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Abstract: Interpretability is becoming increasingly important for predictive model analysis. Unfor-
tunately, as remarked by many authors, there is still no consensus regarding this notion. The goal
of this paper is to propose the definition of a score that allows for quickly comparing interpretable
algorithms. This definition consists of three terms, each one being quantitatively measured with a
simple formula: predictivity, stability and simplicity. While predictivity has been extensively studied
to measure the accuracy of predictive algorithms, stability is based on the Dice-Sorensen index for
comparing two rule sets generated by an algorithm using two independent samples. The simplicity
is based on the sum of the lengths of the rules derived from the predictive model. The proposed
score is a weighted sum of the three terms mentioned above. We use this score to compare the
interpretability of a set of rule-based algorithms and tree-based algorithms for the regression case
and for the classification case.
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1. Introduction

The widespread use of machine learning (ML) methods in many important areas such
as health care, justice, defense or asset management has underscored the importance of
interpretability for the decision-making process. In recent years, the number of publications
on interpretability has increased exponentially. For a complete overview of interpretability
in ML, the reader may see the book [1] and the article [2]. We distinguish two main
approaches to generate interpretable prediction models.

The first approach is to use a non-interpretable ML algorithm to generate the predictive
model, and then create a so-called post-hoc interpretable model. One common solution
is to use graphic tools, such as the Partial Dependence Plot (PDP) [3] or the Individual
Conditional Expectation (ICE) [4]. A drawback of these methods is that they are limited
by the human perception. Indeed, a plot with more than three dimensions cannot be
interpreted by humans and so it is not useful for data sets with many features. An
alternative way consists in using a surrogate model to explain the model generated by a
black-box. We refer to the algorithms Local Interpretable Model-agnostic Explanations
(LIME) [5], DeepLIFT [6] and SHapley Additive exPlanations (SHAP) [7] that attempt
to measure the importance of a feature in the prediction process (we refer to [8] for an
overview of the available methods). However, as outlined in [9], the explanations generated
by these algorithms may not be sufficient to allow a reasonable decision process.

The second approach is to use intrinsically interpretable algorithms to directly generate
interpretable models. There are two main families of intrinsically interpretable algorithms:
tree-based algorithms that are based on decision trees such as Classification And Regression
Trees (CART) [10], Iterative Dichotomiser 3 (ID3) [11], C4.5 [12], M5P [13], Logistic Model
Trees (LMT) [14] and rule-based algorithms that are generating rule sets such as Repeated
Incremental Pruning to Produce Error Reduction (RIPPER) [15], First Order Regression
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(FORS) [16], M5 Rules [17], RuleFit [18], Ensemble of Decision Rules (Ender) [19], Node
Harvest [20] or more recently Stable and Interpretable RUle Set (SIRUS) [21,22] and the
Coverage Algorithm [23]. It is important to note that any tree can be converted into a set of
rules, while the opposite is not true.

These algorithms generate predictive models based on the notion of a rule. A rule is
an If-Then statement of the form:

IF c1 In addition, c2 In addition, . . . In addition, ck

THEN Prediction = p,

The condition part If is a logical conjunction, where the ci’s are tests that check whether
the observation has the specified properties or not. The number k is called the length of the
rule. If all ci’s are fulfilled, the rule is said to be activated. The conclusion part Then is the
prediction of the rule if it is activated.

Even though rule-based algorithms and tree-based algorithms seem to be easy to
understand, there is no exact mathematical definition for the concept of interpretability.
This is due to the fact that interpretability involves multiple concepts as explained in [24–27].
The goal of this paper is to propose a definition that combines these concepts in order
to generate an interpretability score. It is important to note that related concepts such as
justice, ethics, and morality, which are associated with specific applications to health care,
justice, defense or asset management, cannot be measured quantitatively.

As proposed in [21,26], we describe an interpretability score for any model formed
by rules based on the triptych predictivity, stability and simplicity: The predictivity score
measures the accuracy of the generated prediction model. The accuracy ensures a high
degree of confidence in the generated model. The stability score quantifies the sensitivity
of an algorithm to noise, and it allows for evaluating the robustness of the algorithm. The
simplicity score could be conceptualized as the ability to easily verify the prediction. A
simple model makes it easy to evaluate some qualitative criteria such as justice, ethics
and morality. By measuring these three concepts, we are therefore able to evaluate the
interpretability of several algorithms for a given problem.

