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Abstract: The concept of searching and localizing vehicles from live traffic videos based on descriptive
textual input has yet to be explored in the scholarly literature. Endowing Intelligent Transportation
Systems (ITS) with such a capability could help solve crimes on roadways. One major impediment
to the advancement of fine-grain vehicle recognition models is the lack of video testbench datasets
with annotated ground truth data. Additionally, to the best of our knowledge, no metrics currently
exist for evaluating the robustness and performance efficiency of a vehicle recognition model on live
videos and even less so for vehicle search and localization models. In this paper, we address these
challenges by proposing V-Localize, a novel artificial intelligence framework for vehicle search and
continuous localization captured from live traffic videos based on input textual descriptions. An
efficient hashgraph algorithm is introduced to compute valid target information from textual input.
This work further introduces two novel datasets to advance AI research in these challenging areas.
These datasets include (a) the most diverse and large-scale Vehicle Color Recognition (VCoR) dataset
with 15 color classes—twice as many as the number of color classes in the largest existing such
dataset—to facilitate finer-grain recognition with color information; and (b) a Vehicle Recognition in
Video (VRiV) dataset, a first of its kind video testbench dataset for evaluating the performance of
vehicle recognition models in live videos rather than still image data. The VRiV dataset will open
new avenues for AI researchers to investigate innovative approaches that were previously intractable
due to the lack of annotated traffic vehicle recognition video testbench dataset. Finally, to address
the gap in the field, five novel metrics are introduced in this paper for adequately accessing the
performance of vehicle recognition models in live videos. Ultimately, the proposed metrics could also
prove intuitively effective at quantitative model evaluation in other video recognition applications. T
One major advantage of the proposed vehicle search and continuous localization framework is that it
could be integrated in ITS software solution to aid law enforcement, especially in critical cases such
as of amber alerts or hit-and-run incidents.

Keywords: text-based search; vehicle recognition; vehicle make model year and color recognition;
object detection; object recognition in the dark; vehicle recognition in videos; VCoR dataset; VRiV
dataset; evaluation metrics

1. Introduction

The ability to recognize a vehicle by specific features such as its make, its model, or year
of manufacture, is becoming a much-needed solution to provide advanced security features
for intelligent transportation and traffic surveillance systems. Plate number recognition is
no longer sufficient because plates can be tampered with, swapped, altered, or deliberately
occluded as shown in Figure 1. It would be more efficient and more accurate to locate
a “Silver Toyota Prius third generation (2010–2015) with plate number 9GB217” than to
locate any vehicle bearing the plate number 9GB217, especially in cases of Amber alerts,
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hit and run incidents, or other forms of criminal activities [1,2]. Additionally, it is more
common for individuals to remember a vehicle make/model (perhaps along with a partial
license plate) than to remember an exact license. Intuitively, text-based searches can be
more synergistic with the manner most incidents are reported by eyewitness accounts.
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The continued growth in traffic surveillance camera networks has imposed severe
cognitive load pressures on traffic control agents who are overwhelmed by the vast amount
of live surveillance footage that requires real-time monitoring and intervention where nec-
essary. As such, there is increased potential that numerous criminal activities and incidents
can go unnoticed or unsolved for longer periods of time due to a lack of optimization
in information search and subsequent resource deployment. Furthermore, Departments
of Transportation struggle with responding to requests for incident data from insurance
companies because the time and manual resources it takes to search among vast quan-
tities of information. In fact, in some traffic centers rules are put in place requiring the
deletion of any data older than, for example, 30 days. These rules are, at least in part,
established to help avoid responding to many data requests. To help assuage these issues,
recently several assistive technologies have been proposed for applications such as incident
detection [1,3–8].

Interest in vehicle model and make recognition (VMMR) has been on the rise for
various reasons including, advanced security, targeted advertising, faster surveillance, and
customer segmentation. The release of large-scale datasets such as VMMR [9], Stanford [10],
and CompCars [11] have inspired the development of numerous computer vision models
for vehicle recognition tasks [1,6,12–14]. However, these existing methods work best on
high quality still input image data in which distinctive features such as the manufacturer
logo, the bumper, the headlights, taillights, and chassis are visible. Inevitably, these
recognition models’ performances decline if not provided with high quality input data,
thereby impairing their ability to perform real-time recognition in live-traffic video feeds.
This is primarily because of data quality and quantity: cropped patches of detected vehicles
from a video stream are very small and blurry, meaning distinctive features are much
harder to recognize. Hence, it is important to incorporate such challenges in the training
process for improved performance, since it is a gating issue preventing vehicle recognition
algorithms from working well on live video feeds.

Additionally, searching and localizing a vehicle based on its textural description such
as a sentence, a paragraph, or a report could significantly boost security systems’ capability
for solving crimes much faster. Consider for example, the case of an amber alert where
an eyewitness reports an incident. Such a report may or may not contain the accurate
plate number description, but other vital information such as vehicle color, make, model,
and the location the vehicle was last seen contained in the report could prove crucial in
the timely solving and safe recovery of the victim. It is intractable to manually locate
such a vehicle from surveillance cameras. It is even more computationally expensive to
process the number plate for all vehicles present in a video when searching for the target
vehicle. A more efficient way of quickly localizing such a target vehicle in video would be
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to perform a content-based search where the model searches for a specific target based on a
textural description. Such text-based search algorithms for vehicle recognition have yet to
be explored.

