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Simple Summary: This paper uses a fuzzy logic ruleset to automatically label the traversability of
the world as sensed by a LiDAR in order to learn a Deep Neural Network (DNN) model of drivable
routes from radar alone.

Abstract: This is motivated by a requirement for robust, autonomy-enabling scene understanding
in unknown environments. In the method proposed in this paper, discriminative machine-learning
approaches are applied to infer traversability and predict routes from Frequency-Modulated
Contunuous-Wave (FMCV) radar frames. Firstly, using geometric features extracted from LiDAR
point clouds as inputs to a fuzzy-logic rule set, traversability pseudo-labels are assigned to radar
frames from which weak supervision is applied to learn traversability from radar. Secondly,
routes through the scanned environment can be predicted after they are learned from the odometry
traces arising from traversals demonstrated by the autonomous vehicle (AV). In conjunction,
therefore, a model pretrained for traversability prediction is used to enhance the performance
of the route proposal architecture. Experiments are conducted on the most extensive radar-focused
urban autonomy dataset available to the community. Our key finding is that joint learning of
traversability and demonstrated routes lends itself best to a model which understands where
the vehicle should feasibly drive. We show that the traversability characteristics can be recovered
satisfactorily, so that this recovered representation can be used in optimal path planning, and that
an end-to-end formulation including both traversability feature extraction and routes learned by
expert demonstration recovers smooth, drivable paths that are comprehensive in their coverage of the
underlying road network. We conclude that the proposed system will find use in enabling mapless
vehicle autonomy in extreme environments.

Keywords: radar; LiDAR; deep learning; traversability; autonomous vehicles; route prediction;
segmentation; mobile robotics

1. Introduction

As we move towards higher levels of vehicle autonomy, the need for sensors robust to a diverse
range of environmental conditions has driven increased interest in radar. To achieve “mapless”
autonomy—to reduce the dependency of autonomous vehicles on high resolution maps—it is
necessary for vehicles to have an understanding of traversability to facilitate robust path planning in
novel environments.

Both LiDARs and cameras operate within a narrow frequency band in the electromagnetic
spectrum (905 nm to 1550 nm for LiDAR sensors and 400 nm to 700 nm for cameras). Consequently,
the performance of both sensors is limited by the poor material penetration and solar interference
characteristics of this frequency range, leading to failure when used in bright conditions or in the
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presence of rain or snow. Frequency-Modulated Continuous-Wave (FMCW) radar operates in the
range of 2 mm to 12.5 mm [1], allowing for increased material penetration and negligible solar
interference. This allows for negligible attenuation in the presence of rain or snow [2]. However,
millimatre-wave (MMW) radiation suffers from increased beam divergence and reflection—making
radar data notoriously difficult to work with. Furthermore, a deterministic mapping from two
dimensional radar data to three dimensional geometry does not exist. As such, deterministic models
of traversability are difficult to formulate from radar data alone.

The core problems motivating this work are:

1. The requirement for robust exteroceptive sensing which enables autonomy of mobile platforms in
previously unvisited environments, and

2. The difficulty of labelling in the radar domain, even by human experts.

In this paper, we develop several Neural Networt (NN) models and self-supervised learning
frameworks to model this problem. Figure 1 illustrates the learned radar model proposed in this paper.

1 
 

 
Figure 1. Overview of our system, as described in Sections 3 and 4. Data used for training the various
models are shown top, with red lines indicating preparation of the labels. Various encoder-decoder
paths bottom represent the various models proposed in this work, where ultimately in Section 4 we
learn both loss objectives illustrated.

In Section 3 we learn the subtle features in radar that govern traversability (illustrated output of D1
in Figure 1). The proposed method capitalises on radar for robust traversability estimation while avoiding
infeasible manual labelling of radar scans by using LiDAR for weak supervision. With this approach,
we present a network that can predict continuous traversability maps over a range of 100 m using
radar alone We demonstrate the use of traversability maps for path proposals in map-less environments
through the computation of maximally traversable routes with the A* graph search algorithm.

