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Abstract: In recent years, the use of deep learning in language models has gained much attention.
Some research projects claim that they can generate text that can be interpreted as human writ-
ing, enabling new possibilities in many application areas. Among the different areas related to
language processing, one of the most notable in applying this type of modeling is programming
languages. For years, the machine learning community has been researching this software engi-
neering area, pursuing goals like applying different approaches to auto-complete, generate, fix, or
evaluate code programmed by humans. Considering the increasing popularity of the deep learning-
enabled language models approach, we found a lack of empirical papers that compare different deep
learning architectures to create and use language models based on programming code. This paper
compares different neural network architectures like Average Stochastic Gradient Descent (ASGD)
Weight-Dropped LSTMs (AWD-LSTMs), AWD-Quasi-Recurrent Neural Networks (QRNNs), and
Transformer while using transfer learning and different forms of tokenization to see how they behave
in building language models using a Python dataset for code generation and filling mask tasks.
Considering the results, we discuss each approach’s different strengths and weaknesses and what
gaps we found to evaluate the language models or to apply them in a real programming context.

Keywords: deep learning; language model; source code; software engineering; natural language
processing

1. Introduction

We are digitally surrounded by computational Language Models (LMs) that guide
us while writing to reduce user effort, suggest different options for words/sentences to
enhance our style, or accurately fix our grammatical errors [1–3]. Many of the keys we
press while typing on a keyboard act as a part of the inputs to compose new datasets
for those models that shape how we communicate with others. Nevertheless, does this
happen in the same way when we write code? Succinctly, the answer is “yes”. According
to some recent surveys found in the literature [4,5], the Natural Language Processing (NLP)
subfield related to programming languages includes examples of LMs used in several tasks
and contexts. For example, the authors of [6–8] used different techniques such as graph-
based statistical LMs, probabilistic LMs, or Deep Learning (DL) LMs to suggest code to
programmers similarly to auto-complete features in integrated development environments
(IDEs). LMs were used to generate automated source code based on sample code inputs
or pseudo-code, and how this generated code performs was evaluated [9–11]. Another
exciting application of NLP to source code languages is the automatic translation between
different languages. The work reported in [12,13] explored different supervised and
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unsupervised approaches to migrate code between different programming languages to
improve interoperability or port codebases written in obsolete or deprecated languages
(such as COBOL or Python2). Another example found is the use of Bayesian networks,
attention mechanisms, and pointer networks [14–16] to fill in a given code portion with
missing code.

There is a more general understanding of natural languages’ different characteristics
in the broad NLP field. Since there exist many research fields related to human languages,
there is a richer background on existing language characteristics. For example, there is much
knowledge on aspects like the minimal representation units of a word in a specific language,
the most used words of a language, or if a word is a neologism or not. Programming
languages share some syntax similarities with spoken languages. However, they do not
have the same restrictions in the sense of common words or neologisms [17–19] or other
syntax restrictions and features such as punctuation, format, or style. Every programming
language has indeed reserved words and symbols to denote different actions, resources, or
syntax. However, there is an essential part of the source code that is only limited by the
programmer’s imagination, the existing conventions, or the guidelines for good practices.
As [18] claims,

[...] traditional language models limit the vocabulary to a fixed set of common
words. For code, this strong assumption has been shown to have a significant
negative effect on predictive performance [...]

In that paper, Karampatsis and Sutton [18] presented how segmenting words into
subword units can improve source code modeling. Similarly, other researchers [20–22]
dug into representing the source code vocabulary with a similar emphasis on modeling
words using sub-word units and envisioning their importance when using Neural Net-
works (NNs). Nevertheless, how does that word segmentation affect the accuracy or the
appropriateness of the code generated or auto-completed in some modern LMs using deep
learning approaches? That kind of question raises the main objective of this paper: to
discover what kinds of associations between different modern neural network architectures
and tokenization models produce the best results when creating LMs to generate and
auto-complete source code.

