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Abstract: Defect detection in images is a challenging task due to the existence of tiny and noisy
patterns on surface images. To tackle this challenge, a defect detection approach is proposed in this
paper using statistical data fusion. First, the proposed approach breaks a large image that contains
multiple separate defects into smaller overlapping patches to detect the existence of defects in each
patch, using the conventional convolutional neural network approach. Then, a statistical data fusion
approach is proposed to maintain the spatial coherence of cracks in the image and aggregate the
information extracted from overlapping patches to enhance the overall performance and robustness
of the system. The proposed approach is evaluated using three benchmark datasets to demonstrate its
superior performance in terms of both individual patch inspection and the whole image inspection.
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1. Introduction

Defect inspection using computer vision technology is an important task in various
industries [1–4], including railroad defects on steel surfaces [5], concrete cracks [6], tunnel
inspection [7].

Various visual inspection methods have been developed in the literature for automatic
defect detection in the image. These methods can be classified into two categories, including
defect classification and defect localization in the image. The former defect classification
approach [1] essentially addresses the problem of pixel classification, where the goal is to
classify each image pixel as a Defect or Non-Defect. The latter defect location approach [2]
aims to place a tight-fitting boundary around each defect in the image.

The capability of visual inspection methods relies on how to acquire defect features in
an automated and effective manner. The existing visual inspection methods can be classified
into categories: (1) traditional approaches; (2) statistical-based approaches; (3) learning-
based approaches. First, the traditional defect detection methods include edge detection,
morphological operations for strong edges and less noisy patterns. These methods model
the texture primitives and displacements for repetitive patterns such as textile and fabrics.
The statistical distributions of pixel values are studied in more complicated image analysis
techniques, such as crack blob features [8], Gabor features [9], and wavelet features [10].
Second, statistical approaches are usually used to detect defects of flat steel surface by
evaluating the regular distribution of pixel intensities. A low-rank representation based
on texture prior for detection of defects on natural surfaces is developed in [11]. Third,
deep learning technology, such as ResNet [12], YOLO [13], Mask R-CNN [14], has the
potentials to address this issue in representation learning by building complex features. A
convolutional neural network is proposed in [15] to detect road cracks. Several convolu-
tional neural network architectures are evaluated for defect localization [16]. A multiple
feature learning approach is proposed in [17]. The classification results of several convo-
lutional neural networks are fused to determine whether it is false positive or not [18].
Various image fusion methods have also been developed in [19–21] to combine multiple
images with various qualities for image enhancement. A video-based inspection method
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is proposed in [22] by applying Bayesian fusion on classification results of continuous
frames. An automatic surface inspector by extracting transferred features of an image from
a pre-trained model and generating defect heat map on the extracted transferred feature to
identify defect areas in [23].

The major challenge of defect detection in images is the existence of tiny cracks and
noisy patterns on metallic surfaces. Figure 1 illustrates tiny defects in the image, where
some defects are surrounded by noisy patterns while some are hardly visible in low contrast
image. Furthermore, defect could be connected or isolated in an image. For images that
consist of multiple separate defects, it may be insufficient to identify the separate defects
using the single image classifiers mentioned in the previous paragraph.

Figure 1. Examples of defects in images. The challenge of defect detection in images is the existence
of tiny cracks and noisy patterns in images.

To tackle this challenge, a defect detection approach is proposed in this paper. The
proposed approach breaks a large image that contains multiple defects into smaller over-
lapping patches to detect the existence of defect in each patch, by training a convolutional
neural network (CNN) patch classifier. The overlapped regions can then be fused by Bayes
theorem to determine whether they are classified as defects or not. By breaking the image
into small patches, each patch is responsible for a smaller number of defects and the defect
detection task could be potentially easier.