In Section 4 path proposal directly from radar frames is learned using an optimised radar odometry
ego-motion estimation as ground truth (illustrated output of D2 in Figure 1). Again, we learn this model
via weak supervision using recorded ego-motion and applied to route prediction, without the need for
arduous manual labelling. We force the feature extractor to learn traversable routes by incorporating
the demonstrated ego-motion in a multi-task decoding architecture alongside the traversability maps
of Section 3.

The principle contributions of this work are:
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1. A rules-based system for encoding LiDAR measurements as traversable for an autonomous
vehicle (AV),

2. An automatic labelling procedure for the radar domain,
3. Several learned models which effectively model traversability directly from radar, and
4. A joint model which is trained considering traversabile routes which have also been demonstrated

by the survey platform.

The rest of this paper is organised as follows. Section 2 places the contribution in the literature.
Section 3 describes a self-supervised labelling technique and Neural Network (NN) architecture for
learning traversability of the surveyed environment from radar. Section 4 describes a self-supervised
labelling technique and NN architecture for learning from radar routes which are demonstrated by
the survey vehicle and are also sensed as traversable. Section 5 details our experimental philosophy
which is used in Section 6 to analyse and discuss the efficacy of the various proposed models. Section 7
summarises the contribution and Section 8 suggests further avenues for investigation.

2. Related Work

We discuss in this section related literature in the fields of radar signal processing, traversability
analysis, and route prediction.

Consider, however, as a broad sweep of the available prior work, that state-of-the-art systems
using hundreds of hours of driving data to train models which can understand where a vehicle must
drive are well developed in the camera domain, such as for [3], and more recently in [4]. The most
relevant radar system available currently is that of [5], which is shown only to segment grassy areas
from gravel areas—with traversability being dictated by the designers rather than understood by the
algorithm through geometry as in this work.

2.1. Navigation and Scene Understanding from Radar

Frequency-Modulated Continuous-Wave (FMCW) radar is receiving increased attention for
exploitation in autonomous applications, including for problems related to SLAM [6–9] as well
as scene understanding tasks such as object detection [10], and segmentation [11]. This increasing
popularity is evident in several urban autonomy datasets with a radar focus [12,13].

Cross-modal systems [14–16] incorporating inertial and satellite measurements, among others,
are also being explored. In this work, however, we focus on endowing radar itself with
autonomy-enabling scene understanding capabilities.

Most similar to our work is the inverse sensor model presented in [17], in which style transfer
networks are used to model—along with a measure of uncertainty—the occupancy of a grid world as
sensed by the radar by mapping radar returns to the statistics of the LiDAR measurement (namely
mean and variance in height) collected at the same time. While the representation learned in [17] could
also, as in our work, be used downstream for planning where to drive, our system is different from [17]
in that we map radar returns to several other geometric features which are intuitively related to the
drivability of the environment (surfaces, obstacles, etc) around the autonomous vehicle (AV) and in
the further inclusion of a route prediction pipeline direclty in the network.

2.2. Traversability Analysis

There are several recent applications of traversability analysis with cameras [18], 3D LiDAR
scanners [19,20], and RGB-D sensors [21].

In grid-based traversability analysis, the surroundings are discretised into cells and the traversability
of each cell is evaluated through a set of geometric parameters that model the ground [22–24].
Such representations are popular due to their suitability to graph-based route planning algorithms,
but use a binary classification and so fail to provide the more detailed and informative representation
of continuous scores.
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Appearance-based traversability analysis methods based on vision sensors use material classification
techniques to incorporate predicted material properties in traversability analysis [25]. Other visual
appearance-based work learns traversability using proprioceptive sensor modalities (sensors that
acquire information internal to the system) for labelling [26,27]. While appearance-based approaches
provide richer information of material properties compared to geometric approaches, their performance
is heavily dependent upon lighting conditions and they are more susceptible to erroneous traversability
results and false positives [28].

