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Abstract: Predicting alfalfa biomass and crop yield for livestock feed is important to the daily lives
of virtually everyone, and many features of data from this domain combined with corresponding
weather data can be used to train machine learning models for yield prediction. In this work, we
used yield data of different alfalfa varieties from multiple years in Kentucky and Georgia, and
we compared the impact of different feature selection methods on machine learning (ML) models
trained to predict alfalfa yield. Linear regression, regression trees, support vector machines, neural
networks, Bayesian regression, and nearest neighbors were all developed with cross validation.
The features used included weather data, historical yield data, and the sown date. The feature
selection methods that were compared included a correlation-based method, the ReliefF method,
and a wrapper method. We found that the best method was the correlation-based method, and the
feature set it found consisted of the Julian day of the harvest, the number of days between the sown
and harvest dates, cumulative solar radiation since the previous harvest, and cumulative rainfall
since the previous harvest. Using these features, the k-nearest neighbor and random forest methods
achieved an average R value over 0.95, and average mean absolute error less than 200 lbs./acre. Our
top R? of 0.90 beats a previous work’s best R? of 0.87. Our primary contribution is the demonstration
that ML, with feature selection, shows promise in predicting crop yields even on simple datasets with
a handful of features, and that reporting accuracies in R and R? offers an intuitive way to compare

results among various Crops.
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1. Introduction

In 2015, the United Nations developed 17 goals for the world to reach by the year
2030 [1]. These goals were meant to focus nations” efforts on solving the world’s biggest
problems, such as reducing worldwide poverty, improving physical health, reducing social
inequalities, improving environmental conditions, and adapting to the adverse effects of
climate change. In order to evaluate whether those 17 goals were achieved, 169 targets were
made [1]. However, these goals were not prioritized, and 85% of the proposals for these
goals did not consider economic costs or benefits [2]. In response to this, the Copenhagen
Consensus Center performed cost-benefit analyses on these 169 targets and ranked them
according to the cost benefit ratio. One of their findings was that increasing research and
development in increasing crop yields would be one of the most cost-effective ways of
achieving some of these goals [3]. Specifically, every $1 spent on this kind of research and
development (R&D) would result in $34 worth of benefit [4].
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Improvements in agricultural planning and R&D on crop variety testing would in-
crease crop yields, so work in these areas would help achieve some of the UN’s goals.
Machine learning (ML) techniques can be used for crop yield predictions, and these pre-
dictions can improve efforts in agricultural planning and crop variety testing. Specifically,
by predicting a community’s potential crop yield given certain conditions, farmers can
better plan what to plant. This can help humanitarian efforts as well, by showing what
communities should be receiving crops [5]. Moreover, machine learning can help with crop
variety testing. This testing is done to test the short-term and long-term yield of new crop
varieties. Having a prediction of a variety’s yield may give agricultural scientists some
insight into what varieties may be successful, allowing them to develop high yield varieties
more efficiently.

In this work, we use alfalfa data from Georgia and Kentucky to train models to predict
alfalfa yields. Then, we explored the effect of different feature selection methods on the
models’ performance. This also provided information that may lead to insight into what
factors most impact alfalfa yield in the Southeastern United States.

We also present a method to develop optimized machine learning models for biomass
and crop yield prediction. It is our hope that this will help readers, especially plant
scientists and agricultural planners, develop their own machine learning models for crop
yield prediction without requiring an extensive background in machine learning. The most
similar previous work we found was [6], which also applied feature selection techniques to
common ML models to predict sugarcane yield, but that work focused on more complex,
domain-specific features, and they reported results in mean absolute error (MAE) only. Our
work extends and generalizes this approach by reporting R and R?, trying some different
models, and using more accessible datasets with simpler features. Other previous work in
this area generally used more complex data collection techniques, such as unmanned aerial
vehicles (UAVs) [7], remote sensors [8], and satellite imagery [9]. Our primary contributions
are as follows:

e  Weachieved prediction accuracies higher than the previous work, showing that simple,
publicly available datasets with limited features, requiring no special instruments to
collect, could be used to train models comparable to or better than state-of-the-art.

e  We extended previous work in ML with feature selection for crop yield prediction to
consider alfalfa, one of the world’s most important agricultural resources.

e  We presented our results in terms of the coefficient of correlation (R) and the coeffi-
cient of determination (R?), which is more meaningful across various domains with
disparate units than mean absolute error (MAE) used in some previous works.

The rest of this paper is organized as follows. We begin with a brief introduction to the
ML models we used in Section 1.1; Section 2 describes related work; Section 3 details our
materials and methods; Section 4 reports the results of our experiments; Section 5 presents
a discussion of the results.

1.1. ML Models

We chose a variety of some of the most commonly used ML models in the related
work and the field of ML in general, and we picked those that typically work well with
smaller datasets.