The rest of this paper is organized as follows. Section 2 highlights the challenges of
existing approaches that motivates the proposed approach, as well as the novelty and
experimental design of the proposed approach. Section 3 presents the proposed defect
detection framework. Section 4 presents the extensive performance evaluation of the
proposed approach using three benchmark datasets and discusses the results. Finally,
Section 5 concludes this paper.

2. Motivation

This section summarizes the challenges of existing approaches, the novelty and exper-
imental design of the proposed approach as follows.

Challenges of existing approaches: To tackle tiny defects in the image as illustrated in
Figure 1, the current state-of-the-art methods usually apply two key strategies [1,2]: global-
based methods, and local-based methods. The global-based methods exploits features (either
hand-crafted features or deeply learned features) extracted from the whole image to make
binary decision whether the input image is defect or not. These features extracted from the
whole image are usually insufficient to identify the separate defects. On the other hand,
the local-based methods exploits local features learned from the deeply learned feature
map to localize a tight-fitting boundary around each defect in the image. These methods
require complicated data labelling (either region-based labelling or pixel-based labelling)
for model training.

Motivation of novelty of the proposed approach: To benefit deeply learned features from
images (in global-based methods) and avoid complicated data labelling (in local-based
methods), a two-stage defect detection approach is proposed in this paper. The key
characteristics of this paper are summarized as follows.

• The gist of the proposed approach is to break a large image that contains multiple
separate defects into small overlapping patches to detect the existence of defect in
each patch using the convolutional neural network classifier, and then re-combines the
patches back to form the final defect decision using a statistical data fusion approach.
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• The proposed approach requires less defect labelling efforts in the model training,
since it only needs patch-based labelling. This contrasts with that the region-based
labelling (for defect object detection) or pixel-based labelling (for defect region seg-
mentation) are required in the literature.

Design of experiments: The proposed approach is evaluated using three publicly avail-
able benchmark datasets [24–26] for performance evaluation. Furthermore, for each
dataset, two kinds of experiments are conducted, including (1) classifying individual patch,
and (2) detecting defect regions in the whole image. These two experiments are used to
justify the performance of two components (individual patch classifier and the decision
fusion) of the proposed approach.

3. Proposed Defect Detection Approach

The rationale of the proposed approach is to break a large image that contains multiple
defects into overlapping patches so that each small region could be determined as Defect
or not. To be more specific, the proposed approach consists of two key components. First,
the conventional convolutional neural network method is exploited to detect overlapping
patches in the image. Second, a Bayesian data fusion approach is proposed to aggregate the
information extracted from overlapping patches to enhance the overall performance and
robustness of the system. These two components are described in the following sections
in detail.

3.1. Patch Classifier

The first component of the proposed approach is to develop a patch classifier to decide
whether each overlapping patch is a Defect patch or Non-Defect patch. For that, a patch
extractor is first built to extract patches from the training image dataset and to label each
of them as Defect or Non-Defect based on the corresponding ground truth patch. For each
image dataset, n× n patches are extracted with a stride size of n/3, which means each patch
overlaps a neighboring patch by 1/3. Each patch is also labelled as Defect or Non-Defect,
depending on the number of positive defect pixels in the corresponding ground truth patch.
If the corresponding ground truth patch contains positive pixels, the patch is labelled as
Defect, or Non-Defect if otherwise. An example of the extracted patches is shown in Figure 2.

The proposed patch classifier is illustrated in Figure 3. It consists of the conventional
VGG-16 network backbone [27], as illustrated in Figure 4, to extract features and an
additional two-layer multi-layer feed forward (MLFF) head to do binary classification. The
two additional layers consist of the following in sequence: linear layer of 20 nodes; relu;
batch normalization; dropout (0.5); linear layer of 20 nodes; batch normalization; single
output node with Sigmoid activation. The training image data set is thus fed to the
patch classifier and trained features are extracted and then flattened and put through two
dense layers and a Sigmoid activation function of the binary classification exercise. The
cross-entropy loss function (denoted as L) is used in the proposed approach as

L = −AVG(αyn log(pn) + β(1− yn) log(1− pn)), (1)

where AVG(·) is an averaging function over all patches, yn is the label class of n-th patch,
pn is the prediction of n-th patch, and α and β are the weights assigned to class 1 (Defect)
and class 0 (Non-Defect) respectively.
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Figure 2. Examples of ground truths (left) and extracted patches (right), which are denoted as
Class:PatchIndex.