Several investigations improved the reliability of appearance features by combining them with
geometric features in hybrid schemes via a data fusion framework [29–31]. The requirement of multiple
sensor modalities at run time increases the cost of hybrid systems and requires an additional data
fusion step.

2.3. Route Prediction

There is extensive literature on route proposal using graph search algorithms on grid representations
of the environment derived from exteroceptive sensors, including the likes of Dijkstra [32] and A* [33].

Other popular approaches for real time applications, notably Potential field methods [34] and
Rapidly exploring random trees [35] do not require mapping of the environment but still require an
exteroceptive sensor with depth information.

More recent literature includes path proposal derived from monocular vision sensors, either by
image processing techniques [36–38]—which often perform poorly in suboptimal conditions—or,
more recently, by semantic segmentation using deep learning [3].

In comparison, path proposal based on radar is in its infancy, despite its advantages over both
LiDAR and vision. Early work in this area includes [5], where an approach is presented for learning
permissible paths in radar using audio data for weak supervision.

3. Learned Traversability From Radar

This section is concerned with the prediction of traversability maps using a learned radar
appearance-based methodology derived from geometric features extracted from a supervisory LiDAR
signal. As the core idea for representing traversability is presented in Section 3.2, we keep the discussion
in Section 3.1 free of notation. In essence, this section describes the red training data preparation paths
illustrated in Figure 1.

3.1. Training Data Generation

Here we describe how the data stream from a pair of LiDAR sensors is collected and pre-processed
as a “traversability volume” (Dense volume in Figure 1) before conversion into 2D traversability maps
using the geometric interpretation of traversability which will follow in Section 3.2. In this way,
data labelling is automated, allowing for the production of training data at large scale. Before describing
this self-supervised labelling procedure, however, we first briefly list in Sections 3.1.1–3.1.5 some
considerations that must be made in preprocessing the point clouds measured by the pair of LiDARs
in order to yield a high quality supervisory signal for the radar model which will be learned
in Section 3.3. Sections 3.1.1–3.1.3 are the first accumulation steps and in particular are methods
which are implemented with UNIX timestamps and odometry (c.f. Section 5) alone (albeit with a
view to better point cloud construction). Sections 3.1.4 and 3.1.5, in contrast, operate directly on the
LiDAR returns which have been accumulated around the position of the test vehicle through the steps
described in Sections 3.1.1–3.1.3.

3.1.1. Pose-Chain Accumulation of a Dense Point Cloud

The LiDAR scanning behaviour results in sparse point clouds. Furthermore, the Frequency-
Modulated Continuous-Wave (FMCW) radar range far exceeds the feasible range of LiDAR. To address
these issues, a dense point cloud is accumulated along a pose-chain constructed with the ego-motion
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of the test vehicle. Figure 2 illustrates the benefits of a spatial accumulation (in metric space, around the
instantaneous pose of the vehicle) in comparison to a single LiDAR scan—providing a richer and
denser representation of the environment, as well as covering a larger area.

(a) (b)
Figure 2. Comparison of the effective range of LiDAR accumulation in a (b) spatial region as described
in Section 3.1.1, compared to a single LiDAR scan (a). In (b), data are not just accumulated in a
temporal window around the current radar capture time. Rather, the initial set of LiDAR scans (before
downsampling and pruning, etc.) which are fed into the automatic labelling method of Section 3.2 are
taken at every pose within a certain range of the vehicle (centre of the scan) in an effort to populate
the entire radar sensing horizon with sparse LiDAR measurements. We use multiple traversals of the
environment to generalise the learning procedure to the lifetime of operation of the survey vehicle
and maximise the capture overlap of LiDAR and radar. Some procedures for cleaning up of this dense
accumulated point cloud are required and are dealt with in Sections 3.1.2–3.1.5. In this example, a (b)
spatial accumulation fills out the radar scan more satisfactorily than a (a) temporal accumulation.