1.1.1. Linear Regression

There are several diverse machine learning methods that can be used for crop yield
prediction. Linear regression can be considered a machine learning technique and is
often used as a baseline whose results are compared to the results of other techniques.
Conceptually, linear regression finds a linear function that minimizes the squared error
between the predictions of that function and the true values [10]. This function has the
following form:

k
yi =wo+ ) wix; 1)
i—1
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where k is the number of features, x; is the value of a data point’s ith feature, w; is a
coefficient associated with the ith feature, wy is the intercept, and y; is the prediction of the
linear regression.

1.1.2. Neural Networks

Neural Networks, like linear regression, learn a function that minimizes the error
between the predictions of the function and the true values. However, neural networks are
capable of learning nonlinear functions of any complexity. It does this by roughly imitating
the structure of the human nervous system [11]. A neural network is made up of multiple
node layers. Each node takes in inputs from a previous layer, performs a mathematical
operation on those inputs, and outputs the results of that mathematical operation to the
nodes in the next layer. The last layer outputs the final prediction. Typically, each node
outputs n:

n=A (Zt; wjmj> (2)
j=1

with t being the number of inputs for that layer, m; being the value of the jth input, w; being
the learned coefficient for the jth input, and A being a predefined nonlinear function. To
train a neural network, all the coefficients (w;’s) are initialized with random values. Then
the training data is fed to the network and predictions are found. An error is calculated by
finding the difference between the prediction and the true value. By finding the gradient
of the error, the neural network can iteratively change the coefficients of each node to
minimize the overall error. By changing the number of layers and nodes, a neural network
can approximate many different functions [12].

1.1.3. Support Vector Machines

Another approach is done by support vector machines (SVMs). SVMs attempt to make
a linear best fit line that keeps all the predictions within a certain error threshold from that
best fit line. However, this technique can fit nonlinear data by projecting the data into a
higher dimensional space. In this higher dimensional space, that data will appear more
linear, so a linear best fit line can be made in this higher dimensional space. The best fit
line is then projected back to the original space where it no longer appears linear [13]. This
is called the ‘kernel trick’ [10].

1.1.4. K-Nearest Neighbors

The k-nearest neighbor (kNN) method is another spatially-based machine learning
method. This method remembers all the data it has been shown before, and when it
receives an input X, it looks at the distance between X and all those other points. It then
finds the k closest points to X and uses them to make a prediction. The prediction is
found by calculating a normalized weighted sum of the values of the k closest points. The
weights are often proportional to the distance between the saved point and X [13], but
all the weights could be equal. If this case, kNN is finding the average value of the k
closest points.

1.1.5. Regression Trees

Regression trees learn patterns by recursively breaking up the sample space into
different regions where each region gives a certain prediction. Note that regression trees
tend to split the space into many regions, so it can make many predictions [14]. It does
all of this by forming a tree of nodes. Each node asks a certain question about one of the
input’s features. For example, a node may ask whether the input data point has a solar
radiation value greater than 600 MJ/m?. If the answer is yes, then it goes to another node
and asks another question. If the answer is no, it goes to a different node. This process
continues until an answer is given. In order to learn what questions to ask, the regression
tree minimizes some impurity measure [13]. Note that a random forest is a collection of
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multiple regression trees, and the final output of a random forest is the average result of all
its regression trees.

1.1.6. Bayesian Ridge Regression

Bayesian ridge regression is a probabilistic method that is similar to linear regression.
However, instead of making a linear function, a probability distribution is made based on
the training data. Using the Bayes rule, this method outputs the most likely value given
the input values [15]. Since this is a ridge regression, a cost is added to the error if the
coefficients are above a certain threshold. This encourages the model to not become too
complicated and overfit the data.

1.1.7. Feature Selection

These machine learning methods use a variety of different techniques to make predic-
tions, and the effect different feature selection methods have on their results are compared.
Correlation-based feature selection (Cfs) is done, and its effect on each model is be shown.
Cfs methods look at the correlation between each feature and the target, as well as the cor-
relation between the features. It then finds the set of features that maximizes the correlation
between the feature set and the target while also minimizing the correlation between the
chosen features [16,17]. By minimizing the intra-correlation between features, Cfs reduces
redundancy and noise, and can show what relatively independent processes contribute to
the target’s value.

Another feature selection method is the ReliefF method. It develops weights for each
of the features and adjusts those weights depending on the similarity of feature values
among clustered data points. It does this by first initializing each weight to be zero. Then,
it picks a random point from the dataset and finds the point in the dataset that has the
closest target value to that random point. Then, the features between these two points
are compared. For every feature, if the values of that feature are similar among those two
points, the weight for that feature is increased. However, if the values are dissimilar, then
the weight of that feature is decreased [18].