Figure 3. The architecture of the proposed defect detection approach.

Figure 4. The details of the VGG-16 backbone model [27] used in the proposed approach.

3.2. Bayesian Data Fusion of Overlapping Patch Classifiers

The patch classifier described in the previous section is applied on the image so that
each overlapping region of the image will have multiple scores, which are obtained from
the patch classifier, as illustrated in Figure 5. Given these multiple scores, a Bayesian data
fusion approach is proposed in this section to obtain the single final probability of the patch
being Defect or Non-Defect.
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Figure 5. An illustration of overlapping patches that are classified as defects. Each patch is high-
lighted using the black color rectangular bounding box.

First, the histogram and the probability density function (PDF) of the classifier scores
are collected for the Non-Defect and the Defect classes from the training image datasets.
Figure 6 shows the PDFs of p(si | Cde f ) and p(si | Cnde f ), where si is the classification score
of patch i and Cde f is the Defect class and Cnde f is the Non-Defect class.

Figure 6. Histograms (top) and PDFs (bottom) for Non-Defect class (left) and Defect class (right).

Then, the overlapping region is determined as Defect subject to the following condition

P(Cde f | si, ..., sn)

P(Cnde f | si, ..., sn)
> θ, (2)

where θ controls the sensitivity of decision making, and si is the classification score for
the ith overlapping patch over the same region. Taking Log function on both sides of (2)
we have

log
P(Cde f )Πi f (si | Cde f )

P(Cnde f )Πi f (si | Cnde f )
> log θ, (3)

which can be further rewritten as

∑
i
((log f (si | Cde f )− (log f (si | Cnde f )) > θ − log P(Cde f ) + log P(Cnde f ), (4)

which can be simplified as

∑
i
((log f (si | Cde f )− (log f (si | Cnde f )) > θt, (5)
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where i is the number of overlapping patch in a region, f (si | Cde f ) and f (si | Cnde f ) are
likelihood functions, si is the prediction of the i-th overlapping patch, Cde f is Defect and
Cnde f is Non-Defect. log P(Cde f ) and log P(Cnde f ) can be ignored since θt contains them. The
region will be determined as Defect if the left-hand side of (5) is bigger than θt; otherwise,
it is determined as Non-Defect. The PDFs of the Defect and the Non-Defect Classes are
estimated using non-parametric kernel density estimation (KDE) method.

Finally, after each region is determined as Defect or Non-Defect, an external bounding
box is applied to contain the connected defect regions. An example is shown in Figure 7.

Figure 7. The detected defect regions, which are illustrated as black regions in the binary image (top
photo) and illustrated using the bounding boxes and overlaid on the original image (bottom photo).

To summarize, the PDF of the scores given Defect class and the PDF of the scores given
Non-Defect class are collected from the training image dataset. A test image is also extracted
into patches and each test image patch is incorporated into the trained patch classifier.
The test image patches are then overlayed in the original spatial arrangements and each
overlapped region will have multiple scores. Given the scores of each region, the probability
of being Defect or Non-Defect could be established using Naive Bayes Theorem [22]. As
such, each overlapping region could be determined as Defect or Non-Defect if the probability
of being Defect is greater than the probability of being Non-Defect by a user-controlled
threshold. Lastly, bounding boxes are used to contain the connected defect regions.

4. Experimental Results
4.1. Experimental Setup and Implementation Details

Three publicly available benchmark datasets are used in this paper for
performance evaluation.