To pursue that goal, this research aims to conduct experiments combining different
Deep Neural Network (DNN) architectures with different tokenization and pre-trained
models over an existing Python dataset. Using that experimentation, we want to investigate
the combinations that improve code generation and auto-completion tasks (for example,
filling in the blanks) while checking the outcomes from those tasks using metrics like
accuracy and human assessment.

The rest of the paper is as follows: Section 2 presents the different approaches followed
during the research, the DNNs used, the software methods, and the data employed.
Section 3 describes the results achieved during the research according to different metrics
and tests, while Section 4 discusses these findings and the implications of the results as
appropriate. Finally, Section 5 presents some conclusions.

2. Materials and Methods

We trained a set of deep neural networks using different architectures, tokenization
techniques, and software libraries to develop this research work. In the following, we
introduce the different materials and methods employed for that purpose.

2.1. Deep Neural Networks and Tokenization Models Used

Regarding the DNN architectures employed, we chose to use the following ones: Aver-
age Stochastic Gradient Descent (ASGD) Weight-Dropped LSTM (AWD-LSTM) [23], Quasi-
Recurrent Neural Networks (QRNNs) [24], and Transformer [25]. These DNN architectures
have reportedly obtained some state-of-the-art results [23,26–38] recently in the NLP field
in several groundbreaking digital products (https://openai.com/blog/openai-api/, https:
//blog.google/products/search/search-language-understanding-bert/) and in some of
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the most known datasets like the Penn Tree Bank [39], WikiText-2 and WikiText-103 [40],
the One-Billion Word benchmark [41], or The Hutter Prize Wikipedia dataset (http://prize.
hutter1.net/).

The AWD-LSTM is a variation of the famous Long Short-Term Memory (LSTM)
architecture [42]. The LSTM is a type of Recurrent Neural Network (RNN) especially
capable of processing and predicting sequences. That ability with sequences is the reason
why LSTMs have been employed largely in LMs [21]. The AWD-LSTM includes several
optimizations compared to the regular LSTM. Two of the most important ones are the use of
Average Stochastic Gradient Descent (ASGD) and the weight dropout. The ASGD is used
as the NN’s optimizer to consider the previous weights (not only the current one) during
each training iteration. The weight dropout introduces the dropout technique [43] to avoid
overfitting, but with the characteristic of returning zero, not with a subset of activations
between layers, like in traditional dropout, but with a random subset of weights.

The QRNN is another type of RNN that includes alternate convolutional and pooling
layers in the architecture. This design makes the QRNN able to capture better long-term
sequences and train much faster since the convolutional layers allow the computation of
intermediate representations from the input in parallel. They can be up to 16 times faster at
training and test time than LSTMs while having better predictive accuracy than stacked
LSTMs of the same hidden size. We use a modified QRNN (AWD-QRNN) to include the
same ASGD and weight dropout modifications to improve its stability and optimize its
capabilities, as for the AWD-LSTM.

We utilize AWD-LSTM and AWD-QRNN to produce LMs capable of solving the task
of generating source code based on the input as in the literature [23,26–30,34,34–36].

Transformer is probably the most popular current DNN architecture in NLP due to
its performance and recent state-of-the-art results in many tasks. It is an encoder-decoder
architecture in which each layer uses attention mechanisms. This use of (self-)attention
mechanisms makes Transformer able to model the relationships between all words in a sen-
tence regardless of their respective position. That implies a significant improvement over
RNNs, enabling much more parallelization of data processing and unblocking the training
over more massive datasets. The excellent results of the Transformer architecture empow-
ered the NLP community to create new state-of-the-art transformer-based models [44] like
those used in the current research: GPT-2 [45], BERT [38], and RoBERTa [46].