Cfs and ReliefF are both filter feature selection methods. This means that they look at
characteristics of the features themselves and use that information to decide what features
should be used. Wrapper feature selection methods, on the other hand, use a machine
learning algorithm to learn what sets of features lead to the best results. This paper used
a wrapper method with a ZeroR classifier. The ZeroR classifier uses the average value
of each feature to predict the target. The effects of Cfs, ReliefF feature selection, and the
wrapper method on the results of machine learning models for alfalfa biomass yield were
analyzed and compared.

2. Related Work

In their 2016 work with predicting sugarcane yield using ML techniques, Bocca and
Rodrigues [6] showed that feature selection can improve the predictive accuracy of machine
learning models for crop yield prediction while also simplifying the models. This is because
decreasing the number of features used to train a machine learning model can reduce noise
in the data. This helps the models’ performance while also helping scientists understand
what factors most impact crop yield. Therefore, their work motivates us to explore the
effect different feature selection methods have on the performance of our models, which
also provides insight we can extend to the southeastern United States. In keeping with that
work, we also chose to include the mean absolute error (MAE) as a metric; however, there is
little intuitive connection between their MAE scores in mg per hectare and ours in tons per
acre. Therefore, our work also reports results in coefficient of correlation (R) and coefficient
of determination (R%) metrics. R reflects accuracy and captures the direction or strength of
correlations [19], and we found R? to be a dominant accuracy metric in previous work. We
hope both metrics help paint a more intuitive picture of accuracy than MAE across various
crops with disparate yield units. Moreover, our work starts with a simpler, less esoteric
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dataset and features than previous work. For example, they include several attributes of
soil chemistry data; however, we added solar radiation, which has been proven to be a
good predictor.

Boote et al. introduced the CROPGRO model in 1998, which predicts crop yields for
legumes in general using a FORTRAN software package. This helped pave the way for
research into ML and crop prediction [20]. In 2018, Malik et al. [21] highlighted the global
importance of alfalfa and demonstrated that ML techniques can be useful when predicting
yields, as they adapted the CROPGRO model to predict alfalfa yields. Jing et al. [22]
continued this research with their 2020 adaptation of CROPGRO tailored to predicting
alfalfa in Canada. While all these works incorporate ML-related concepts, they differ from
the current work in that the models focused on physiological details of the crops, while the
current work focused more on weather, time, and varieties, while also applying popular
ML techniques.

Other recent work that predicted crop yields with ML-based techniques involved
image processing and unmanned aerial vehicles (UAVs) to remotely collect data. In their
2020 paper, Feng et al. [7] demonstrated success gathering hyperspectral data from UAVs
to create models for estimating alfalfa yields. Like us, they measured success in terms of
R?, but they did not provide R results. Noland et al. similarly showed that data collected
via UAVs and other remote sensors could be used to train predictive models, and they also
measured success in terms of R?. However, that work relied on canopy reflectance and
light detection and ranging (LiDAR) data. Though the current work used simpler, more
easily acquired data, our highest R? scores of around 0.90 beat theirs of around 0.87 for
alfalfa yield prediction [8].

Yang et al.’s [23] 2020 work applies ML to predicting land production potential for
six major crops, including alfalfa, across the contiguous United States (CONUS), and
they trained their models using publicly available data harvested via remote sensors.
Their datasets focused on biophysical criteria such as evapotranspiration, irrigation, soil
health, slope, land cover, and others, plus temperature and precipitation, which overlapped
slightly with the current work. Once again, R? was their metric of choice, and their success
with similar models such as random forest helped motivate the current work to apply ML
to a related problem [23]. Wang et al. [9] used ML to predict yields for winter wheat in
the CONUS in their 2020 paper, where they combined multiple sources of data including
satellite imagery, climate data, and soil maps to train a support vector machine (SVM),
AdaBoost model, deep neural network (DNN), and a random forest with positive results
measured in R? and mean absolute error (MAE), such as the current work, as well as
root mean squared error (RMSE) [9]. Our work adopted a simpler approach but used
fewer varieties of data, all of which were publicly available, whereas ours did not require
processing image data. Leng and Hall [24] showed that ML aided in simulating yield
averages for maize in their 2020 paper, while Nikoloski et al. [25] showed promise applying
ML to estimating productivity in dairy farm grasslands in their 2019 work which used
the R? metric among others. The current work is the first study we know of that shows
promise for applying such popular ML techniques to predicting crop yields using only
simple, publicly available weather and variety trial datasets.