• The dataset I is the GDXray dataset [24]. It consists of 10 radiography images of metal
pipes. Each image is approximately 650× 4000 in resolution and is provided with
pixel-wise ground truth. The first 5 images are used as training images and the last
5 images are used as the testing images.

• The dataset II is the Type-I RSDDs data set [25] that contains 67 express rails defect
images. Each image is 1000× 160 in resolution and is provided with pixel-wise ground
truth. 47 images are randomly chosen as training images and the left-over 20 images
are used as testing images.

• The dataset III is the NEU steel surface defect dataset [26] that consists of scratch
defects from hot-rolled steel strip. There are 300 images in this dataset, each image has
a resolution of 200× 200 pixels, with the coordinates of the ground truth bounding
boxes provided. The area of ground truth bounding boxes are taken as the pixel-wise
ground truth for this dataset. 200 images are randomly chosen as training images and
the left-over 100 images are used testing images.

For each dataset, two kinds of experiments are conducted, including (i) classifying
individual patch, and (ii) detecting defect regions in the whole image. For the first exper-
iment, various defect patch classification approaches are evaluated in terms of accuracy
and Receiver operating characteristic (ROC) curve. For the second experiment, ground truth
bounding boxes are generated by first applying a Gaussian filter and then a connected-
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components algorithm on each pixel-wise ground truth to find connected components.
Ground truth bounding boxes are put on top of the connected components by finding the
maximum x, y and minimum x, y coordinates of each connected component. The areas
of bounded ground truth regions are then compared with the areas of the final predicted
bounding boxes results to obtain pixel-wise accuracy, mean Intersection Over Union (IOU),
sensitivity, specificity, and precision. For each dataset, the proposed approach is only
compared with the state-of-the-art deep learning-based approach for a fair performance
evaluation. The stochastic gradient descent (SGD) is used to optimize the patch classifiers
networks at a learning rate of 0.00001. The threshold parameter for the binarization of
Defect pixels and Non-Defect pixels used is 0.9 percentile of the Bayesian fused scores.

4.2. Experimental Results
4.2.1. Dataset I: GDXray Dataset

Defect patch classification: The patch size used to extract the patches is 120× 120. The
proposed patch classifier is trained on 1405 Defect patches and 5445 Non-Defect patches,
and is validated on 624 unseen Defect patches and 2312 unseen Non-Defect patches. The
proposed patch classifier has achieved an accuracy of 0.923 and an area under ROC curve
of 0.826, which is higher than the benchmark reference [23]. The benchmark reference has
used Decaf model for transfer learning and a patch size of 75× 75 instead. Figure 8 shows
the histograms and PDFs of the classification scores from the validation set.

Defect detection in the whole image: Tables 1 and 2 show the accuracy, mean IOU and
various scores of each test image. The results of all the five test images are shown in Figure 9.

Discussion: As seen from the results, the patch classifier could not differentiate some
defect patches from Non-Defect patches as the defects are too small and similar in some images.
A smaller patch size may have helped the patch classifier to achieve a better performance.

Figure 8. The histograms (top row) and PDFs (bottom row) for Non-Defect class (left column) and
Defect class (right column) of GDXray dataset [24].
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Figure 9. Five pairs of defect detection results of the proposed approach (GDXray dataset [24]).
Each pair of results consists of the ground truth bounding boxes (top) and detected bounding
boxes (bottom).

4.2.2. Dataset II: Type-I RSDDs Dataset

Defect patch classification: The patch size that is used to extract patches is 60× 60. The
proposed patch classifier is trained on 1098 Defect patches and 10523 Non-Defect patches,
and is validated on 420 unseen Defect patches and 4561 unseen Non-Defect patches. The
proposed patch classifier has reached an accuracy of 0.975 and an area under ROC curve of
0.896. Tables 1 and 2 show the comparison of the classification results. Figure 10 shows the
histograms and PDFs of the classification scores from the validation set.