A similar idea has been proposed in [28] in the area of the Logical Analysis of Data
(LAD), by introducing the concept of Pareto-optimal patterns or strong patterns. The main
part of the LAD is to select the best patterns from the dataset based on a triptych that
includes simplicity, selectivity and evidence. The authors identify two extreme cases of
patterns: strong prime patterns and strong spanned patterns. The first are the most specific
strong patterns while the last are the simplest strong patterns. In [29], the authors have
studied the effects of pattern filtering on classification accuracy. They show that the prime
patterns do provide somewhat higher classification accuracy, although the loss of accuracy
by using strong spanned patterns is relatively small. For an overview of the LAD, we refer
the readers to [30].

2. Predictivity Score

The aim of a predictive model is to predict the value of a random variable of interest
Y ∈ Y , given features X ∈ X where X is a d-dimensional space. Formally, we consider
the standard setting as follows: Let (X, Y) be a random vector in X × Y of unknown
distribution Q such that

Y = g∗(X) + Z,

where E[Z] = 0 and V(Z) = σ2 and g∗ is a measurable function from X to Y .
We denote by G the set of all measurable functions from X to R. The accuracy of a

predictor g ∈ G is measured by its risk, defined as

L(g) := EQ[γ(g; (X, Y))], (1)
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where γ : G × (X × Y) → [0, ∞[ is called a contrast function and its choice depends on
the nature of Y. The risk measures the average discrepancy between g(X) and Y, given
a new observation (X, Y) from the distribution Q. As mentioned in [31], the Equation (1)
includes most cases of the classical statistical models.

Given a sample Dn = ((X1, Y1), . . . , (Xn, Yn)), our aim is to predict Y given X. The
observations (Xi, Yi) are assumed to be independent and identically distributed (i.i.d) from
the distribution Q.

We consider a statistical algorithm which is a measurable mapping from (X ×Y)n to
a class of measurable functions Gn ⊆ G. This algorithm generates a predictor gn by using
the Empirical Risk Minimization principle (ERM) [32], meaning that

gn = arg min
g∈Gn

Ln(g),

where Ln(g) = 1
n ∑n

i=1 γ(g, (Xi, Yi)) is the empirical risk.
The notion of predictivity is based on the ability of an algorithm to provide an accurate

predictor. This notion has been extensively studied before. In this paper, we define the
predictivity score as

Pn(gn, hn) := 1− Ln(gn)

Ln(hn)
, (2)

where hn is a baseline predictor chosen by the analyst. The idea is to consider a naïve and
easily built predictor chosen according to the contrast function.

For instance, if Y ∈ R, we generally use the quadratic contrast with
γ(g; (X, Y)) = (g(X)−Y)2. In this case, the minimizer of the risk (1) is the regression
function defined by

g∗(X) = EQ[Y | X], hence we set hn =
1
n

n

∑
i=1

Yi.

If Y ∈ {0, 1}, we use the 0–1 contrast function γ(g; (X, Y)) := 1g(X) 6=Y, and the
minimizer of the risk is the Bayes classifier defined by

g∗(X) = 1Q(Y=1|X)≥1/2, hence we set hn = 1∑n
i=1 Yi≥n/2.

The predictivity score (2) is a measure of accuracy which is independent of the range
of Y. The risk (1) is a positive function, so Pn(gn, hn) < 1. Moreover, if Pn(gn, hn) < 0, it
means that the predictor gn is less accurate than the chosen baseline predictor hn. Thus, in
this case, it is better to use the predictor hn instead of gn. Hence, we can assume that the
predictivity score is a positive number between 0 and 1.