3. Materials and Methods

The programming language used to clean the data, make visualizations, apply feature
selection methods, and make the machine learning models was Python (Python Software
Foundation, Wilmington, DE, USA) within the Anaconda environment (Anaconda Software
Distribution, Austin, TX, USA). Many packages for python were used. Pandas was used
to clean and organize the data [26], Matplotlib was used to make the visualizations [27],
seaborn was used to make a heat map showing the correlation between features [28],
sci-kit learn was used for all of the machine learning and the SelectKBest feature selection
operations [29], and, finally, Numpy was used for general mathematical operations [30,31].
Weka was used for the CfsSubsetEval (Cfs), ReliefFAttributeEval (ReliefF), and Wrapper-
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SubsetEval (Wrapper) feature selection operators [32]. A link to our code on Github is
provided in the Supplementary Materials section.

The features used to train our machine learning models were the Julian day of the
harvest; the number of days between the harvest and the sown date of the crop; the number
of days between the current harvest and the previous harvest; the total amount of solar
radiation and rainfall since the last harvest; the percent cover and day length at the time of
the harvest; the average air temperature since the previous harvest; the average minimum
air temperature since the last harvest and the average maximum air temperature since
the previous harvest; and the average soil moisture since the last harvest (Table 1). We
chose our features based on those used in previous works, i.e., [6-8,13], and those features
included in our selected public data sources. University of Georgia’s (UGAs) variety trials
highlight percent cover, so we included that as well, though it was not as common in the
related literature. All features presented as averages were formed by obtaining daily values
and averaging daily value. For example, the average air temperature feature was found
by getting the average temperature for each day between the crop’s previous harvest and
current harvest. Then, all daily values were averaged resulting in the final value for the
average air temperature feature.

Table 1. A datapoint with the same features as the data used to train our machine learning models.

Feature Name Value Abbreviation

Julian day of harvest 249.00 JD
Number of days since the crop was sown 643.00 DSS
Number of days since last harvest 30.00 DSH
Total solar radiation since the previous harvest (M]/ m?) 610.29 Sol
Total rainfall since the previous harvest(mm) 98.83 Rain
Avg air temp since the previous harvest (C) 25.33 T
Avg max air temp since the previous harvest (C) 31.25 MaxT
Avg min air temp since the previous harvest (C) 19.1 MinT
Avg soil moisture since the previous harvest (%) 0.11 SM
Interpolated percent cover for the day of the harvest (%) 78.82 PC
Day length on the day of the harvest (hrs) 12.62 DL

These features were constructed from various datasets. All data sources are shown
in Data Accessibility section. Alfalfa yield and harvest data were obtained from alfalfa
variety trials done by the University of Georgia (UGA) and University of Kentucky (UKY).
This data contained the yield (tons/acre) of multiple varieties of alfalfa. UGA’s data was
from Athens and Tifton, Georgia from the years 2008 to 2010 and included data points from
April to December. UKY’s data contained yield data from Lexington, Kentucky ranging
from 2013 to 2018 and contains data from May to September. Each data set contained the
yield, harvest date, and sown date for multiple varieties over time. The percent cover was
also given along with the dates it was measured, but the percent cover was measured on
different dates than when the crop was harvested, so we interpolated these values.

We aggregated daily weather data. Data for Tifton and Watkinsville, which is about
13 miles from Athens, GA, USA, came from the Georgia automated environmental network.
Similar data was found for Versailles, which is near Lexington, KY, USA, from the National
Oceanic and Atmospheric Administration (NOAA). These weather data sets contained
the daily amount of solar radiation and rainfall, as well as the average air temperature,
minimum and maximum air temperature, and the soil moisture. The day length was found
using the United States Naval Observatory website.

By using the weather data for the dates corresponding with the alfalfa harvest times,
we calculated for each harvest the total amount of solar radiation and rainfall that loca-
tion had received since the previous harvest, and the average temperature, minimum
temperature, maximum temperature, and soil moisture since the previous harvest.

Once the data was gathered, all the data that had invalid values were disregarded.
Moreover, all data points that had harvest dates that happened in the same year as the
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sown date were filtered out. Similarly, the first harvest of every season was filtered out.
This is because of the amount of time since the previous harvest would be much larger for
this harvest relative to subsequent harvests. After this cleaning process, 770 data points
were left. Athens had 108 corresponding data points, Tifton had 70, and Lexington had 592.

Before training the models, we applied feature selection and standardized the data.
For feature selection, we first used Sci-Kit Learn’s SelectKBest to show how changing the
number of features changes the average R of each method. Feature selection with Weka’s
CFsSubsetEval (Cfs), ReliefFAttributeEval (ReliefF), and WrapperSubsetEval (Wrapper)
operators was then used to train machine learning models, and their results were compared.
Then all the features were standardized according to the formula:

Xppory = 0ld — Xmmean €)
XSDev
where x,; is the value of the feature before standardization, x;eq, is the average value of
the features, and xgp,, is the standard deviation of the values for that feature.