In this paper, a novel artificial intelligence framework for text-based vehicle search,
recognition, and continued localization in traffic videos is proposed to address the above-
mentioned shortcomings of existing models. Figure 2 provides a pictorial view of the
proposed framework for text-based vehicle search and continuous localization, in compari-
son with the existing frameworks used in modern vehicle recognition models.
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videos more efficiently based on its training loop and achieve finer-grain recognition with a color component added. Lastly,
V-Localize can search for targets based on input textural description.

The research objectives of this paper can be summarized into the following contributions:

(a) a hashgraph algorithm is introduced for automatically computing the search query
from the input text at high speed;

(b) a large scale and diverse vehicle color recognition dataset (VCoR) with 15 color
classes and more than 10k images samples is proposed to facilitate training finer-
grain vehicle recognition including a color description component. The creation of
the VCoR dataset was motivated by the fact that the largest existing vehicle color
dataset only has eight color classes, and as such will limit the localization capability
(specificity) of the proposed framework.

(c) V-Localize, a deep learning-based framework for text-based vehicle search and con-
tinuous localization, is proposed. A finer-grain VMMYC (Vehicle Make Model Year
and Color) recognition model is trained for efficiently matching valid search targets.
The training procedure is designed to account for real-world traffic scenarios and
ultimately address limitations of the existing models, which are best suited for still
image inputs.

(d) A first of its kind VRiV (Vehicle Recognition in Video) testbench dataset for bench-
marking the performance of automatic vehicle recognition models in video feeds
is introduced. This dataset is aimed at addressing the lack of such testbench video
datasets, which are required to drive research for vehicle recognition models more
suited for live video input.

(e) Lastly, because there currently exist no metrics for adequately accessing the robustness
and efficiency of recognition and continuous localization models, novel metrics are
intuitively proposed to address this shortcoming. These metrics establish a foundation
for qualitatively benchmarking and comparing future models on recognition tasks on
live video.
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The remainder of the paper is organized as follows: Section 2 explores the related
literature; Section 3 presents the details of the proposed framework and its submodules;
while in Sections 4–6 the datasets and evaluation metrics; simulation and performance
results; conclusion, limitation, and future work, are presented respectively.

2. Related Work

As application opportunities for vehicle recognition systems continue to expand,
practical methods for vehicle make and model recognition (VMMR) have evolved. Ear-
lier classical methods used more traditional approaches for detecting vehicles in scenes
and leaned towards the use of feature descriptors such as SIFT [15], SURF [16,17], and
HOG [18] to retrieve relevant features, and using traditional machine learning techniques
such as SVM [19,20], K-Means clustering [21,22], and Random Forest [23]. More recent
methods have favored leveraging deep convolutional neural network methods such as
MobileNet [24], ResNet [25], SqueezeNet [26], EfficientNet [27], and VGG [28], for training
the model to automatically represent images in a hyperspace that is large and sufficiently
complex to distinctively separate vehicles of different make and designs. These later tech-
niques usually include a localization step using state-of-the-art object detectors such as
YOLO [29], RCNN [25], Fast-RCNN [24], and SSD [30].

Kazemi et al. [31] proposed a vehicle recognition algorithm using the curvelet trans-
form and a SVM classifier. The authors exploit unique properties of the curvelet transform
such as time-frequency localization, degree of directionality and anisotropy, and scale and
orientation of gradients, to extract relevant descriptive features from vehicle images, which
are then used to train an SVM classifier to distinguish between classes. However, their
study was only conducted on a limited dataset of 300 images containing only five vehicle
classes; hence, the approach is prone to overfitting. Pearce [13] et al. championed using the
Harris corner feature extractor and experimented with “make and model” classification
using Naive Bayes and KNN classifiers. This study was also conducted on a limited set
of data, and also presented numerous limitations in terms of input type, task complexity,
training approach, and inherent limitations in the classifier chosen.

Manzoor et al. [32] proposed a vehicle make and model classification method using a
bag of SIFT features. The approach consists of segregating regions of interest from which
visual features are extracted using SIFT and clustered using a bag of words. SVM is used
to train on extracted features to enable proper classification. Similar to this method is
the bag of SURF (BoSUFT) method introduced by Siddiqui et al. [6] for vehicle make
and model recognition. These approaches are limited by the feature extractor technique
employed and the resultant accuracies have been outpaced by more recent state-of-the-art
performance techniques. Boonsim and Prakoonwit [12] explored performing recognition by
using a combination of taillights shape features, license plates, rearview, and other salient
geographical features. These features are then concurrently passed to multiple machine
learning classifiers including SVM, decision trees, and K-nearest neighbors, from which
target verification is performed by majority vote. A recent method for vehicle make and
model recognition introduced by Wang et al. [33] suggests using the multiple feature sub-
space hypothesis based on sparse constraints, and transfer learning. Deep Belief Network
(BDN) is used in combination with multiple Restricted Boltzmann Machines (RBM) to
constitute the multiple subspace feature extractor. This method presents several limitations
in terms of time complexity, ambiguity in determining the number of subspaces required
for optimal performance, hence, making it unsuitable for practical realtime applications.