3.1.2. Spatial Downsampling of the Accumulated Dense Point Cloud

As LiDARs typically operate with a rapid scan rate, this step is taken to offset the computational
cost of processing large numbers of point clouds which are accumulated as per Section 3.1.1 above
during the (relatively) low scan time of the Frequency-Modulated Continuous-Wave (FMCW) radar.
Oversampling also introduces more erroneous data into the accumulated dense point cloud, and leads
to greater numbers of duplicated dynamic obstacles. Here, spatial downsampling is applied in order
to remove all LiDAR scans occurring within a thresholded distance of the previous can. A value of
10 m is found to perform well, with larger values leading to unsatisfactorily sparse dense accumulated
point clouds, and smaller values being too computationally expensive to process in the steps which are
described below. Figure 3 illustrates the benefits of downsampling the LiDAR timestamps in this way.

3.1.3. Selectively Pruning the Dense Accumulated Point Cloud

Performing multiple traversals of the same area can lead to problems. Firstly, when the ego-motion
returns to the same stretch of road, the resulting point clouds show poor alignment with those from
the initial traversal due to drift. Secondly, different obstacles are likely present at different times of
traversal, leading to the superposition of false phantom obstacles with the obstacles present at the time
of capture of the radar scan. To remedy this problem, “pruned” scans are selectively removed from the
accumulated point cloud. Pruned scans are defined as those for which there is at least one other scan
within a threshold distance away. The threshold is chosen to be less than the linear motion threshold
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of Section 3.1.2 above to ensure any poses satisfying the condition are from different traversals of the
area. For every pair of scans at distances no more than this thresholded distance in an accumulated
dense point cloud (calculated at low cost using k-d trees), the scan collected at a time closest to the
query scan time is selected as the surviving scan. With this method, it is ensured that no area of the
environment is sampled more than once and the point clouds sampled closest in time to the radar scan
are preserved, helping to minimise the impact of any environmental time variance. For this work a
value of 7.5 m was found to give good performance. Figure 4 shows the benefits of pruning the dense
accumulated point cloud in this way.

(a) (b)
Figure 3. A comparison of the accumulated point clouds (a) before and (b) after spatial downsampling
as described in Section 3.1.2. Basically, a new LiDAR scan is added to the accumulated dense point
cloud every time the vehicle moves 10 m from its last location. As a result, a sparser and less erroneous
point cloud is produced. This step is primarily aimed at mitigating extreme density of points for
calculating traversability (c.f. Section 3.2) while still maintaining the extended LiDAR sensing horizon
(out to the radar horizon) as per Section 3.1.1.

(a) (b)
Figure 4. Comparison of an accumulated point cloud (a) before and (b) after the removal of repeated
traversals as described in Section 3.1.3. The intuition behind this step is that natural environments,
particularly those in an urban setting, are time variant. Different obstacles are likely present at different
times of traversal, leading to the superposition of false phantom obstacles with the obstacles present
at the time of capture of the radar scan. Both of the above effects mean any computed traversability
labels (c.f. Section 3.2) will be a poor representation of the environment as seen by the radar scan
and thus provide poor supervision. In this example, the vertical road segment becomes sparser and
better aligned.
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3.1.4. Segmentation-Based ICP for Registering Multiple Traversals

Due to the compression of 3D information into a 2D plane by the nature of the radar scan
formation process, no roll or pitch information accompanies the odometry transformations which are
taken from the dataset to be detailed in Section 5.2) and which are used as in Sections 3.1.1–3.1.3 above.
As a result, the accumulated point clouds exhibit a degree of misalignment that would corrupt any
computation of traversability (c.f. Section 3.2 below).