3. q-Stability Score

Usually, stability refers to the stability of the prediction [32]. Indeed, it has been shown
that stability and predictive accuracy are closely connected (see, for example, [33,34]). In
this paper, we are more interested in the stability of the generated model. The importance
of the stability for interpretability has been presented in [35]. Nevertheless, generating a
stable set of rules is challenging as explained in [36]. In [21,22], the authors have proposed
a measure of the stability for rule-based algorithms based on the following idea:

“A rule learning algorithm is stable if two independent estimations based on two in-
dependent samples, drawn from the same distribution Q, result in two similar lists
of rules.”

The q-stability score is based on the same definition. This concept is problematic for
algorithms that do not use feature discretization and work with real values. Indeed, if the
feature is continuous, the probability that a decision tree algorithm will cut on the same
exact value for the same rule for two independent samples is zero. For this reason, this
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definition of stability is too stringent in this case. One way to avoid this problem is to
discretize all continuous features. The discretization of features is a common solution to
control the complexity of a rule generator. In [37], for example, the authors use entropy
minimization heuristics to discretize features and, for the algorithms Bayesian rule lists
(BRL) [36], SIRUS [21,22] and Rule Induction Partioning Estimator (RIPE) [38], the authors
have discretized the features by using their empirical quantiles. We refer to [39] for an
overview of the common discretization methods.

In this paper, to generate the q-stability score, we consider a discretization process
on the conditions of the selected rules based on the empirical q-quantile of the implied
continuous features. Because this process is only used for the calculation of the q-stability,
it does not affect the accuracy of the generated model.

First, we discretize the continuous features that are involved in the selected rules.
Let q ∈ N be the number of quantiles considered for the q-stability score and let X be
a continuous feature. An integer p ∈ {1, . . . , q}, called bin, is assigned to each interval
[x(p−1)/q, xp/q], where xp/q is the p-th q-quantile of X. A discrete version of the X feature,
designated by Qq(X), is constructed by replacing each value with its corresponding bin. In
other words, a value pa is assigned to all a ∈ X such that a ∈ [x(pa−1)/q, xpa/q].

Then, we extend this discretization to selected rules by replacing the interval bound-
aries of the individual tests ci with the corresponding bins. For example, the test X ∈ [a, b]
becomes Qq(X) ∈ [pa, pb], where pa and pb are such that a ∈ [x(pa−1)/q, xpa/q] and
b ∈ [x(pb−1)/q, xpb/q].

Finally, the formula for the q-stability score is based on the so-called Dice-Sorensen
index. Let A be an algorithm and let Dn and D′n be two independent samples of n i.i.d.
observations drawn from the same distribution Q. We denote by Rn and R′n the rule sets
generated by an algorithm A based on Dn and D′n, respectively. Then, the q-stability score
is calculated as

Sq
n(A) :=

2
∣∣Qq(Rn) ∩Qq(R′n)

∣∣
|Qq(Rn)|+ |Qq(R′n)|

, (3)

where Qq(R) is the discretized version of the rule set R, with the convention that 0/0 = 0,
and the discretization process is performed by using Dn and D′n, respectively.

The q-stability score (3) is the ratio of the common rules between Qq(Rn) and Qq(R′n).
It is a positive number between 0 and 1: If Qq(Rn) and Qq(R′n) have no common rules,
then Sq

n(A) = 0, while, if Qq(Rn) and Qq(R′n) have the same rules, then Sq
n(A) = 1.

4. Simplicity Score

Simplicity as a component of interpretability has been studied in [40] for the classi-
fication trees and in [41] for the rule-based models. In [23], the authors have introduced
the concept of an interpretability index, which is based on the sum of the length of all the
rules of the prediction model. Such an interpretability index should not be confused with
the broader concept of interpretability that is developed in this paper. As discussed in
Section 5, the former will be interpreted as one of the components of the latter.

Definition 1. The interpretability index of an estimator gn generated by a rule set Rn is defined by

Int(gn) := ∑
r∈Rn

length(r). (4)

Even if (4) seems naive, we consider it to be a reasonable measure for the simplicity of
a tree-based algorithm or a rule-based algorithm. Indeed, as the number of rules or the
length of the rules increases, Int(gn) also increases. The fewer the number of rules and
their lengths, the easier their understanding should be.