More advanced deep neural network methods have also helped push the boundaries
of vehicle recognition, especially as more datasets became available. Fang et al. [34]
proposed using coarse-to-fine convolutional neural network architecture for achieving
fine-grained vehicle model and make recognition. Fang et al. identifying discriminative
regions from which local and global features and cues are extracted via a hierarchical
styled neural network. The Network model learns to extract local features from distinctive
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regions, and global features from the whole vehicle, achieving state-of-the-art accuracy on
281 vehicle make and model classes.

Ma et al. [35] proposed an AI-based visual attention model for vehicle make and
model recognition. Ma et al. proposed an expansion of classical CNN architecture for
VMMR systems by introducing a Recurrent Attention Unit (RAU), a modular unit which is
applied at multiple layers of the vanilla CNN to enhance learning objective of accurately
discriminating local regions of vehicles at multiple scales. The authors experiment with
ResNet101-RAU, a modified version of ResNet101 with an added RAU, on the popular Stan-
ford and CompCars dataset. ResNet-RAU also achieved state-of-the-art-accuracy. Another
method to mention is the vehicle recognition with Residual SqueezeNet by Lee et al. [14].
Lee et al. argued that introducing residual connection in the original SqueezeNet helps
extract more distinctive features for vehicle make and model recognition. Lee et al. further
applied principal component analysis (PCA) [36] to reduce feature dimensionality space,
and k-means clustering was used for final classification.

Although the later methods exhibited better performance than classical methods, they
are still faced with numerous challenges and limitations. First, even modern recognition
models fail to consider valuable details such as vehicle color which would otherwise
make the model more robust and more adequate for practical application in security
systems. Second, the accuracy of existing models is often reported on still images (often of
high quality), as such, it is difficult to replicate reported accuracies on live video footage
which simulates real-world conditions much better than the ideal still images chosen as a
validation set.

In this paper, the aforementioned shortcomings of the existing vehicle model and
make recognition systems are addressed by developing a more robust model which is more
suitable for real-world applications such as live traffic videos. The approach considers
recognizing vehicles not only by their make, model, and year but also includes a color
component making the recognition more specific. It is much more specific and helpful
for security reasons to locate a “Grey Toyota Prius 2014” on a highway road, than it is
to locate any “Toyota Prius” or any “Toyota Prius 2014”. The color inclusion provides
a narrower scope, which in turn can minimize the time complexity required to locate
a vehicle in a scene, enabling a more responsive feature for traffic intelligence systems.
Several neural network architectures are investigated including ResNet [37], ResNet-CBAM
(ResNet with CBAM- Convolution Block Attention Module) [38,39], MobileNetV3 [40],
and RepVGG [41] architectures. Empirically, RepVGG architecture shows the greatest
advantage to solving the challenges. Hence, RepVGG is adopted as the backbone in the
proposed framework. Multiclass classification is achieved by modifying the classification
layer and corresponding optimization function. The preprocessed training data are used to
simulate real-world scenarios, which are robust and adaptable for recognition in live-video
feed. Finally, the concept of text-based vehicle search, and continuous localization based
on input textural description, is introduced demonstrating the tremendous potential for
real-world applications such as amber alerts on highway roads.

3. Materials and Methodology

This section provides a more detailed description of the system flow architecture.
Dataset preparation and training pipeline is presented. The Hashgraph algorithm is also
presented, and its space and time complexity analyzed. Furthermore, the novel VCoR
dataset proposed in this paper is discussed in detail, and its impacts on training the
finer-grain recognition model emphasized as shown in Figure 3.
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3.1. System Flow

The proposed V-Localize, the text-based vehicle search, recognition, and continuous
localization framework, is an efficient integration of four modules into a customizable
pipeline to facilitate high speed operation. The pipeline includes: (a) an object detection
module for detecting vehicles patches from the video feed; (b) a RepVGG-based multi-
class-multi-label classification model for finer-grain vehicle recognition by make, design,
year of manufacture, and color; (c) a Hashgraph module for managing search requests and
efficiently computing specific target descriptions such as make, model, year, and color, by
processing the textural input that might be found in a police report, SMS, or an eyewitness
report; and (d) a continuous localization module to locate and validate matching targets
and keep track of them.

Figure 2 shows the system flow and architectural diagram of the proposed Text-Based
Vehicle Search, Localization, and Tracking Framework. The YoloV5 object detector is
selected for its high speed and high accuracy. Furthermore, the object detector is fine-tuned
to only process objects of interest (including cars, buses, trucks, motorcycles, etc.), which
are relevant to the tasks at hand. The detection is run in real-time on live video feed to
avoid computational overhead due to recurrent reinitialization. The vehicle recognition
model is triggered preemptively by the hashgraph algorithm when raw textural input is
detected, and at least one valid candidate target is computed. The vehicle recognition is
trained on the VMMR dataset augmented with data samples, which simulate cropped
patches of vehicles from video feeds. Detected vehicles are cropped into patches which are
resized to 224 × 224 and then processed by the vehicle recognition model (in batches to
speed up operation). Predicted target labels are thereafter compared with the computed
search target to localize the target of interest. To further minimize computational overhead,
the recognition module could be run every five frames instead of every frame without
significant performance loss.
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3.2. Training Pipeline for the Finer-Grain Vehicle Recognition Model