An iterative closest point (ICP) algorithm is therefore used to better align the point clouds before
further processing, providing a local least squares optimal alignment. The impact of standard iterative
closest point (ICP) registration is presented in Figure 5, where alignment of the road is much improved.
However, standard (ICP) of this kind implicitly assumes that point clouds which are neighbours in
time are also neighbours in space. This assumption breaks down when using traversals collected upon
revisiting the area, as is true in our case.

(a) (b)
Figure 5. A cross-section of road in a LiDAR point cloud (a) before and (b) after standard iterative
closest point (ICP) refinement as described in Section 3.1.4. A GPU-accelerated iterative closest point
(ICP) algorithm is used in this work, which is modified to include a maximum correspondence distance
threshold. Only the Neural Network (NN) points with relative displacements less than this threshold
proceed to the singular value decomposition (SVD) step used to evaluate the least squares optimal
rigid body transformation. The resulting registration is more robust to partial overlap of point clouds.
Rather than applying iterative closest point (ICP) to point clouds of full density, random sampling
of a subset of 15,000 points is applied to both the source and destination point clouds to reduce the
computational load. Figure 6 describes an improved segmentation-based iterative closest point (ICP)
which completes our implementation of this step of the accumulation of the dense point cloud in the
radar scanning horizon.

A more robust segmentation-based algorithm is therefore used. Figure 6 illustrates the benefits of
this approach. Here, the method can be briefly described as segmenting point clouds into associated
traversals (e.g., first visit, second visit, etc) and registering each segment to an “origin” segment which
is taken in this work without loss of generality to be the first visit.

3.1.5. Removal Of Duplicate Dynamic Obstacles

Dynamic obstacles undergo transformations between consecutive LiDAR scans, so appear at
different poses for each point cloud in the dense accumulated point cloud. Consequently, duplicate
dynamic obstacles appear at regular intervals in the point clouds. The voxel-based approach from [39]
is applied to remove duplicate dynamic obstacles. Their algorithm segments dynamic and static
obstacles in LiDAR point clouds using the following steps:

1. Ground plane fitting and Ground vs. obstacle segmentation using three point random sample
consensus (RANSAC). An outlier ratio is determined experimentally as 0.46—taking an average
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over 10 randomly selected point clouds and a conservative number of 50 trials is used to ensure
convergence.

2. Voxelisation of obstacle point clouds. Each point cloud in the obstacle point cloud set is voxelised
with a fine voxel side length of 0.28 m.

3. Static vs. Dynamic segmentation. An occupancy grid representing the number of points in each
voxel is constructed. The contents of all static voxels are combined with those points in the ground
plane to yield a point cloud containing only static obstacles.

This voxel-based approach provides another advantage, acting as a spatio-temporal filter that
removes any erroneous data points that are not wide-baseline visible.

Figure 7 illustrates the benefits of this step.

(a) (b)
Figure 6. A comparison of the output of the traversability labelling pipeline with the (a) naïve
registration approach and the (b) segmentation based approach as described in Section 3.1.4.
This approach handles the registration of each traversal separately by identifying where each registered
segment joins all other segments via a spatial nearest neighbour search. Segment boundaries are
imposed anywhere the displacement between timestamp-consecutive poses is greater than a threshold
value. A value of 15 m is found to work well for this threshold. In this example, the segmentation-based
approach shows superior performance at junctions.

3.2. Traversability Labelling

In an intuitive and qualitative sense, the definition of traversability is clear: traversable terrain
may be traversed by a mobile robot but untraversable terrain may not. In this sense, a segmentation
task for terrain traversability using a binary score is a well defined problem. Nevertheless, a crisp
distinction between what is traversable and what is not is less representative for what the autonomous
vehicle (AV) will experience in a real-world deployment—plenty of surfaces are driveable, but not
ideally so—and a continuous traversability score can lead to more robust and effective path-planning
policies, enabling more flexible operation. In this light, previous works [5,17] have used generative
models to recover categorical representations of traversability from radar scans; this work, in contrast,
aims to relax this assumption by directly regressing a continuous-valued traversability score. However,
the extension to continuous traversability scores is less clear.
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(a) (b)

(c) (d)
Figure 7. A comparison of accumulated LiDAR point clouds (a,c) before (left) and (b,d) after (right)
removal of duplicate dynamic obstacles from a dense point cloud accumulated over examples take
from (a,c) straight and (b,d) curved road sections. In both cases duplicate cars are removed from the
road and there is a reduction in erroneous points.

