy of 93.50% is achieved by
Xception with multiclass SVM. The accuracy values for the Xception with kNN, DT, NB,
and Ensemble are 87.90%, 72.40%, 87.50%, and 88.80%, respectively. The highest accuracy
achieved by AlexNet is 88.80% with SVM. Similarly, ResNet-50 achieves the maximum
accuracy of 89.20% with SVM. ShuffleNet achieves the highest accuracy of 86.20% with SVM
and ensemble. SqueezeNet achieves the highest accuracy of the 82.80% with the ensemble.
MobileNet-v2, Inceptionv3, GoogleNet, EfficientNetb0 and Inception-ResNet-v2 has 91.80%,
90.90%, 87.90%, 92.20% and 91.80% accuracy with the SVM classifier, respectively. However,
DarkNet-53 achieves the highest accuracy of 91.40% with the ensemble. The proposed
framework with ViT classifier achieves an accuracy of 98.28%, which is a 4.78% increase
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in accuracy compared to Xception with SVM. The comparisons demonstrate that the
proposed model can significantly outperform existing D-CNN models by achieving the
highest classification accuracy.

We also visualized the hot maps of the Grad CAM to visualize the portion of the image,
which helps in classification of the images with 10% to 90% background. The visual results
are shown in Figure 7.
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Figure 7. Hot map visualization of malicious drone images with 10% to 90% background using Grad CAM.

From Figure 7, it can be observed that when the load is near the drone, even in the 90%
background images, it contributes to the classification. However, when the load is tied with
string or relatively far away from the drone body, then only the drone contributes to the
classification. From the performance comparison, it is evident that the proposed framework
can be employed as a robust and efficient classification model for malicious drone detection.
The current framework can be extended for the image compression [41], classification,
and other computer vision tasks, such as object detection [42–44], and motor imagery
classification in the brain–computer interface (BCI) [45–47]. The work can further be
extended to classify malicious drones using selected features with nature and bio inspired
algorithms [48–50], such as particle swarm optimization (PSO), genetic algorithm (GA),
artificial bee colony (ABC), etc.

4. Conclusions

Drones are widely used due to their numerous applications. However, malicious
drones which carry harmful material can cause destruction and bomb blasts. Thus, it is
critical to distinguish between malicious drones and other flying objects. In this article,
several ML and DL techniques are analyzed, which reveal that the performance of the
handcrafted descriptors with ML classifiers is relatively low. Furthermore, the performance
of various D-CNN ML classifiers is also evaluated. Our study indicates that the highest
accuracy achieved by D-CNN models is 93.50%. However, the overall classification accuracy
of the ViT classifier is 98.3%, which is the highest among all models. The ViT classifier
achieves the overall recall, precision, and F1 − score of 99.0%, 99.0%, 99.0%, and 99.0%,
respectively. The precision, recall, F1 − score, and Cohen’s kappa for malicious drone class
are 97.0%, 97.0%, 97.0%, and 97.0%, respectively. The current study illustrates that the
proposed ViT-based approach can help to classify malicious drones more efficiently than
state-of-the-art D-CNN models. Training with a large dataset can further enhance the
performance of the ViT-based framework. Nevertheless, the current framework can also
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be extended to various classification and computer vision tasks, such as object detection,
motor imagery classification in the brain–computer interface, etc.
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