We chose to use GPT-2 since it is a causal transformer (unidirectional) that can predict
the next token in a sequence. Therefore, it can generate source code based on the input,
allowing us to compare the results with the AWD-LSTM and AWD-QRNN experiments.
Regarding BERT and RoBERTa, we used them to study how a masked modeling approach
can auto-complete the source code. In that case, we did not use them for text generation, as
in the other experiments, since BERT and RoBERTa are not designed for text generation.
However, they can generate text (more diverse, but slightly worse in quality) [47].

Considering the tokenization techniques, for every AWD-LSTM and AWD-QRNN,
we chose the following types of tokens: word, unigram, char, and Byte-Pair Encoding
(BPE) [48]—albeit, some studies showed that BPE is suboptimal for pre-training [49]. For
the Transformer models, we used the default ones from the pre-defined models: the word
piece method [50] for BERT and BPE over raw bytes instead of Unicode characters for
GPT-2 and RoBERTa. The different techniques were selected because they produce different
token granularities that can enrich our experimentation: full words, sub-words of specific
sizes, character-sized tokens, or byte pairs. Furthermore, they enable us to compare the
tokenization between the different types of models and tasks to solve.

2.2. Experimentation Details

The dataset used for the experimentation is the Python dataset included in the “GitHub
CodeSearchNet Challenge dataset” [51]. It includes 2 million (comment, Python code)
pairs from open-source libraries. As observed during the dataset preparation for our
experiments, there are about 11 million Python code sentences. The reason for choosing

http://prize.hutter1.net/
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this dataset is that it has already been used in previous research related to NLP and source
code. The full dataset includes several languages: Go, Java, JavaScript, PHP, Python, and
Ruby. We chose to use only the Python part of the dataset because it enables us to compare
the existing literature, which uses the Python language more than other programming
languages. The software libraries and packages used primarily during the research were the
following: FastAI [52], Google SentencePiece [53], and Hugging Face’s Transformers [54].
The preprocessing applied to the dataset included removing most of the code comments
and auto-formatting the code according to the PEP-8 Python style guide using the autopep8
(https://pypi.org/project/autopep8/) package. Regarding the AWD-LSTM networks,
we used the FastAI-provided base models pre-trained using the Wikitext-103 dataset [40].
There are no default pre-trained models in FastAI’s AWD-QRNN version of those networks,
so we trained them from scratch. Regarding the Transformer architectures, we used three
standard pre-trained models as a basis: GPT-2, BERT, and RoBERTa. In each case, the exact
pre-trained model used were gpt2, bert-base-cased, and roberta-base. These pre-trained
models are available from Hugging Face’s model (https://huggingface.co/models).

As the reader could infer from the previous explanations about using pre-trained
versions, we followed a transfer learning approach similar to other researchers in existing
literature [35,36,55,56]. We employed the pre-trained models on English texts to later
fine-tune the models for the selected tasks using the GitHub CodeSearchNet dataset. The
deep neural network-related source code was coded using the FastAI library (Versions
1.0.61 and 2 dev 0.0.21). To apply the different tokenization techniques to the AWD-LSTMs
and QRNNs, we replaced the default Spacy tokenizer [57] with Google SentencePiece [53],
following a similar approach to [58]. In the development of the Transformer architectures
to see how they perform in filling in the blanks and generating texts, we used Hugging
Face’s Transformer library combined with FastAI v2 (following the FastAI’s example https:
//docs.fast.ai/tutorial.transformers), as included on the code repository that supports this
paper. To train the neural networks, we used some techniques that are worth mentioning
(all the details are in the code repository). To find the most appropriate learning rate to
use automatically, we used the function lr_find provided by FastAI following the proposal
of [59]. This function trains the DNN over the dataset for a few iterations while varying
the learning rates from very low to very high at the beginning of each mini-batch of data to
find which is the optimal one regarding the error (loss) metrics until the DNN diverges.
To pursue a faster convergence, we scheduled the learning rate as described in [60] using
the one cycle policy (fit_one_cycle) in FastAI. Considering the transfer learning technique
used, we trained the first “one cycle” on the top of the existing pre-trained model to later
unfreeze all the model layers and perform a more extended training (10–30 epochs) to
improve the results. Regarding other training details, in general, we used the default
parameters from FastAI, except for a fixed multiplier to control all the dropouts (drop_mult)
in the AWD-LSTMs and AWD-QRNNs set to 0.3 because of some heuristics discovered
during testing. Furthermore, we decided to train similar architectures using a fixed number
of epochs to make the models comparable. For the AWD-LSTM and AWD-QRNN, we
used 30 epochs for fine-tuning because we found during the experimentation that the
most remarkable improvement for every model produced occurs during that range of
iterations. Similarly, we fine-tuned the transformers for ten epochs since we did not find
a significant improvement after that. For more information about the training setup and
software details, please refer to the repository that supports this paper and the FastAI
documentation.