It is important to note that the value (4), which is a positive number, cannot be directly
compared to the scores from (2) and (3), which are between 0 and 1.
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The simplicity score is based on the Definition 1. The idea is to compare (4) relatively
to a set of algorithms Am

1 = {A1, . . . ,Am}. Hence, the simplicity of an algorithm Ai ∈ Am
1

is defined in relative terms as follows:

Sn(Ai,Am
1 ) =

min{Int(gA
n : A ∈ Am

1 )}
Int(gAi

n )
. (5)

Similar to the previously defined scores, this quantity is also a positive number
between 0 and 1: If Ai generates the simplest predictor among the set of algorithms Am

1 ,
then Sn(Ai,Am

1 ) = 1, and the simplicity of other algorithms in Am
1 are evaluated relatively

to Ai.
We note that it would be useful to be able to calculate the simplicity score of only one

algorithm. To do this, we would need to have a threshold value for the simplicity score. In
practice, this information could be obtained by using a survey on the maximum size of a
rule set that people are willing to accept to use.

5. Interpretability Score

In [25], the authors define interpretability as

“the ability to explain or present to a person in an understandable form”

We claim that an algorithm with a high predictivity score (2), stability score (3) and
simplicity score (5) is interpretable in the sense of [25]. Indeed, a high predictivity score
ensures confidence in and truthfulness of the generated model, a high stability score
ensures robustness and a good noise insensibility, and a high simplicity score ensures that
the generated model is easy to understand for humans and can also be easily audited.

The main idea behind the proposed definition of interpretability is to use a weighted
sum of these three scores. Let Am

1 be a set of algorithms. Then, the interpretability of any
algorithm Ai ∈ Am

1 is defined as:

I(Ai, Dn, D′n, γ, q) = α1P(gAi
n , γ) + α2S

q
n(Ai) + α3Sn(Ai,Am

1 ), (6)

where the coefficients α1, α2 and α3 have been chosen according to the analyst’s objective,
such that α1 + α2 + α3 = 1.

It is important to note that the definition of interpretability (6) depends on the set
of algorithms under consideration and the specific setting. Therefore, the interpretability
score only makes sense within this set of algorithms and for the given setting.

6. Application

The goal of this application is to compare several algorithms which are considered
interpretable: Regression Tree [10], RuleFit (RF) [18], NodeHarvest (NH) [20], Covering
Algorithm (CA) [23] and SIRUS [22] for regression settings, and RIPPER [15], PART [42] and
Classification Tree [10] for classification settings (we have excluded algorithms developed
only for binary classification, such as M5Rules [43], NodeHarvest [20], and SIRUS [21]).

6.1. Brief Overview of the Selected Algorithms

RIPPER is a sequential coverage algorithm. It is based on the “divide-and-conquer”
approach. This means that for a selected class it searches for the best rule according to
a criterion and removes the points covered by that rule. Then, it searches for the best
rule for the remaining points and so on until all points of this class are covered. Then, it
moves on to the next class, with the classes being examined in the order of increasing size.
PART is also a “divide-and-conquer” rule learner. The main difference is that, in order to
create the “best rule”, the algorithm uses a pruned decision tree and keeps the leaf with the
largest coverage.

RuleFit is a very accurate rule-based algorithm. First, it generates a list of rules by
considering all nodes and leaves of a boosted tree ensemble ISLE [44]. Then, the rules
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are used as additional binary features in a sparse linear regression model that is using
the Lasso [45]. A feature generated by a rule is equal to 1 if the rule is activated, and it is
0 otherwise.

NodeHarvest also uses a tree ensemble as a rule generator. The algorithm considers
all nodes and leaves of a Random Forest as rules and solves a linear quadratic problem to
fit a weight for each node. Hence, the estimator is a convex combination of the nodes.

The Covering Algorithm has been designed to generate a very simple model. The
algorithm extracts a sparse rule set considering all nodes and leaves of a tree ensembles
(using the Random Forest algorithm, Gradient Boosting algorithm [3] or Stochastic Gradient
Boosting algorithm [46]). Rules are selected according to their statistical properties to form a
“quasi-covering”. The covering is then turned into a partition using the so-called partitioning
trick [38] to form a consistent estimator of the regression function.