Defect detection in the whole image: Tables 1 and 2 show the overall accuracy, mean
IOU and various scores of this dataset. The results of the sample test images are shown in
Figure 11.
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Discussion: As seen from the results, the proposed model can detect all ground truths
defect correctly. The proposed model also identified similar patterns as defects although
they are not ground truths and are considered false positives.

Figure 10. The histograms (top row) and PDFs (bottom row) for Non-Defect class (left column) and
Defect class (right column) of Type-I RSDDs data set [25].

Figure 11. Five pairs of defect detection results of the proposed approach (Type-I RSDDs data
set [25]). Each pair of results consists of the ground truth bounding boxes (left) and detected
bounding boxes (right).

4.2.3. Dataset III: NEU Steel Surface Defect Dataset

Defect patch classification: The patch size that is used for extraction is 48× 48. The
proposed patch classifier is trained on 5703 Defect patches and 8297 Non-Defect patches,
and is validated on 3555 unseen Defect patches and 2445 unseen Non-Defect patches. The
proposed patch classifier has achieved an accuracy of 0.881 and an area under ROC curve
of 0.891. Figure 12 presents the histograms and PDFs of the classification scores of the
validation set.

Defect detection in the whole image: Tables 1 and 2 show the overall accuracy, mean IOU
and various scores of this dataset. The results of sample test images are shown in Figure 13.
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Discussion: As seen from the results, some defects are too close together and Bayesian
fusion has fused separate defects together to form one bounding box that encompass the
separate defects instead of bounding each defect separately. A smaller patch size may help
the Bayesian fusion to separate the bounding boxes for defects that are close together.

Figure 12. The histograms (top row) and PDFs (bottom row) for Non-Defect class (left column) and
Defect class (right column) of NEU steel surface defect dataset [26].

Figure 13. Five pairs of defect detection results of the proposed approach (NEU steel surface defect
dataset [26]). Each pair of results consists of the ground truth bounding boxes (top) and detected
bounding boxes (bottom).

Table 1. The performance comparison (defect patch classifier) of various defect detection approaches
using all three datasets. In this table, - indicates that there is no result available in the reference work.

Metric Dataset I [24] Dataset II [25] Dataset III [26]

Method [23] Ours Ours [23] Ours
Accuracy 0.855 0.923 0.977 0.993 0.881

ROC - 0.826 0.910 - 0.891



AI 2021, 2 27

Table 2. The performance comparison (defect detection in whole image) of various defect detection approaches using all three datasets. In this table, - indicates that there is no result
available in the reference work.

Metric Dataset I [24] Dataset II [25] Dataset III [26]

Image 1 Image 2 Image 3 Image 4 Image 5
Method [23] Ours [23] Ours [23] Ours [23] Ours [23] Ours [25] [5] Ours Ours

Accuracy - 0.869 - 0.915 - 0.835 - 0.866 - 0.708 - - 0.928 0.741
Mean IOU - 0.766 - 0.528 - 0.539 - 0.519 - 0.421 - - 0.571 0.544
Sensitivity 0.760 0.850 0.960 0.709 0.990 0.955 0.890 0.499 0.800 0.991 0.854 0.774 0.963 0.799
Specificity 0.970 0.896 0.720 0.919 0.760 0.827 0.660 0.889 0.940 0.692 - - 0.928 0.723
Precision - - - - - - - - - - 0.911 0.846 0.922 -
Balanced
accuracy 0.865 0.873 0.840 0.814 0.875 0.891 0.775 0.699 0.870 0.842 - - 0.946 0.761

F1 score - - - - - - - - - - 0.882 0.808 0.942 -
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4.3. Evaluation on Parameter Setting

Two key parameters of the proposed approach are the patch size and the threshold
parameter θt (defined in (2)), which can affect the performance of the proposed approach.
In view of this, the following two experiments have been conducted to evaluate the
performance of the parameter setting of the proposed approach.