In this section, we process the dense accumulated point cloud which is constructed in Section 3.1
above with several geometric proxies (c.f. Section 3.2.1) for traversability. These are combined in a
fuzzy-logic ruleset (c.f. Section 3.2.2) to produce a single scalar “traversability” quantity. Applying this
ruleset over the radar sensing horizon produces labels (c.f. Section 3.2.3) which are thereafter used
in Section 3.3 to train a model which estimates traversability from radar alone.

3.2.1. Geometric Traversability Quantities

Considering a localised region (e.g., a small-to-medium 3D region in space) in the point cloud
which is densely accumulated as per Section 3.1, three metrics (Local traversability properties
in Figure 1) of geometry well proven in the literature [22,23,40] as appropriate to representing
traversability numerically, namely:

1. gradient,
2. roughness, and
3. maximum height variation.

The local gradient, or more precisely the local maximum directional derivative, captures low
frequency oscillations in the terrain, while higher frequencies are represented by the roughness
measure. The maximum height range characterises any discontinuities in the terrain which are
especially indicative of obstacles.

Before defining these quantities, consider that the definition of a LiDAR bin shall be used
interchangeably with that for radar: a discretised cell on the x-y plane containing all returns from a
projected volume of space.
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Local Gradient

To obtain the gradient of a bin β, a plane is fitted to its component LiDAR points via least squares
regression and its maximum directional derivative calculated. The linear system X n = 1 is formed for
a offset normalised plane ax + by + cz = 1 where each row Xi is such that Xi ≡ [xi, yi, zi] ∀i ∈ {0..|β|}
and n ≡ [a, b, c]T . Since the number of points |β| in a bin is typically greater than the number of
degrees of freedom of rotation, this is an over-determined system which may be solved using the left
psuedo-inverse

n = [XTX]−1XT1 (1)

After solving for the normal, the maximum directional derivative may be found. The directional
derivative of z is defined as ∇z(x, y) · d̂, where d̂ is a unit vector in a specified direction. By definition,
the direction which maximises the directional derivative is that of the gradient vector [− a

c ,− b
c ]

T ,
leading to the equation

dz
dl

=
a2 + b2

c
√

a2 + b2
(2)

where dl represents an infinitesimally small displacement in the x-y plane.

Local Roughness

Knowledge of the ground plane offset and normal is sufficient to compute the roughness of a bin,
defined as the variance of the distance of points to the ground plane. Assigning Si as the distance of
point Xi to a plane with normal n and offset d, distances may be evaluated using the equation

Si =
|n · Xi − d|√

n · n
(3)

For efficient computation, the numerator of Equation (3) is recast as |nTX− d| where di = d ∀i ∈
{0..|β|} resulting in distance vector S ∈ Rn.

Local Maximum Height Variation

The local maximum height variation

max zi −min zi ∀i ∈ {0..|β|} (4)

is evaluated as the range of point positions in the vertical axis.

3.2.2. Fuzzy Logic Data Fusion

With three metrics for terrain geometry as defined in Section 3.2.1 above, we now fuse them into a
single measure of traversability (Fuzzy System in Figure 1). Performing this step in a mathematically
rigorous manner is not straightforward, and relies on assumptions about both the importance of
each metric and its scale. Fuzzy logic provides a suitable framework for handling such problems,
allowing a well defined and clear translation of system knowledge to input-output behaviour, and has
seen use in many branches of engineering, from control theory [41] to medical decision making [42],
and multi-sensor data fusion [43].

Here we describe the fuzzy system we propose to encode the geometric quantities related to
traversability as discussed above.