Finally, the hardware used to run the different software and neural network training
was a computer running Ubuntu Linux 18.04 LTS Bionic Beaver (64 bits). It has two Nvidia
Tesla V100 GPU x16 gigabytes of RAM (Nvidia CUDA Version 10.1), a CPU with 16 cores
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, 120 gigabytes of RAM, and 120 gigabytes for
the primary disk (HDD).

https://pypi.org/project/autopep8/
https://huggingface.co/models
https://docs.fast.ai/tutorial.transformers
https://docs.fast.ai/tutorial.transformers
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All the supporting materials and software details related to this paper are publicly
available in a GitHub repository [61]. The NN models produced are under the Zenodo
record [62].

3. Results

This section presents the results achieved after the full training of the selected DNN
architectures with the different tokenization models.

As outlined in the previous section, we trained the AWD-LSTM and AWD-QRNN
DNN architectures using different tokenization model—word, unigram, BPE, and char—
and Transformer using three different base models (GPT-2, BERT, and RoBERTa). We
trained every AWD-LSTM and AWD-QRNN using one epoch to fit the model’s head and
fine-tuned for 30 epochs. Meanwhile, the Transformer networks were trained equally for
one epoch to fit the head and fine-tune the models for ten epochs.

We followed a two way strategy to evaluate the NNs trained: using the NN training
metrics and human evaluation of the models’ output. The metrics used are some of the
most common in the literature: accuracy for the validation set and loss for the training and
validation sets. They help researchers understand how the NN acts over time, how the
model is fitted to the dataset, and the performance and error scores while using training
and validation datasets. In this case, the accuracy is the score concerning the LM’s ability
to predict the next word of filling in the missing ones accurately given a sequence of words
from the validation set. The loss metrics reports the error after applying the DNN to the
training or validation set, respectively. Every implementation detail related to the DNNs
and the metrics is available in the GitHub repository [61]. Apart from those metrics, we
assessed the models’ quality by applying them in the proposed tasks—generate text and
auto-complete—and observing how they performed.

3.1. Training Results

Table 1 displays the final metrics for the different NNs at the end of the training.
Similarly, Figures 1 and 2 show the evolution of each model’s accuracy during the training.
Figures 3–6 show the training_loss and validation_loss evolution along the training epochs.

Table 1. Results after full training of each NN architecture. AWD, Average Stochastic Gradient
Descent Weight-Dropped; BPE, Byte-Pair Encoding; QRNN, Quasi-Recurrent Neural Network.

DNN Architecture Epochs Accuracy Train Loss Validation Loss Pre-Trained?

AWD-LSTM word 31 0.494893 2.308937 2.341698 Yes
AWD-LSTM unigram 31 0.557226 1.639875 1.826841 Yes
AWD-LSTM BPE 31 0.580373 1.561393 1.703536 Yes
AWD-LSTM char 31 0.779633 0.757956 0.742808 Yes

AWD-QRNN word 31 0.515747 1.972508 2.144126 No
AWD-QRNN unigram 31 0.539951 1.790150 1.894901 No
AWD-QRNN BPE 31 0.538290 1.824709 1.896698 No
AWD-QRNN char 31 0.736358 0.944526 0.897850 No

GPT-2 11 0.743738 1.407818 1.268246 Yes
BERT 11 0.999238 0.014755 0.004155 Yes
RoBERTa 11 0.999468 0.010569 0.002920 Yes
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Figure 1. Evolution of the accuracy of neural networks devoted to source code generation during the
training epochs.