The following was done for each method. Before training the models, the data was
shuffled and split into 10-folds to be used for 10-fold cross validation. For each iteration of
cross validation, one of the 10-folds was used as a testing set while the other nine-folds
were used to train the machine learning model. Each fold was a testing set for one of the
10 iterations and was not used as the testing set more than once. Then, for each iteration of
the cross validation, a machine learning model was initialized. A grid search (Appendix A)
with 5-fold cross validation was done to find the hyperparameters for the model that most
minimized the mean absolute error. Only the training set for this iteration was used here.
Once the hyperparameters were found, the machine learning model was trained on the
training set and was evaluated against the testing set. The mean absolute error (MAE), R
value, and R squared (R?) value were all found and recorded. This was done for each of the
10 iterations. Note that this means that 10 different models were made for each method. We
calculated and recorded the average MAE, R, and R2 value over all 10 models. We reported
R? scores because we found this to be the dominant metric for reflecting accuracy in similar
work. On the other hand, we emphasized R scores in our results because R captured the
direction of correlation, while R2 ignored it. Further, these two metrics followed the same
trends and were usually not greatly different from each other [19]. We also reported MAE
in keeping with previous work, and because MAE was not always consistent with R and
R?, it may therefore be instructive and either support or undermine other metrics.

We followed this same process to train and evaluate regression tree, random forest
regression, k-nearest neighbor regression, support vector regression, neural networks,
Bayesian ridge regression, and linear regression. Once all the machine learning models
were trained and evaluated for the different sets of features found by the different feature
selection operators, a two-tailed unpaired ¢ test was performed between the results. This
was used to determine if any of the feature selection operators picked feature subsets that
led to significantly better results.

We also constructed a decision tree to classify the data into 3 distinct bins. Decision
trees provide a nice visualization, as they show what features are responsible for the
classification. This decision tree classified the data into 3 classes (Table 2). To create the
decision tree, the data was randomly split into a training set (90% of the data) and a testing
set (10% of the data).

Table 2. The classification trees split the data into these classes.

Classes Yield (t)
1 0.01-0.74
2 0.75-1.24

3 1.25+
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4. Results

For every feature selection method, we calculated the average MAE, R, and R? value
for each model over the 10 iterations, as shown in this section’s tables. Note that the average
yield in the dataset is 2020 Ibs./acre. Using the SelectKBest feature selection method, we
made all features available for feature selection and compared the results from K = 3 to
K =11. Notice that as K increased, the R value increased, but the increase in R levels tailed
off at around K = 6 (Figure 1). These 6 features were the Julian day, number of days since
the crop was sown, total solar radiation, average soil moisture, day length, and percent
cover. The results of the models with no feature selection are shown in Figure 2 and Table 3.
Here, the support vector regression model had the highest average R of 0.948.

R as the number of features change
ng4 / —
e

ooz

Qo0

a6

0.e4

oAz

o} - 1 3] A e =} s

r

MNumber of features

— —

= knn ot

— T
Figure 1. Performance of models with k features and all features made available for feature selection. The average R value
of the models is shown. SelectKBest feature selection was used with K values from K = 3 to K = 11. Note that the average R

value for Bayesian ridge regression and linear regression were much lower than any of the other models, so they were not
shown here.

Table 3. The average scores from training the models with all possible features.

Model Mean Absolute Error (MAE) (Ibs./acre) R R?
Support vector machine 209.888 0.948 0.895
K-nearest neighbors 205.418 0.946 0.891
Random forest 207.448 0.945 0.887
Neural network 232.937 0.937 0.873
Regression tree 236.039 0.927 0.849
Linear regression 358.454 0.818 0.664

Bayesian ridge regression 357.686 0.818 0.663
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R values of models trained on all features
0.97

0.96
0.95
0.94
= 093
0.92

0.91
0.9

0.89

B Random Forest B K-nearest Neighbor M Regression tree

M Supportvector regression [l Neural network

Figure 2. The results from linear regression and Bayesian ridge regression were much lower than the other models, so their
results are not shown here. The results are shown explicitly in Table 3.

We used Weka’s Cfs method for feature selection. If all features were made available
for feature selection, it found that the best features were used to both maximize the
correlation between the features to the target and minimize the correlation between the
features were the Julian day, total solar radiation, total rainfall, and the percent cover. The
results from training the models using just these features are shown in Figure 3 and Table 4.
The random forest method had achieved the highest R with a R of 0.933. The correlations
between the features and target are shown in Figure 4.