Fuzzy Sets

All gradients up to 0.2 are defined as flat and all gradients above 0.4 are defined as steep,
corresponding to angles of 11◦ and 22◦ respectively. All bin roughness measures up to 0.01 m are
considered smooth and all those above 0.05 m as rought. All height ranges up to 0.02 m as small and
above 0.1 m as large. Delta function membership functions are assigned to the traversability output
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sets to simplify the later step of defuzzification. The resulting membership functions are represented
graphically in Figure 8 (top left and right, bottom left).

Figure 8. Membership functions for fuzzy sets that describe gradient, roughness, height range and
traversability.

Membership Value

A rule base is required to map each combination of input set instances to output set membership
values. The maximum number of rules scales poorly with the number of metrics as well as with
the number of sets per metric. Therefore, we propose and use the membership value in the bottom
right of Figure 8. The approach that any undesirable set instance results in Partial Traversability,
and any two results in No Traversability is taken. The rule IF Steep AND Rough AND Small THEN
Slight Traversability is the only exception, where a small height variation indicates a lack of
obstacles despite being steep and rough, suggesting some degree of traversability. In doing so, it is
imposed that height range has the most influence on traversability due to the implication of obstacles.

3.2.3. Traversability Labels

Here, we finish the description of the self-supervised automatic labelling procedure by describing
specific parameterisation used in calculating the geometric quantities as per Section 3.2.1 on the dense
point cloud accumulated as per Section 3.1 above.

Voxelisation

For a reliable measure of the maximum directional derivative using least squares, it is necessary to
use larger bin sizes to smooth out the effects of sensor noise and registration inaccuracies. In contrast,
for good obstacle localisation by the height range metric smaller voxels are desired, so voxelisation
with different voxel dimensions is performed for each metric. Larger voxels of side length 2.2 m
are used to compute the gradient metric and roughness and smaller voxels of side length 1.1 m are
used to compute the height range metrics. The outputs of this step are three matrices representing
gradients, roughnesses and height ranges, of (square) dimensions 135, 135, and 270 respectively. It is
therefore necessary to upscale the gradient and roughness arrays by a factor of 2 for consistency with
the resolution of the height range array.

Data Fusion

With representations of all three metrics, fuzzy logic data fusion (c.f. Section 3.2.2) can be
performed on each bin in turn to produce traversability maps of dimension 270 × 270 (see Examples
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below). The scale of the traversability maps do not correspond to that of radar, due to a difference in
the distance represented by each bin, analogous to use of a different unit of distance. The multiplicative
factor required to scale the traversability maps to correspond to radar is determined using the bin sizes
of radar and LiDAR. The Cartesian Frequency-Modulated Continuous-Wave (FMCW) radar scans are
configured with a bin size of 0.0876 m, whereas the traversability maps are configured for a maximum
range of 150 m with 135 bins resulting in a bin size of 1.11 m. Consequently, a scaling of 12 is applied
to the traversability maps for agreement with radar.

Examples

Consider examples of the output of this traversability labelling pipeline in two different types
of typical urban scene. In Figure 9, a sample of traversability labels are presented for radar scans
containing junctions and in Figure 10, traversability maps containing large open areas are presented.
The output of the Fuzzy System in Figure 1 also shows a traversability label example.

(a) (b) (c)

(d) (e) (f)
Figure 9. Radar scans (top) and corresponding traversability labels (bottom) captured and computed
in three places where the road layout features junctions. In the left example (a,d), the autonomous
vehicle (AV) survey vehicle travels south-to-north along the vertically running stretch of road and
sparse LiDAR measurements are accumulated along the resulting pose chain. In the middle example
(b,e), the two east-to-west junctions are visited at later times and the pose chain consists of loop closures
which allow the LiDAR measurements from later times to feature in the current volume. In the right
example (c,f), however, there is never any revisit to the south road section. As such, no LiDAR points
are accumulated there.
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(a) (b) (c)