The proposed VMMYC (Vehicle Make Model Year and Color) model is trained on
the VMMR vehicle dataset [9] available for download here: https://github.com/faezetta/
VMMRdb (accessed on 20 June 2021). The VMMR dataset is a large-scale vehicle dataset,
which contains 291,752 vehicle images from 9170 distinct vehicle make and models. How-
ever, many of the classes in the VMMR dataset contain less than 10 images which is
imbalanced and unsuitable for accurate training. Furthermore, the dataset covers vehicles
make and designs manufactured between 1950 and 2016. It is very unlikely to encounter a
vehicle from the 1950s in today’s traffic, unless it is a classic or antique car. To remedy the
noise potentially added by these rare cases, a more balanced dataset is segregated from
the large pool by first, eliminating all classes with fewer than 40 samples. Next, a filter is
applied to only select classes of vehicles between 1995 and 2016.

Additionally, vehicles of the same make and model, which were manufactured within
a few years of each other will share enormous feature similarities, especially in terms
of their external structure, shape, and other design features. It is therefore pertinent, to
increase the number of image samples per class for improved training and testing accuracy.
We accomplished this by combining vehicles of same make and design by brackets of
3 to 4 years—which seemed sensible given inherent feature similarities as exemplified
in Figure 4.

It is also crucial to observe that most of the image samples in the VMMR dataset have
noisy backgrounds often capturing, in great detail, other vehicles. Using such raw data
could very much prevent the model from focusing on the vehicle of interest and learning
the most important features and achieving high recognition accuracy. To address this issue,
object detection is performed first on image samples and patches containing vehicles are
cropped—eliminating most of the background noise as shown in Figure 5.

In a live-video feed, detected vehicles often appear very small and of low visual
quality when upscaled to fit the recognition model input (224 × 224 in this case). Therefore,
it is important to introduce such diversity in the training data to enable the model to sustain
the same performance on live-video feed. This motivates the necessity to downscale and
upscale images in the dataset to introduce such low visual quality input data as shown in
Figure 6, thus augmenting the training.
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Figure 4. Sample image data showing feature similarity between vehicles of the same make and model designs but
manufactured within a few years of each other. These similarities inspired the grouping of vehicles manufactured within
the space of 3 to 4 years, to increase the number of samples available per class. Note, the license plates have been purposely
obscured to preserve privacy.

https://github.com/faezetta/VMMRdb
https://github.com/faezetta/VMMRdb
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trained weights of the RepVGG architecture were utilized, but the final layers were mod-
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Figure 6. Examples of downscaling and upscaling images to introduce diversity in terms of image resolution and
visual quality.

The final training set, without augmentation, contained approximately 242 k image
samples for a curated 959 classes by make, model, and year. The dataset was then split into
70% training, 20% validation, and 10% testing.

The RepVGG backbone was empirically chosen for its efficiency and its light weight
compared to other models such as ResNet, VGG, SqueezeNet, and MobileNetV3. Pretrained
weights of the RepVGG architecture were utilized, but the final layers were modified to
accommodate multilabel classification. The last three layers were also unfrozen to fine-tune
the classifier during training. An Adam optimizer was empirically chosen via extensive
computer simulations with a learning rate, weight decay, and momentum set as: lr= 0.01,
m = 0.01, and w = 0.01, respectively, for optimum performance. The learning rate schedule

was experimentally chosen to be lr= lr ·
(

0.1
current epoch

35

)
, and training was performed for

110 epochs.
To the best of our knowledge, the largest existing vehicle color recognition dataset is

the one proposed by Chen et al. [42] with about 15k image samples. However, this dataset
is limited to only eight color classes, which makes it less suitable for the finer-grain vehicle
recognition based on textural description championed in this article. Very limited work
has be done on vehicle color recognition [43–45] due to the paucity of datasets This lack
motivated us to create a large scale and diverse vehicle color dataset (VCoR) containing
10k+ image samples and 15 color classes, which is almost twice as diverse as the largest
existing dataset. The 15 color categories represent the most popular vehicle color models
according to CarMax [46,47], including: white, black, grey, silver, red, blue, brown, green,
beige, orange, gold, yellow, purple, pink, and tan.
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Figures 7 and 8 show the sample distribution per color class and sample images from
the proposed VCoR dataset, respectively.
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Figure 7. Image sample distribution across color classes in the proposed vehicle color recognition
(VCoR) dataset.

To add color label annotations to the training data discussed above, an efficient vehicle
color recognition model was trained using MobileNetV3 as shown in Figure 3. The training
data were labelled in three passes. In the first pass, only the predicted color labels with
confidence greater than 0.6 were saved as annotations for corresponding samples. The
color-labelled data from the first pass were used to augment training data, and to fine-tune
the trained color model in order to make a second prediction on samples with lower
prediction confidence. The final round involved manually annotating samples with lower
color predictions scores and cleaning up the data by adjusting the very few wrongly
predicted labels.