Figure 2. Evolution of the accuracy of neural networks devoted to filling in the blanks during the
training epochs.
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Figure 3. Evolution of the training_loss of DNNs devoted to generating source code during the
training epochs.

Figure 4. Evolution of the training_loss of neural networks devoted to filling in the blanks during the
training epochs.
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Figure 5. Evolution of the validation_loss of DNNs devoted to generating source code during the
training epochs.

Figure 6. Evolution of the validation_loss of neural networks devoted to filling in the blanks during
the training epochs.

On the one hand, according to the results displayed in Table 1 and Figure 1, for
neural networks intended for automated source code generation—AWD-LSTM, AWD-
QRNN, and Transformer GPT-2—the overall NN-tokenization model combination that
performed better in the case of accuracy metrics was the AWD-LSTM with char tokenization
(accuracy 0.779633). The second one was the GPT-2 transformer model—BPE over raw
bytes tokenization—(0.743738) and the third one the AWD-QRNN with char tokenization
(0.736358). Related to the AWD-LSTM and AWD-QRNN architectures’ combination with
other tokenization techniques, we obtained poor results on accuracy: between 0.494893 and
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0.580373. On the other hand, according to the results shown in Table 1 and Figure 2, both
models (BERT and RoBERTa) had excellent accuracy results in the Transformer models
intended for auto-completion, 0.999238 and 0.999468, respectively.

Regarding how the pre-training and transfer learning affected the results, the two
top results regarding the accuracy were the pre-trained models in the English language
(0.779633 and 0.743738), yet the third best result was from a non-pre-trained network
(0.736358). Comparing the similar networks, the average (mean) accuracy of the AWD-
LSTM pre-trained versions was 0.603031 (standard deviation (std) of 0.123144), while
the average accuracy of the AWD-QRNN non-pre-trained versions was 0.582587 (std of
0.103107). The only combination NN-tokenization model that worked worse when it was
pre-trained was the one with the word tokenization.

Regarding the observed losses, it is worth commenting that the AWD-LSTM char,
AWD-QRNN char, and the three transformer models (GPT-2, BERT, RoBERTa) could
be trained for more epochs or with a higher learning rate. The model may have been
underfitting since the training loss was higher than the validation loss (Table 1, Figures 3–6).

To put the accuracy achieved during the experimentation into context, we compare
the results with the existing literature. The papers [10,15,63] presented models trained to
generate Python code that were considered the state-of-the-art when they were published.
Our three best models trained to generate source code outperformed the approaches
based on the following architectures: vanilla LSTM (accuracy: 67.3%) [15], attention LSTM
(69.8%) [15], pointer mixture network (70.1%) [15], or probabilistic model (69.2%) [63].
Our models performed worse than the other approaches based on the Abstract Syntax
Tree (AST) instead of using the textual code: AST-LSTM (accuracy 90.3%) [10] or AST-
MLP (90.1%) [10]. Therefore, considering this, our results are good in terms of accuracy
compared to the existing peer-reviewed literature. As a side note, we did not find models
available publicly to compare with, neither in these, nor in other peer-reviewed papers.
For the models devoted to auto-complete code (BERT and RoBERTa), as of now, we did not
find peer-reviewed papers trying to solve this task using Transformer architectures.