R values of models trained with Julian day, solar radiation, rainfall, and
percent cover

0.95

- Tmelly

0.85
0.83

M Random Forest [l K-nearest Neighbor [ Regression tree

B Support vector regression [l Neural network

Figure 3. Results from Cfs feature selection with all features. The results from linear regression and Bayesian ridge
regression were much lower than the other models, so their results are not shown here. The results are shown explicitly in
Table 4.
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Table 4. Results from Cfs feature selection with all features. These average scores are from using the
features Julian day, total solar radiation, total rainfall, and percent cover.

Model Mean Absolute Error (Ibs./acre) R R?
Random forest 228.651 0.933 0.865
Support vector machine 248.458 0.925 0.851
K-nearest neighbors 251.494 0.914 0.831

Regression tree 272.247 0.9 0.8
Neural network 293.606 0.887 0.778
Linear regression 382.928 0.792 0.627
Random forest 228.651 0.933 0.865
Bayesian ridge regression 383.459 0.79 0.619
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Figure 4. Correlation heat map between features. A heat map showing the value of the correlation coefficient between each
possible pair of features. We see higher correlations, positive and negative, between yield and Julian day, time since sown,
radiation, rainfall, day length, and others.

However, because it may not be easy to get an accurate value of percent cover, we did
another experiment with Weka’s Cfs method for feature selection. In this experiment, we
made all the features available for feature selection except for percent cover. It found that
the best set of features to use in this case were the Julian day, total solar radiation, total
rainfall, and the number of days since the sown date. The results of evaluating the models
trained on just these features are shown in Figure 5 and Table 5. The k-nearest neighbor
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and random forest methods both achieved the best average R with this set of features by
obtaining an average R of 0.952.

R values of models trained with Julian day, solar radiation, rainfall, and

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

percent cover

-

X

1

M Random Forest B K-nearest Neighbor M Regression tree

M support vector regression M Neural network

Figure 5. Results from Cfs feature selection with no percent cover. The results from linear regression and Bayesian ridge

regression were too low to show. The results are shown explicitly in Table 5.

Table 5. Results from Cfs feature selection with no percent cover. The average scores from using the
features Julian day, number of days since the sown date, total solar radiation, and total rainfall.

Model Mean Absolute Error (Ibs./acre) R R2
K-nearest neighbors 193.938 0.952 0.904
Random forest 196.539 0.952 0.903
Regression tree 200.052 0.95 0.899
Support vector machine 231.222 0.936 0.871
Neural network 260.651 0.911 0.821
Bayesian ridge regression 372.945 0.8 0.632
Linear regression 372.547 0.798 0.632

To compare the results obtained from using the two sets of features found by Cfs,
an unpaired two-tailed ¢ test was performed between the R values of the models trained
with the features chosen by the Cfs operator (Table 6). The random forest, k-nearest
neighbor, and regression tree methods performed significantly better using the feature set
that excluded percent cover from being available for selection. The other methods did not
vary significantly across the two sets of results. Because excluding percent cover led to
results that were significantly better or the same when compared to not excluding percent
cover, only the results found by Cfs without percent cover will be considered for the rest of
this work.

The ReliefF operator found that the best features were the number of days between the
crop’s sown date and harvest date, the cumulative amount of rainfall the crop got since the
previous harvest, and the average minimum daily temperature since the previous harvest.
The results from training the machine learning models with these features are shown in
Figure 6 and Table 7. In this case, k-nearest neighbors achieved the highest average of R
with a value of 0.953.
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Table 6. p-values between the R? values of the models trained by the two CfsSubsetEval feature sets.
The results were found by doing unpaired two-tailed f tests. The first feature set contained the Julian
day, total solar radiation, total rainfall, and percent cover. The second feature set contained the Julian
day, the number of days since the sown date, total solar radiation, and the total rainfall. Significant
results are shown in bold.

Model T Test Results
Random forest 0.0046
K-nearest neighbor 0.0007
Regression tree 0.0103
Support vector regression 0.2820
Neural network 0.2070
Linear regression 0.8940
Bayesian ridge regression 0.7481

R values of models trained with the number of days since the sown date,
rainfall, and average minimum temperature
0.97

0.93
091
L

0.89
0.87
0.85
0.83
0.81

0.79
0.77
0.75

B Random Forest B K-nearest Neighbor I Regression tree

B Support vector regression [l Neural network

Figure 6. Results from ReliefF feature selection. The results from linear regression and Bayesian ridge regression were much
lower than the other models, so their results are not shown here. The results are shown explicitly in Table 7.

Table 7. Results from ReliefF feature selection. The average scores from using the features number of
days since the sown date, total rainfall, and the average minimum temperature since the previous

harvest.
Model Mean Absolute Error (Ibs./acre) R R?
K-nearest neighbors 195.86 0.953 0.905
Random forest 197.026 0.95 0.9
Regression tree 199.584 0.948 0.897
Neural network 357.532 0.842 0.7
Support vector machine 344.604 0.83 0.688
Linear regression 667.121 0.262 0.05
Bayesian ridge regression 666.844 0.258 0.049

The wrapper operator reported that the best features were number of days between
the crop’s sown date and harvest date, the cumulative amount of rainfall since the previous
harvest, the day length at the time of the harvest, and the Julian day of the harvest. The
results of the machine learning models trained on these features is shown in Figure 7 and
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Table 8. The best R value of these methods was also k-nearest neighbors getting an average
R of 0.952.