Generated color labels enable multiclass multi-label training of the recognition pipeline,
which predicts on one hand, the vehicle make, design, and year; and on the other hand, the
vehicle color information. We experimentally found that treating the make, design, and
year labels independently, significantly reduced the recognition model accuracy, because
the probability for invalid target predictions such as Hyundai Civic 2012 (instead of Honda
Civic), or Pontiac Matrix (instead of Toyota Matrix) became much higher.

3.3. Hashgraph for Converting Textural Input to Valid Search Target

The proposed hashgraph algorithm used in the V-Localize framework is based on
a hybrid combination of hash maps and graph search algorithm. It processes the text
input to automatically compute the target description in a format that is used to query
the vehicle recognition model. First, a set of hash maps with unique class labels in terms
of car make, model, year, and color, were generated. The hash maps were chosen for
their computational efficiency in terms of time and space complexity. The space and time
complexity for each hash map are defined as:{

time complexity = O(1)
space complexity = O(n)

(1)

where n represents the total number of labels for that particular class in the dataset.
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Figure 8. Sample images from the proposed vehicle color recognition model. The images are grouped by row based on
color information, and each row shows multiple variants of the corresponding color label in the dataset.

The hash maps were used to extract cues and keywords from the input document
which could be a sentence, a paragraph, or an entire report. Five hash maps, respectively
for make, model, year, color and miscellaneous were maintained as shown in Figure 9.
The miscellaneous dictionary contains other important cues. The total time and space
complexity for the cues extraction from text is defined as:{

time complexity = O(k)
space complexity = O(n)

(2)

where k represents the number of words in the input document excluding punctuations.
The extracted cues/keywords were used to constitute a graph from which a breadth-

first search algorithm was used to compute target description options. A validation step
was used to eliminate ambiguous target descriptions by looking up the summarization
hash map for template matching in constant time. A query may result in one or several
valid target descriptions, in which case other miscellaneous information such as camera
ID, last seen route, and plate number could be used to narrow the search down to a more
specific target. This second-level filtration with plate numbers and other miscellaneous
information is not covered within the scope of this paper. In the current system, in
cases with multiple valid target descriptions generated by the hashgraph text processing
algorithm, the recognition and continuous localization systems will be prompted to track
all valid matching targets. The following sample input document will be translated to the
equivalent target description using the hashgraph algorithm as follows: “I saw a suspect
get into a black car and escaping through the I-93 road. I believe the suspect was driving
a Prius, most likely a 2014 model. I saw the car take exit 20. Maybe the color was dark
grey I can’t be too sure” translates to “Toyota Prius 2014, black or grey”, which tells the
localization algorithm to search for any Toyota Prius vehicle, 2014 model, with either black
or grey color.

In cases of incomplete target descriptions such as “Prius 2012”, “Camry 2015”, “black
BMW”, “white Benz”, etc., the hashgraph algorithm learns to autocomplete such target
descriptions to generate missing label or compute broader scope target description. For
example, “Prius 2012” will be computed as “Toyota Prius 2012, any/all color” which means
to locate all Toyota Prius 2012 models irrespective of color. Likewise, a target such as
“White Benz” will be recomputed as “Mercedes Benz, any/all model, any/all year, white”
indicating that the search algorithm should locate all Mercedes Benz, irrespective of model,
year, or make but of color white. “Cx7 2009, grey/black” will be computed into “Mazda
Cx7 2009, grey or black”.
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4. VRiV Video Testbench Dataset and Proposed Evaluation Metrics

This section of the paper provides details about (a) the proposed VRiV testbench
dataset for vehicle recognition in video and (b) the proposed robust evaluation metrics for
assessing algorithmic efficiency on recognition in video tasks.

4.1. VRiV (Vehicle Recognition in Video) Dataset

The proposed Vehicle Recognition in Video (VRiV) dataset is the first of its kind and
is aimed at developing, improving, and analyzing performance of vehicle search and
recognition models on live videos. The lack of such a dataset has limited performance
analysis of modern fine-grain vehicle recognition systems to only still image input data,
making them less suitable for video applications. The VRiV dataset is introduced to help
bridge this gap and foster research in this direction.

The proposed VRiV dataset consists of up to 47 video sequences averaging about
38.5 s per video. The videos are recorded in a traffic setting focusing on vehicles of
volunteer candidates whose ground-truth make, model, year, and color information are
known. For security reasons and the safety of participants, experiments were conducted on
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streets/road with low traffic density. For each video, there is a target vehicle with known
ground-truth information, and there are other vehicles either moving in traffic or parked
on side streets, to simulate real-world traffic scenario. The goal is for the algorithm to
be able to search, recognize, and continuously localize just the specific target vehicle of
interest for the corresponding video based on the search query. It is worth noting that the
ground-truth information about other vehicles in the videos are not known.