SIRUS has been designed to be a stable predictive algorithm. SIRUS uses a modified
Random Forest to generate a large number of rules, and selects rules with a redundancy
greater than the tuning parameter p0. To be sure that redundancy is achieved, the features
are discretized.

For a comprehensive review of rule-based algorithms, we refer to [47,48], while, for a
comprehensive review of interpretable machine learning, we refer to [1].

6.2. Datasets

We have used publicly available databases from the UCI Machine Learning Reposi-
tory [49] and from [50]. We have selected six datasets for regression which are summarized
in Table 1, and three datasets for classification which are summarized in Table 2. For
the dataset Student, we have removed variables G1 and G2 which are the first and the
second grade, respectively, because the target attribute G3 has a strong correlation with
the attributes G2 and G1. In [51], the authors specify that it is more difficult to predict G3
without G2 and G1, although such prediction is much more useful.

Table 1. Presentations of the publicly available regression datasets used in this paper.

Name (n× d) Description

Ozone 330× 9 Prediction of atmospheric ozone concentration
from daily meteorological measurements [50].

Machine 209× 8 Prediction of published relative performance [49].

MPG 398× 8 Prediction of city-cycle fuel consumption in miles
per gallon [49].

Boston 506× 13 Prediction of the median price of
neighborhoods, [52].

Student 649× 32
Prediction of the final grade of the student based
on attributes collected by reports and
questionnaires [51].

Abalone 4177× 7 Prediction of the age of abalone from physical
measurements [49].

Table 2. Presentations of the publicly available classification datasets used in this paper.

Name (n× d) Description

Wine 4898× 11 Classification of white wine quality from 0 to 10 [49].

Covertype 581,012 × 54 Classification of forest cover type [1, 7] based on
cartographic variables [49].

Speaker 329× 12 Classification of accent, six possibilities, based on
features extracted from the first reading of a word [53].
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6.3. Execution

For each dataset, we perform 10-fold cross-validation. The parameter settings for the
algorithm are summarized in Table 3. These parameters were selected according to the
author’s recommendations to generate models based on rules with equivalent lengths. It
means that all rules generated by algorithms have a bounded length. The parameters of the
algorithms are not tuned because it is not the purpose of the paper to rank the algorithms.
The aim of this section is to illustrate how this score is computed.

For each algorithm, a model is fitted on the training set to obtain the simplicity score (4),
while we measure the predictivity score (2) on the test set. To obtain the predictivity score,
we set

γ(g; (X, Y)) = (g(X)−Y)2 and hn =
1
n

n

∑
i=1

yi for regression,

γ(g; (X, Y)) = 1g(X) 6=Y and hn = mode({y1, . . . , yn}) for classification.

Then, to obtain the stability score, the training set is randomly divided into two sets of
equal length and two models are constructed. The code is a combination of Python and R,
and it is available on GitHub https://github.com/Advestis/Interpretability, accessed on
25 May 2021.

Table 3. Algorithms’ parameter settings.

Algorithm Parameters

CART max_lea f _nodes = 20.

RuleFit tree_size = 4,
max_rules = 2000.

NodeHarvest max.inter = 3.

CA generator_ f unc = RandomForestRegressor,
n_estimators = 500,
max_lea f _nodes = 4,
alpha = 1/2− 1/100,
gamma = 0.95,
k_max = 3

SIRUS max.depth = 3,
num.rule = 10.

The choice of α’s in (6) is an important step in the process of comparing interpretability.
For these applications, we use an equally weighted average. It means that

α1 = 1/3, α2 = 1/3, α3 = 1/3.

Another possibility is to set each α to be inversely proportional to the variance of the
associated score for each data set. In our application, the results were very similar to the
equally weighted case (data not shown).