R values of models trained with the number of days since the sown date,
rainfall, day length, and Julian day

- _ LB

M Random Forest M K-nearest Neighbor [ Regression tree

M Support vector regression [l Neural network

Figure 7. Results from Wrapper feature selection operator. The results from linear regression and Bayesian ridge regression
were much lower than the other models, so their results are not shown here. The results are shown explicitly in Table 8.

Table 8. Results from Wrapper feature selection operator. The average scores from using the features
number of days since the sown date, total rainfall, day length, and the Julian day.

Model Mean Absolute Error (Ibs./acre) R R?
K-nearest neighbors 199.28 0.952 0.904
Random rorest 197.782 0.952 0.903
Regression tree 200.208 0.951 0.902
Support vector machine 261.395 0917 0.835
Neural network 300.245 0.883 0.776
Linear regression 370.509 0.807 0.651
Bayesian ridge regression 372.011 0.8 0.634

Unpaired two-tail ¢ tests were done between the R values of the methods that used all
the features, the Cfs features (without percent cover), the ReliefF features, and the Wrapper
features (Table 9). To show these results more clearly, Table 10 shows what feature selection
operator led to the best results for each machine learning method. There was no significant
difference in the results given by the feature selection operators in the same row of Table 10.

Table 9. p-values between R? values of different feature selection operators. Results from unpaired two-tail ¢ tests. ‘All’
represents the results from Table 3, ‘Cfs’ represents the results which used the features from Figure 5/Table 5, ‘ReliefF’
represents the results from Figure 6/Table 7, and “Wrapper’ represents the results from Figure 7/Table 8. If a p-value is
followed by a parenthesis, the value in the parentheses is an abbreviation of the feature selection method that resulted in the
higher average R? value. Lower p-values are better, and the lowest are bolded.

T Test RF KNN RT SVR NN Lin Bayes
All vs. Cfs 0.2973 0.3303 0.0086 (C) 0.0559 0.0871 0.3758 0.3795
All vs. ReliefF 0.4631 0.2306 0.0140 (R) 0.0001 (A)  0.0010 (A) 2 x 10713 (A) 3 x 10715 (A)
All vs. Wrapper 0.2398 0.3321 0.0045 (W)  0.0038 (A)  0.0035 (A) 0.7555 0.3569
Cfs vs. ReliefF 0.8331 0.9179 0.8967 0.0002 (C) 0.0156 (C) 3 X 10712 (Q) 3 x 1071 (C)
Cfs vs. Wrapper 0.9867 0.9804 0.7840 0.0685 0.2196 0.6726 0.9486

ReliefF vs. Wrapper ~ 0.8057 0.8924 0.6999 0.0014 (W) 0.1052 5x 10710 (W) 8 x 10~ 13 (W)
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Table 10. Best feature selection operators for each machine learning method. There is no signif-
icant difference between the results in the same cell. “All’ refers to all features being used, ‘Cfs’
refers to the set of features found by CfsSubsetEval, ‘ReliefF’ refers to the set of features found by
ReliefFAttributeEval, and "Wrapper’ refers to the set of features found by ‘WrapperSubsetEval’.

Machine Learning Method Feature Selection Operator that Led to the Best Results
Random forest All, Cfs, ReliefF, Wrapper
K-nearest neighbors All, Cfs, ReliefF, Wrapper
Regression tree Cfs, ReliefF, Wrapper
Support vector regression All, Cfs
Neural network All, Cfs
Linear regression All, Cfs, Wrap
Bayesian ridge regression All, Cfs, Wrap

Finally, the classification tree can be found in Figure 8. A left split represents data
with the attribute listed less than the value that is specified, and a right split represents
the opposite. For example, the first node of the tree splits the data based on the Julian day,
with data that has a Julian day of prior to the middle of May being sorted into the left child
node and data that has a Julian day after this date being sorted into the right child node.
The tree had 12 leaf nodes, as that was found to be the number of leaf nodes that gives
the best accuracy when trees with 2-15 leaf nodes were tested. The accuracy for this final
tree was found to be 85.6%, the mean absolute error was found to be 0.144 tons, and the R?

value was found to be 0.752.
Julian Day = 5.717

samples = 807
value =[262, 345, 200]