3.2. Results of Using the Trained DNN Models

In the following, we introduce some examples of how the different neural networks
generated source code or auto-completed it. These examples are used to assess the model’s
output quality, avoiding relying only on the NN metrics. This validation using more
methods than the simple metrics is common in the AI and NLP fields. Many papers
employed human evaluation or specialized metrics to better grasp the model’s performance
and capture any other particular details or quality indicators for the related task proposed.
In this case, we show only those with the best accuracy results. To generate the source
code, we show the output from AWD-LSTM char, AWD-QRNN char, and GPT-2. For auto-
completion, we show the results from BERT and RoBERTa. For the source code generation,
every model faced the same challenges [61]. These are the results when any of them tried
to generate five different sentences with the input from pandas import:

AWD-LSTM char

"from pandas import defaults as _rp pandas ="
"from pandas import DataFrameEncoder if self"
"from pandas import OrderedDict else: passed"
"from pandas import sequence if type(seq1) i"
"from pandas import conditional_insertion as"

AWD-QRNN char

"from pandas import webbrowser self.login fr"
"from pandas import __http_args or [ ’Pipeli"
"from pandas import iterations is not None p"
"from pandas import service params to servic"
"from pandas import difference if not isinst"
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GPT-2

"from pandas import time, np\n
"
"from pandas import pandas from time.time.datetime import Date\n
with n"
"from pandas import gtk, os\n
from pandas_utils import pandas_utils\n
import pylint"
"from pandas import wcpy\n
import cpy_context as cpy_context\n
"
"from pandas import gkpy\n
"""\n
... pass\n
kwargs = cg"

To assess the generation, we did not focus on the semantics of the imports used or
whether they were part of the Pandas library or not, but on the language’s correctness.
In general, from a Python language perspective, the outputs from GPT-2 were better. The
outputs included line breaks, indentation, and fair use of multiple inputs in one sentence
(except in one of the outputs). The AWD-LSTM and AWD-QRNN failed to auto-generate
an import sentence appropriately, or at least they failed regarding the usual manner used
by regular users. As a final comment on this, the other models trained failed on similar
issues, and they did not get enough semantic context related to the Pandas library.

Similarly, concerning the source code auto-completion, both BERT and RoBERTa tried
to auto-fill the mask token in the sentence from pandas import [MASK]. These are the results:

BERT

[{’sequence’: ’[CLS] from pandas import [SEP] [SEP]’,
’score’: 0.9969683289527893,
’token’: 102,
’token_str’: ’[SEP]’},
{’sequence’: ’[CLS] from pandas import [CLS] [SEP]’,
’score’: 0.0010887219104915857,
’token’: 101,
’token_str’: ’[CLS]’},
{’sequence’: ’[CLS] from pandas import. [SEP]’,
’score’: 0.0004200416151434183,
’token’: 119,
’token_str’: ’.’},
{’sequence’: ’[CLS] from pandas import ; [SEP]’,
’score’: 0.00027348980074748397,
’token’: 132,
’token_str’: ’;’},
{’sequence’: ’[CLS] from pandas import def [SEP]’,
’score’: 8.858884393703192e-05,
’token’: 19353,
’token_str’: ’def’}]

RoBERTa

[{’sequence’: ’<s>from pandas import\n</s>’,
’score’: 0.6224209666252136,
’token’: 50118,
’token_str’: ’Ċ’},
{’sequence’: ’<s>from pandas import.</s>’,
’score’: 0.22222988307476044,
’token’: 4,
’token_str’: ’.’},
{’sequence’: ’<s>from pandas import </s>’,
’score’: 0.038354743272066116,
’token’: 1437,
’token_str’: ’Ġ’},
{’sequence’: ’<s>from pandas import\n\n</s>’,
’score’: 0.028566861525177956,
’token’: 50140,
’token_str’: ’ĊĊ’},
{’sequence’: ’<s>from pandas import.</s>’,
’score’: 0.021909384056925774,
’token’: 479,
’token_str’: ’Ġ.’}]

For auto-completion, we observed that almost no auto-completion was right. The
more accurate sentences from the Python language point of view were the ones in which
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the mask token was replaced by a white space or by a dot. Nevertheless, they were not
correct, but closer to being right compared to the other ones. One interesting thing is that
BERT assigns a very high score to a predicted mask, which is not correct, and shallow
scores to the other possible solutions (also incorrect). In the case of RoBERTa, it gives lower
scores to all the solutions, yet also fails on the correctness: the second sentence predicted
(score 0.222) can be closer to being right compared to the first one (score 0.622).