6.4. Results for Regression

The averaged scores are summarized in Table 4. As expected, RuleFit is the most
accurate algorithm. However, RuleFit is neither stable nor simple. SIRUS is the most stable
algorithm and the Covering Algorithm is one of the simplest. For all datasets, SIRUS seems
to be the most interesting algorithm among this selection of algorithms and by our score (6).
Figures 1–3 are the box-plots of the predictivity scores, q-stability scores and simplicity
scores, respectively, of each algorithms on the dataset Ozone.

https://github.com/Advestis/Interpretability
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Table 4. Average of predictivity score (Pn), stability score (Sq
n), simplicity score (Sn) and interpretabil-

ity score (I) over a 10-fold cross-validation of commonly used interpretable algorithms for various
public regression datasets. Best values are in bold, as well as values within 10% of the maximum
value for each dataset.

Dataset
Pn

RT RuleFit NodeHarvest CA SIRUS

Ozone 0.55 0.74 0.66 0.56 0.6
Machine 0.79 0.95 0.73 0.59 0.46
MPG 0.75 0.85 0.78 0.59 0.74
Boston 0.61 0.74 0.67 0.26 0.57
Student 0.08 0.16 0.22 0.13 0.24
Abalone 0.4 0.55 0.37 0.39 0.3

Dataset
Sq

n

RT RuleFit NodeHarvest CA SIRUS

Ozone 1.0 0.11 0.92 0.24 0.99
Machine 0.63 0.27 0.91 0.17 1.0
MPG 1.0 0.14 0.87 0.25 1.0
Boston 0.85 0.15 0.81 0.26 0.97
Student 0.98 0.14 1.0 0.26 1.0
Abalone 1.0 0.21 0.86 0.25 0.99

Dataset
Sn

RT RuleFit NodeHarvest CA SIRUS

Ozone 0.12 0.01 0.04 0.96 0.29
Machine 0.14 0.02 0.04 0.9 0.25
MPG 0.15 0.01 0.05 0.98 0.34
Boston 0.26 0.01 0.07 1.0 0.52
Student 0.37 0.05 0.25 0.91 0.97
Abalone 0.58 0.02 0.13 0.66 1.0

Dataset
I

RT RuleFit NodeHarvest CA SIRUS

Ozone 0.56 0.29 0.54 0.59 0.63
Machine 0.52 0.41 0.56 0.55 0.57
MPG 0.63 0.33 0.57 0.61 0.69
Boston 0.57 0.3 0.52 0.5 0.69
Student 0.47 0.12 0.49 0.43 0.74
Abalone 0.66 0.26 0.45 0.43 0.76
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Figure 1. Box-plot of the prediction scores for each algorithm for the dataset Ozone.

Figure 2. Box-plot of the q-stability scores for each algorithm for the dataset Ozone.

Figure 3. Box-plot of the simplicity scores for each algorithms for the data set Ozone.
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Another interesting result is obtained from the correlation matrix Table 5, which was
calculated considering all results generated by the 10-fold cross-validation for all datasets.
It shows that the simplicity score is negatively correlated with the predictivity score, which
illustrates the well-known predictivity/simplicity trade-off. Furthermore, the stability
score seems to be uncorrelated with the predictivity score, but negatively correlated with
the simplicity score, a result which is less expected.

Table 5. Correlation between the scores for the regressions’ experiments.

Pn Sq
n SnSnSn

Pn 1 −0.1 −0.27
Sq

n − 1 −0.10
Sn − − 1

One may note that the distributions of the scores are very different. Indeed, the ranges
for q-stability and simplicity are small relative to the predictivity scores. This may be
explained by the fact that all algorithms are designed to be accurate, but not necessarily
stable or simple. For example, SIRUS was thought to be stable, and, according to the q-
stability score, it is with a score of about 1. On the other hand, stability was not considered
for RuleFit, and its q-stability score is always low. We can apply the same reasoning for the
simplicity score.

6.5. Results for Classification

The averaged scores are summarized in Table 6. All selected algorithms have the same
accuracy for all datasets. However, RIPPER and PART are both very stable algorithms, and
RIPPER is the simplest of the three algorithms. Therefore, for these datasets and among
these three algorithms, RIPPER is the algorithm that is most interpretable according to our
measure (6). Figures 4–6 are the box-plots of the predictivity scores, q-stability scores and
simplicity scores, respectively, of each algorithms for the dataset Speaker.