Julian Day = 8.433
samples =619
value =[252, 303, 64]
class =2

Julian Day = 5.883
samples = 389
value =[93, 232, 64]

samples =19
value = 0 9,0]

samples =230
value =[159, 71, 0]
class =1

|

vg Air Temp (C) = 26.585J [Total Radiation (MJ/m"2) = 677.365J

Total Rainfall (mm) = 204.823]

A
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Figure 8. The classification decision tree that sorts data into bins.

samples =42
value =[35, 7, 0]
class =1

samples =40
value =[26, 14, 0]
class =1
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5. Discussion

Overall, this work demonstrated that we could improve on previous research to predict
crop yields by applying a feature selection to our ML models. Our main improvements was
a higher accuracy than the previous work, which we achieved by using a simpler dataset
with fewer features, reporting our results using more intuitive and transferable metrics,
and extending recent success with feature selection to the alfalfa crop.

The Cfs operator was the best overall feature selection method because it led to the
best results for each method. None of the other feature selection operators led to the best
results for each method. The feature set that the Cfs operator found consisted of the Julian
day, the number of days between the sown and harvest date, the cumulative solar radiation
since the previous harvest, and the cumulative rainfall since the last harvest.

There was no significant difference in any of the random forest results, no matter
the feature selection method. The same was true for k-nearest neighbors. Even though
using all features did not result in a significant difference from using a feature selection
operator, it would still be beneficial to use a feature selection operator. Doing so would
lower computational time and could simplify the models. The same can be said for support
vector regression and the neural network, which got the best results from using either all
the features or Cfs. For the regression tree, using any of the three feature selection methods
resulted in better results than if all the features were used. In this case, even though fewer
features were used, the results still improved. This may be because different features
can embed the same information. For example, the Julian day of the harvest and the day
length features both referred to seasonal information; therefore, they would have a high
correlation with each other (Figure 4). Thus, including both the Julian day of the harvest
and the day length could add noise to the model. For linear regression and Bayesian ridge
regression, using anything but the ReliefF operator led to the best results. This is probably
because forming a linear prediction function with only three features is not appropriate for
this domain.

This work may be helpful because it describes a framework that can be applied to
other machine learning problems in predicting crop and biomass yield. This work also
shows what features are most important for predicting alfalfa yield in the southeast United
States from Spring to the end of Fall. The best results came from training the models with
the Julian day, the amount of solar radiation and rainfall since the previous harvest, and the
number of days since the crop was sown. This is useful because gathering data is resource
intensive and knowing the best features can help make data collecting more efficient. These
four features are also relatively easy to obtain. The Julian day and amount of time since the
crop was sown are trivial to retrieve, and the amount of solar radiation and rainfall can be
obtained from weather data sources.

Moreover, besides possibly improving the results of the models, feature selection can
provide insight into the problem domain [16]. By understanding what features are most
important for predicting yield, one may gain insight into what factors most impact a crop’s
yield. The cumulative rainfall since the previous harvest and the number of days between
the harvest date and sown date were chosen by all the feature selection methods, so this
is evidence that they may be the most important features for this problem. Similarly, the
Julian day was chosen by two out of three feature selection methods, so this is evidence
that it is also an important feature.

This work could be extended by providing this framework to alfalfa crops grown in
other locations besides Georgia and Kentucky. It could also be improved by incorporating
more data from other locations in the Southeast United States. This work may also be
extended to use with transfer learning and domain adaptation techniques.

Supplementary Materials: The code used for this project can be found at https://github.com/
chriswhitmire/alfalfa-yield-prediction.
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Appendix A
The grid for the hyperparameters of each model is as follows:
Decision Tree
‘criterion’: [‘'mae’];
‘max_depth’: [5,10,25,50,100].
Random forest-
‘n_estimators’: [5,10,25,50,100];
‘max_depth”: [5,10,15,20];
‘criterion’: [“mae”].
K-nearest neighbors
‘n_neighbors’: [2,5,10];
‘weights’: [“uniform’, ‘distance’];
e ‘leaf size”: [5,10,30,50].
Support vector machine
‘kernel’”: ['linear’, ‘poly’, ‘rbf’, ‘sigmoid’];
‘C’:10.1, 1.0, 5.0, 10.0];

A

‘gamma’: [“scale”, “auto”];

‘degree”: [2,3,4,5].

Neural Network

‘hidden_layer_sizes”: [(3), (5), (10), (3,3), (5,5), (10,10)];
“solver’: ['sgd’, ‘adam’];

‘learning_rate”: [‘constant’, ‘invscaling’, ‘adaptive’];
‘learning_rate_init": [0.1, 0.01, 0.001].

Bayesian ridge regression

‘n_iter’: [100,300,500];
‘lambda_1": [1.e—6, 1.e—4, 1.e—2, 1, 10].

Linear Regression- no hyperparameters
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