4. Discussion

Considering the results obtained, one could convincingly assert that the tokeniza-
tion model used profoundly affects the results when generating automated source code.
Although that may be accurate, we must discuss it carefully.

4.1. Discussing the Outcomes from the Resulting Models

First, our overall results are consistent with the existing literature [18–22]. Sub-word
tokenization works better in the case of modeling source code, as [18,19] stated. Every
result obtained is consistent in that sense. Even more, as [22] envisioned, char tokenization
probably should the best option to try by default when dealing with LMs and source
code. Furthermore, according to the results achieved, models such as GPT-2—using a
tokenization model based on BPE over raw bytes—can outperform LSTM/QRNN models
like those we tested to grasp better the internal aspects of a programming language. As
showcased during the results, even if GPT-2 was not the best model in terms of accuracy, it
gave better code outputs than the other ones selected for the comparison.

As future work, it would be great to check if the better textual output in the case of
GPT-2 is because of (a) it being a much bigger and better pre-trained model (163,037,184
parameters against 36,491 for AWD-LSTM and AWD-QRNN models), (b) it being related
to the dataset’s size or quality, (c) if this is related to both causes, or (d) if it this related to
other issues.

Continuing with the comments about the accuracy, one may note that the textual
outputs generated by the AWD-LSTM char, AWD-QRNN char, and GPT-2 could be polished
to be more accurate. The final training loss is higher than the validation loss for the three
selected DNN architectures, which can be a sign of underfitting. We found the same issue
(train_loss « valid_loss) for the BERT- and RoBERTa-based models. While the purpose of this
paper is not to produce state-of-the-art results per se, we continued the training for over
five more epochs to verify it. The improvement obtained from extending the training for
the best approaches was residual in general, so we decided to report the results for 1 + 30
epochs for the AWD-LSTMs and AWD-QRNNs and 1 + 10 epochs for Transformer.

4.2. Examining the Effect of Pre-Training and Transfer Learning

Regarding pre-training and transfer learning, every pre-trained model (on English-
based datasets) obtained better accuracy than its non-pre-trained counterpart, except for
the word tokenization models. This seems to be strongly related to the statements we
introduced at the beginning of this paper, citing [17,18] about the source code not having
the same restrictions in the sense of common words or neologisms. In this sense, the
conclusion comes into our mind rapidly: if we consider source code words in “word”
units, they probably will not fit in the fixed set of words used in a human language like
English. Therefore, the LM’s knowledge acquired during the pre-training is not entirely
valid when we get out of that fixed set of words that compose a language. Most words in
the programming language are neologisms for the LMs pre-trained in English, and thus,
it needs to incorporate them and their relationships into the learned knowledge. For the
sub-word units, the LM can be less sensitive to the neologisms. Potentially, it could be more
robust the more divided a word is since the set of bytes or chars is more straightforward
than the chunks present in richer constructions or information units.

Going deeper into this research, concerning the pre-training effect over the LMs’
modeling source code, it could be worth researching the relationship between the pre-
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training in different human-spoken languages and the LMs’ ability to work with existing
source code-specific programming languages.