The 47 videos in the testbench dataset are distributed across seven distinct makes
and 17 model designs as shown in Figure 10. The videos are also annotated to include
groundtruth bounding boxes for the specific target vehicles in the corresponding videos.
The dataset includes more than 46 k annotated frames averaging about 920 frames per
video. This dataset will be made available on Kaggle, and new videos will be added as
they become available.
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4.2. Evaluation Metrics

No metrics currently exist for quantitatively evaluating the performance of recognition
and continuous localization algorithms in video data. The closest metric is the IoU (Inter-
section of Union), which is used to access the performance of an object tracking algorithm
by measuring the overlap ratio between the predicted and groundtruth bounding boxes in
each video frame. However, this metric is not well-suited for the task at hand as it does not
account for other details such as: how long it takes the model to localize the target once
it initially appears in the camera’s field of view; how often the model loses track of the
target and re-localizes it again; or how close/far away the target has to be for the model to
localize it more efficiently; how often the model localizes the wrong target; and how often
the model fails to localize a present target.

To measure these attributes, novel metrics are introduced namely: False Localization
Rate (FLR); Missed Localization Rate (MLR); Average Time to First Detection (ATFD);
Average Continuous Accurate Localization Rate (ACALR); and Average Minimum Required
Aspect Ratio for accurate detection (AMRR).
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Additionally, we also consider other metrics such as the overall accuracy of the finer-
grain recognition model in a multiclass multi-label setting to comprehensively access the
robustness and efficiency of the proposed framework as a whole.

Unlike multiclass single-label classification models, the multiclass multi-label classi-
fication models use Exact Matching Ratio to represent the accuracy of the model on still
input image data. The Exact Matching Ratio represents the percentage of predictions where
all class labels for a given sample perfectly match the corresponding groundtruth labels.
This can be computed as:

Exact Matching Ratio, MR =
1
n

n

∑
i=1

I(Yi= Zi) (3)

where n is the total the number of samples, and I is the perfect matching indicator function,
while Yi and Zi represent the ground truth and predicted labels, respectively.

The exact matching ratio is considered a harsh metric because it does not consider
partially correct predictions. As such, Godbole et al. [48] define the accuracy metric for a
multiclass multi-label classification problem as:

Overall Accuracy =
1
n

n

∑
i=1

|Y i ∩ Zi|
|Y i ∪ Zi|

(4)

The overall accuracy here represents the average accuracy across all label instances,
where accuracy for each instance is the percentage of correctly predicted labels to the total
number of labels. This is applicable to still image inputs.

In the proposed V-Localize framework, it is equally important to account for how
well the Hashgraph text-based search algorithm is able to compute the appropriate target
class from the input label, and how the recognition is able to identify exact matches based
on query. The localization efficiency is based on the exact matching ratio as defined in
Equation (3). The query processing represents the percentage of time that the algorithm
correctly extracts the desired target labels from the input document. This can be defined as:

Exact Matching Ratio with Hashgraph in the loop, MRh= Qp ·
1
n

n

∑
i=1

I(Yi= Zi) (5)

where Qp represents the query processing accuracy, and the rest of the equation is as
defined in Equation (3). Assuming a perfect query processing power Qp= 1, Equation (5)
reduces to (3).

The following define the novel metrics proposed in this paper, and their mathematical formulae:
(a) False Localization Rate and (b) Missed Localization Rate: Given that there exist

some inherent inter-make or inter-model ambiguities between vehicles of different brands,
or between vehicles of same brands but different models, there is always a possibility for
the algorithm to localize the wrong target with high confidence. Similarly, the framework
could fail to localize an obvious target due to the viewing angle, or other distortions/
occlusions, which are expected in real-world traffic scenarios. As such, it is important to
measure how often this type of failure might happen. The False Localization Rate (FLR)
measures how often the algorithm localizes the wrong target, while the Missed Localization
Rate (MLR) measures how often the algorithm fails to identify a target present in the video.
These are computed respectively as follows:

FLR =
K

∑
j=1

Fj

∑
i=1

L(yi 6= zi)

Fi
=

Number of frames where “wrong target localized”
Total number of frames in testbench dataset

(6)
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MLR =
K

∑
j=1

Fi

∑
i=1

1(P(z i = 0 | y i = 1))
∑j P(yi= 1)

=
Number of frames where target present but “Not localized”

Total number of frames in testbench dataset “where target present”
(7)

where K is the total number of video sequences in the testbench, Fj is the total number of
frames in the jth video sequence; L(yi 6= zi) is the localization function, which indicates
that the target found does not match the known target; P(z i = 0 | y i = 1) is the probability
that a target is not found in the ith frame of the jth video, knowing that the target is present
in that frame; and ∑Fj

P(yi= 1) is the total number of frames where the known target is
present in a given video.

(c) Average Time to First Detection (ATFD): measures the average time that the
algorithm takes to correctly identify a specific target in the video upon a preemptive search
request. This helps measure how long, on average, the target continues to go unnoticed/
undetected after a search request is entered.

ATFD =
1
K ∑K

j ∑
Fj
i=1

1(P(z i = 0 | y i = 1)) · P(L(zi)= 0)
∑j P(yi= 1)

, (8)

which in simpler notation can be interpreted as:

ATFD =
1
K

K

∑
j
(

Number of frames where target present until it is “localized the first time”
Total number of frames in jth video where target present

) (9)

(d) Average Continuous Accurate Localization Rate (ACALR): measures the average
amount of time that a specific target is successfully localized, consistently, across frames of a
video sequence. Considering a random video Vj consisting of 500 frames, in which a target
Ti is apparent for 100 frames total (for example, from frame 250 to 350), the continuous
accurate localization for that video will be defined as the total number of frames (between
frame 250 and 350 where the target is present) where the algorithm successfully localizes
the target.