Table 6. Average of predictivity score (Pn), stability score (Sq
n), simplicity score (Sn) and interpretabil-

ity score (I) over a 10-fold cross-validation of commonly used interpretable algorithms for various
public classification datasets. Best values are in bold, as well as values within 10% of the maximum
value for each dataset.

Dataset
Pn

CART RIPPER PART

Wine 0.13 0.12 0.01
Covertype 0.37 0.46 0.5
Speaker 0.24 0.31 0.35

Dataset
Sq

n

CART RIPPER PART

Wine 1.0 1.0 1.0
Covertype 1.0 1.0 1.0
Speaker 0.95 1.0 1.0

Dataset
Sn

CART RIPPER PART

Wine 0.99 0.64 0.01
Covertype 1.0 0.12 0.01
Speaker 0.71 1.0 0.45
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Table 6. Cont.

Dataset
I

CART RIPPER PART

Wine 0.71 0.59 0.34
Covertype 0.79 0.53 0.50
Speaker 0.63 0.77 0.6

Figure 4. Box-plot of the prediction scores for each algorithm for the dataset Speaker.

Figure 5. Box-plot of the q-stability scores for each algorithm for the dataset Speaker.
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Figure 6. Box-plot of the simplicity scores for each algorithm for the dataset Speaker.

In contrast to the regression case, the correlation matrix Table 7, which was calculated
considering all scores generated by the 10-fold cross-validation for all datasets, shows that
the scores do not seem to be correlated.

Table 7. Correlation between scores for the classification experiments.

Pn Sq
n SnSnSn

Pn 1 0.09 −0.04
Sq

n − 1 0.06
Sn − − 1

These results should take into account that, for the classification part, we have tested
fewer algorithms on fewer data sets than for the regression part. The accuracy of the
models for these datasets was small. If the algorithms are not accurate enough, it may not
be useful to look at the other scores. The algorithms appear to be very stable, which may
be explained by the fact that they are not complex. Since it is not enough to have a good
predictivity score, these algorithms must be tuned to be more complex.

7. Conclusions and Perspectives

In this paper, we propose a score that may be used to compare the interpretability
of tree-based algorithms and rule-based algorithms. This score is based on the triptych:
predictivity (2), stability (3) and simplicity (5), as proposed in [21,26]. The proposed
methodology seems to provide an easy way to rank the interpretability of a set of algorithms
by being composed of three different scores that allow for integrating the main components
of interpretability. It may be seen from our applications that the q-stability score and the
simplicity score are quite stable regardless of the datasets. This observation is related to
the properties of the algorithms; indeed, an algorithm designed for accuracy, stability or
simplicity should maintain this property independent of the datasets.

It is important to note that, according to the Definition 1, 100 rules of length 1 have
the same interpretability index (5) as a single rule of length 100, which may be debatable.
Furthermore, the stability score is purely syntactical and quite restrictive. If some features
are duplicated, two rules can have two different syntactical conditions, but they are other-
wise identical due to their activations. One possibility to relax the stability score could be
to compare the rules on the basis of their activation sets (i.e., by searching for observations
where the conditions are fulfilled simultaneously). Another issue is the selection of the
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weights in the interpretability formula (6). For simplicity, we have used equal weights in
this paper, but future work is needed on the optimal choice of these weights to match the
specific goals of the analyst.

As seen from the paper, the proposed interpretability score is meaningless unless
it is used for the comparison of two or more algorithms. In future work, we intend to
develop an interpretability score that can be computed for an algorithm regardless if other
algorithms are considered or not. We also plan to adapt the measure of interpretability
to other well-known ML algorithms and ML problems such as clustering or dimension
reduction methods. To achieve this goal, we will need to modify the definitions of the q-
stability score and the simplicity score. Indeed, these two scores can be currently computed
only for rule-based algorithms or tree-based algorithms (after a transformation of the
generated tree into a set of rules).

Another interesting extension would be the addition of a semantic analysis of the
variables involved in the rules. In fact, NLP methods could be used to measure the distance
between the target and these variables in a text corpus. This distance could be interpreted
as the relevance of using such variables to describe the target.
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