4.3. Reviewing the Textual Assessment of the Resulting LMs

Regarding the tests done generating source code or filling in the blanks using the
trained LMs, we think that, in general, the textual results obtained are not so good, yet
they are informative of how LMs are working and how they can be improved. One of
the things that can explain these results is the dataset used. In this case, we used a public
dataset that other researchers can use to make results and experiments comparable and
replicable. In the literature, we did not find a standard dataset for these tasks against
which we can compare easily. Other papers [10,15,63] used custom datasets, but we found
a lack in the literature of well-recognized code datasets to use. Comparing with other
recent papers in the NLP field used as the basis for this research [37,38,45,46], the dataset
may be relatively small to train a big LM to accomplish appropriately challenging tasks
like generating source code or auto-completing it. Future work may test these or new
approaches in bigger datasets to train big LMs focused on modeling the Python language
and checking whether the results are better. Recent examples of LMs, such as GPT-3 [37],
claim to produce accurate textual outputs even in contexts in which they were not trained.
Part of the explanation given for that ability is the use of gargantuan datasets combined
with Transformer and other attention-based architectures. Therefore, those approaches can
also be relevant to other contexts like ours. Another line for future research can be using
datasets focused on specific libraries or Python aspects and verifying if these approaches
specialize positively for those contexts the DNN models used in this paper.

Related to evaluating the code generated or filled, we observed in the literature dif-
ferent approaches [13,64]. In the context of LMs’ modeling source code, many papers
and software libraries devoted to translating between programming languages typically
evaluate text generation using methods and metrics like BLEU [65] or variants like Sacre-
BLEU [66]. Other papers like [10] rely on the accuracy to assess an LM’s performance based
on deep learning. Some models can even solve different tasks that are part of existing
benchmarks [67] or are evaluated, checking their perplexity (similarly to those that evaluate
the model using the accuracy). The current tendency in large models is to evaluate them
using human intervention to evaluate the output’s quality [37,45]. We assessed the models
using accuracy during our experiments and evaluated the models’ textual outputs based on
our prior human knowledge. It would be interesting for the future to plan new evaluation
processes involving larger cohorts of source code experts to evaluate the models such
as [37,45] did. One of the potential new assessments can be usability tests conducted with
programmers. They can compare the code they would write against the code proposed by
any of the DNNs presented here and the result from other common code auto-completion
tools included in IDEs. As we outlined in the Results Section, relying only on metrics like
accuracy should not be enough. As in our case, accuracy and the other metrics can be a
good indicator of the model’s performance, yet we need to verify the LMs’ behavior and
quality using complementary methods like specialized metrics or human evaluation. For
tasks like auto-completion or source code generation, there are no existing specialized met-
rics (like BLEU in translation, for example), so one of the future research lines is improving
the evaluation of LMs for source code. Based on some existing ideas in broad NLP, there
are many opportunities to explore in that sense; from new test suites for language models
used in source code contexts [13] to behavioral testing [68] or human-centric evaluation of
the models [64] with particular emphasis on reproducible and unbiased assessments or
combinations of automatic testing and human-centric assessments.

5. Conclusions

This paper compares how different approaches to tokenization models, deep neural
network architectures, pre-trained models, and transfer learning affect the results from
language models used to generate source code or auto-complete software pieces. We
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studied different DNN architectures like AWD-LSTM, AWD-QRNN, and Transformer to
seek which kind works better with different tokenization models (word, unigram, BPE, and
char). Furthermore, we compared the pre-training effect on the results given by LMs after
training them and fine-tuning them via transfer learning to work with other languages
(English language to Python programming language). As a result of this work, we find
that in small LMs (like our AWD-LSTM and AWD-QRNN models), the tokenization using
char-sized chunks works better than using any other tokenization models. In larger models
like Transformer GPT-2, the accuracy was slightly worse than the other architectures.
However, GPT-2 gave better results on the source code generation tests (even using another
tokenization approach like BPE over raw bytes). For source code auto-completion, we
tested some Transformer models like BERT and RoBERTa. While their accuracy was above
any other models, they did not perform very well when performing the tasks proposed
in our tests. In general, we find that pre-trained models work better, even if they are not
trained initially for a programming language like Python (our models were pre-trained
using the English language). Finally, related to evaluating tasks like automating source
code generation and source code auto-completion, we raise concerns about the literature
gaps and propose some research lines to work on in the future.
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