ACALR =
1
K

K

∑
j

Fj

∑
i=1

1 (L(zi= yi) · P(yi= 1) )
∑Fj

P(yi= 1)
(10)

ACALR =
1
K

K

∑
j

CALR (11)

CALR =
Number of frames where target present and successfully localized

Total number of frames where target present in the video
(12)

where CALR represents the Continuous Accurate Localization Rate for a single video where
the target is present.

(e) Average Minimum Required Aspect Ratio (AMRR) for accurate detection mea-
sures how apparent the target must be in the video before the algorithm can detect it.
It is defined as the ratio between the surface area of the smallest successfully predicted
bounding box for a specific target, and the surface area of the entire frame. In other words,
it is a measure of how well the algorithm can see clearly and identify targets accurately
across different scales.

AMRR =
1
K

K

∑
j

Min
(

Axywh(L(z i= yi

))
AXYWH

(13)

where K is the total number of videos in the dataset with valid target present,
Min

(
Axywh(L(z i= yi

))
is the minimum bounding box area of a correctly localized target
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in a given video, and AXYWH is the total area of a single frame from a given video, assuming
consistent frame dimensions across frame sequences in a given video.

We argue that the proposed evaluation metrics are more adequate metrics for reporting
the effectiveness and robustness of vehicle recognition algorithms in videos more efficiently.
Evaluation results from computer simulations are detailed in Section 5.

5. Experimental Results and Discussions

The performance of the VMMYC vehicle recognition model was compared with
different backbone architectures, particularly, ResNet, RepVGG, MobileNetv3, and VGG16.
Table 1 reports the top one and top three accuracy on the MMY (Make Model Year) and
color predictions on still images from a validation subset of the curated VMMR dataset.
Accuracies reported in Table 1 are for individual labels.

Table 1. Comparative performance of various models on the vehicle recognition task using still
images from the refined VMMR dataset.

Make Model Year Color

Top 1
Accuracy (%)

Top 3
Accuracy (%)

Top 1
Accuracy (%)

Top 3
Accuracy (%)

ResNet-CBAM 83.28 97.42 90.68 96.95
ResNet50 82.40 95.23 89.22 95.12

MobileNetV3 76.72 90.72 87.65 93.3
RepVGG 85.59 98.10 91.60 97.54
VGG16 75.27 90.15 85.29 93.11

The overall multiclass multi-label recognition accuracy for various architectures are
presented in Table 2 and were computed using Equation (2).

Table 2. Overall recognition accuracy for the Vehicle Make Model Color.

Make Model Year Color

Top 1 Accuracy (%) Top 3 Accuracy (%)

ResNet-CBAM 86.823 97.184
ResNet50 85.674 95.175

MobileNetV3 81.822 91.992
RepVGG 88.493 97.819
VGG16 79.967 91.606

The results presented in Tables 1 and 2 suggest that RepVGG and ResNet-CBAM
yielded the highest recognition accuracy. However, RepVGG proves more computationally
efficient in terms of the required recognition speed necessary for the instant search and
localization task. RepVGG achieved comparable and even better results than ResNet
and ResNet-CBAM with half as many trainable parameters, which makes the RepVGG
backbone very lightweight and much faster, and therefore most suitable for the application
at hand.

The robustness and effectiveness of the proposed vehicle search, recognition, and
continuous localization framework was further evaluated on the VRiV dataset, which
contained vehicles with known ground-truth about their make, design, year, and color
information as well as their positional coordinates (bounding boxes) in the video sequence.

First, the False Localization Rate (FLR), which measures how often the algorithm
localizes a wrong target; and the Missed Localization Rate (MLR), which measures how
often the algorithm fails to localize a target that is apparent in the video sequence were
computed. The results shown in Table 3 indicate that the algorithm localized the wrong
target only 0.03% of the time (FLR). This result was based on the average across all 47 videos
in the VRiV testbench. The MLR on the other hand was at about 26.22%, indicating that
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the model failed to localize a present target about 26% of the time. This could be due to
several factors including but not limited to distance of the target from the camera, partial
occlusions, quality of the video feed, environmental conditions, and color mismatch.

Table 3. Overall performance evaluation of the proposed novel Vehicle Search, Recognition, and Continuous Localization
framework on the proposed VRiV testbench video dataset using the proposed novel video recognition evaluation metrics.

Performance Metrics for V-Localize (Search, Recognition and Continuous Localization Framework)

AMMR (%) ↓ FLR (%) ↓ MLR (%) ↓ ATFD ↓ CALR ↑
3.23 0.03 26.22 0.268 0.262

Additionally, Table 3 reports the results of the corresponding AMMR, ACALR, and
ATFD on the VRiV dataset. The AMMR, which measures the average aspect ratio between
the localization bounding box and the frame size indicates how small or large the target
of interest must be, with respect to the video frame size, for the algorithm to successfully
localize it.