4.3.1. Patch Size of the Proposed Approach

First, the patch size can affect the performance of the patch classifier and the perfor-
mance of the defect detection. Figure 14 shows the histograms and PDFs of the classification
scores from the validation set of GDXray dataset [24] trained on patch size of 180. They are
different from the results of patch size 120 shown in Figure 8. An experiment is conducted
to evaluate the mean accuracy of defect detections on all five images of GDXray dataset [24]
using patch sizes 180 and 120, respectively. Figure 15 shows difference in the final detection
of defects in Image 2 of GDXray dataset [24]. A smaller patch size of 120 produces a
much better result (mean accuracy score 0.839) than using patch size 180 (mean accuracy
score 0.172).

Figure 14. Histograms (top) and PDFs (bottom) of the classification scores from the validation set of
GDXray dataset [24] trained with a patch size of 180.

Figure 15. The comparison of the proposed approach with different patch sizes 120 (top) and 180
(bottom) based on Image 2 of GDXray dataset [24].

4.3.2. Threshold Parameter θt of the Proposed Approach

The threshold parameter θt (defined in (2)) affects the binarization of Defect pixels
and Non-Defect pixels after performing fusion of overlapped classification scores. A higher
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θt gets lesser defect pixels but makes it more precise. A lower θt gets more defect pixels
but makes it less precise. Figure 16 shows results on Image 1 of GDXray dataset [24] by
adjusting the threshold parameter θt to 0.9 (top), 0.7 (middle), and 0.5 (bottom) percentile
of the Bayes fused scores, respectively.

Figure 16. The comparison of detected defects in Image 1 of GDXray dataset [24] by adjusting the
threshold parameter θt (defined in (2)) to be 0.9 (top row), 0.7 (middle row), and 0.5 (bottom row).

4.4. Evaluation on Computational Complexity

An experiment is conducted to evaluate the computational complexity (run-time)
performance of the proposed approach, particularly in terms of the additional computa-
tional complexity introduced by the proposed statistical fusion module on the conventional
deep learning-based framework. The proposed approach is implemented in a PC with
CPU i7-8700K, 32GB RAM, GTX 2070Ti, Tensorflow 1.9. Two test images with different
resolutions are used in this experiment, including 650× 4000 (GDXray dataset [24]) and
1000× 160 (Type-I RSDDs data set [25]. As seen from Table 3, the proposed approach
indeed introduces additional complexity and takes more time in inference.

Table 3. The run-time (seconds) performance of the proposed approach.

Test Image Resolution Patch Classification (Only) Proposed Approach

650× 4000 1.365 3.969
1000× 160 0.186 0.423

5. Conclusions

A defect detection in images approach has been proposed in this paper, by breaking a
large image that contains multiple separate defects into small overlapping patches to detect
the existence of defect in each patch using the convolutional neural network classifier, and
then re-combines the patches back to form the final defect decision using a statistical data
fusion approach. Compared with other detection or segmentation frameworks used in
this research area, the proposed approach requires less defect labelling efforts in the model
training, since it only needs patch-based labelling, not the region-based labelling (for defect
object detection) or pixel-based labelling (for defect region segmentation). The proposed
approach uses a fairly big box to cover small defects, it is less accurate compared with
other segmentation framework that can provide accurate pixel-level defect labels.

The limitations of the proposed approach are acknowledged as follows. First, the
proposed approach is more suitable to the defect datasets with noisy defect in images.
In this scenario, some defects are surrounded by noisy patterns, while some are hardly
visible in low contrast image. Second, the choice of the convolutional neural network
backbone used in the proposed approach is not well justified, since we provide a flexible
framework that can exploits the other types of recently developed convolutional neural
network backbone instead of the VGG-16 used in the current proposed approach. Third,
it is interesting to study how to handle conflicting data to achieve more reliable decision
fusion by combining decisions from individual patches [28,29].
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