The average AMMR for all 47 videos was evaluated at 3.23% indicating that the
algorithm could recognize fairly small targets, which were quite far away from the camera
focal point. Similarly, the ACALR or simply CALR measures how consistently the algorithm
can accurately and continuously localize and track a moving target in a video sequence.
This metric also indicates the average percentage of the time that a moving target will be
successfully localized and recognized in a given video sequence. A CALR of 0 indicates
that the target completely went unnoticed, and a CALR of 1 indicates that the target was
continuously localized 100% of the time as it moves across the frames. The Average CALR
for the proposed testbench was computed as 0.262.

Sample results for the vehicle search and localization are shown in Figure 11. The tags
below each image represent simplified or preprocessed text-input queries. The red circles
are the corresponding localizations based on the input queries. These are based on extracts
from the VRiV testbench. Localized targets match the corresponding ground-truth based
on input text query.

Further experimental results presented in Table 4 show the comparative performance
of the several backbone architectures used in the proposed V-Localize framework. These
results suggest that the RepVGG backbone performed better than all other recognition
backbones on all metrics. The ResNet-CBAM model was shown to yield a slightly better
AMMR than RepVGG but within the margin of error. Arrows are used in Tables 3 and 4 to
facilitate score interpretability for the corresponding metrics. A downward arrow suggests
that the smaller the score, the better the performance of the model, while an upward arrow
suggests that a higher score indicates better performance.
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Figure 11. Sample results for vehicle search and localization. The tags below each image represent simplified or preprocessed
text-input queries. The red circles are the corresponding localizations based on the input queries. Sample results shown
here are based on extracts from the video VRiV testbench dataset, and the localizations match the corresponding ground
truth based on query.

Table 4. Comparative performance analysis of various backbone architecture in the V-Localize framework using the
proposed evaluation metrics. The arrows next to each metric suggest if a higher or lower score indicates better performance
index. Downward arrow means the lower the score, the better the model, while an upward arrow indicates that the higher
the score, the better the model.

Performance Metrics for V-Localize (Search, Recognition and Continuous Localization Framework)

BACKBONE AMMR (%) ↓ FLR (%) ↓ MLR (%) ↓ ATFD ↓ CALR ↑
RepVGG 3.23 0.03 26.22 0.268 0.262

ResNet-CBAM 3.21 0.08 29.55 0.295 0.253
ResNet50 3.28 0.07 30.69 0.294 0.249

MobileNetV3 3.47 0.11 35.22 0.314 0.223
VGG16 4.81 0.17 36.71 0.310 0.206

The bold indicates the highest performing for corresponding metric.

6. Conclusions and Future Work

In this paper, we addressed the problem of vehicle search and continuous localization
in traffic videos which has yet to be explored extensively in the scholarly literature. A
sophisticated artificial intelligence framework, V-Localize, is proposed to solve this by
achieving finer-grain recognition in live traffic video. The concept of text-based search is ex-
plored by introducing a novel Hashgraph algorithm to efficiently process input documents
and compute valid target descriptions, which are used to trigger a query of the continuous
localization model.

An important differentiating factor of the finer-grain vehicle recognition (VMMYC)
component of the V-Localize framework is that beyond predicting the make, model, and
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year of a given vehicle, it also predicts the color information. To achieve this, the most
diverse and large-scale vehicle color dataset, VCoR, was created, which includes 15 of the
most popular vehicle color classes, representing twice as much color diversity as there is in
the largest existing such dataset, making it more suitable for finer-grain recognition. The
VCoR dataset also contains over 10k image samples. Several architectures were explored
for the VMMYC module, and RepVGG was experimentally adopted as the backbone for
the proposed multiclass multiple-label classification model to recognize vehicles by their
make, model, year, and color information respectively. The RepVGG model trained on the
curated VMMR dataset as detailed in the paper, achieved a top one classification accuracy
of 88.49% and top three accuracy of 97.83% on the still images data.

Additionally, a first of its kind testbench video dataset, the VRiV (Vehicle Recognition
in Video) was created to facilitate proper performance evaluation of vehicle recognition
models on live-video feed. The reason modern vehicle recognition models only report
accuracy on still imagery could be attributed to the lack of such a dataset. The proposed
VRiV dataset consists of 47 video sequences in live traffic, each containing visual data
of a vehicle with known ground-truth data about its model, make, year, and color. The
testbench contains over 46k annotated frames averaging about 38.5 s and 920 frames per
video sequence. The VRiV dataset is meant to steer development of more advancement
recognition models well-suited for video applications.

Lastly, we proposed novel metrics including FLR, MLR, AMMR, ACALR, and ATFD
to address the lack of such metrics in the existing literature, and to foster proper develop-
ment and quantitative assessment of robustness and performance efficiency of recognition
models in video data. Quantitative performance evaluation of the proposed framework
was performed on the VRiV testbench, as reported and analyzed in result section. The
proposed metrics could also prove very useful in other recognition applications.

One major advantage of the proposed system is that it can be integrated into intelligent
transportation system software to aid law enforcement in fighting crimes on highway roads.

Future work will be directed at expanding the VRiV dataset to include more challeng-
ing videos and increasing the diversity of target vehicle in terms of models, make, year, and
color. Additionally, more work needs to be completed to improve the recognition accuracy
as well as the AMMR and average CALR of the localization and recognition framework.
One way to achieve this will be to develop a novel backbone neural net architecture that is
better-suited for finer-grain recognition in live videos.
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