(d) (e) (f)
Figure 10. Radar scans (a–c) and corresponding traversability labels (d–f) captured and computed in
three places featuring mixed urban canyon and open areas. Notice in these examples that radar sensory
artefacts (e.g., the radiating saturation lines left, speckle noise middle, and duplicate south-to-north
road boundary) are not featured in the dense accumulated point cloud. We thus expect the Neural
Network (NN) model in Section 3.3 to learn a characterisation of the radar scan which is more intelligent
than simply applying thresholds on the power (dB) return. The results shown in our first tested model
(c.f. Section 6.1) confirm this.

3.3. Single-Task Traversability Network

Here we describe the first of the proposed learned models in this paper, which is trained to predict
online the measure of traversability defined in Section 3.2 from the radar measurement.

3.3.1. Neural Network Architecture

The U-Net convolutional neural network (CNN) architecture [44] is used as the base architecture
for this and the models which follow in later sections (c.f. Section 4). This model corresponds to the
encoder-decoder path shown in Figure 1 which is formed by E→D1 (blue and red).

The intuition behind U-Net is the capture of features with high semantic meaning—but low
resolution—using the encoder and their enrichment with high resolution features through skip
connections. The same intuition is applied to traversability prediction; encoding contextual information
about terrain traversability into a compressed representation then upsampling to achieve a sharp
traversability map.

3.3.2. Learned Objective

In the application of this work, traversability scores of floating point form are required and as
such a sigmoid layer is appended at the decoder output to constrain all outputs to lie in the range [0, 1].
The loss L1 (c.f. Figure 1) is thus computed as the mean squared error (MSE) between the prepared
labels and predicted traversability scores over the radar grid as shown in Figure 1. To learn this objective
we use stochastic gradient descent (SGD) with momentum.



AI 2020, 1 571

3.3.3. Data Augmentation

In urban environments, there is a strong correlation between the orientation of the test vehicle and
the orientation of the road. Roads are designed to be traversed in either of two directions. However,
it is less common for a vehicle to be orthogonal to the direction of travel—a situation usually only
arising at junctions. As a consequence, there is a bias in the dataset we train and test on (c.f. Section 5.2)
for traversable regions to extend vertically down the centre of the radar scan, representing the forward
and backward directions in the radar coordinate system. The traversability model should generalise
well to different directions and thus provide a direction-invariant response to input radar scans. To help
remove this bias, a random rotation in the range [0, 2π] is applied to each Cartesian radar scan and its
associated traversability label during training. This step also reduces the correlation between radar
scans which are near in space, so network training better adheres to the assumption of independent
identically distributed data that is implicit during optimisation of the Neural Network (NN).

3.3.4. Training Configuration

To satisfy VRAM constraints, a small batch size of two is used with a low learning rate of 0.0015
to help ensure convergence on a local minimum.

4. Learned Route Proposals From Radar

In this section we use the ego-motion of the test vehicle to learn the driving behaviour of humans.
This is developed for the first time in this work for the radar domain in a manner similar to that applied
in [3] for visual cameras.

4.1. Training Data Generation

The ground truth odometry from the Oxford Radar Robotcar Dataset (c.f. Section 5.2 below) is used
to produce a Cartesian mask of of the same dimensions as the radar scan where all radar bins that fall
within the recorded route are labelled with 1 and all those that did not are labelled 0. In this manner,
large quantities of training data are generated that capture expert human driving knowledge without
the need for manual labelling. The rest of this section provides the necessary details for implementation
of this simply described labelling procedure.

4.1.1. Pose Chain Construction

In a manner similar to that of Section 3.1.1, we accumulate all timestamps visited by the test
vehicle within a range of the centre of the radar scan. Since only the most likely route should be
proposed, a temporal search of the available odometry timestamps is applied (rather than the spatial
search applied in Section 3.1.1). In doing so, we collect timestamps from a single traversal only.

To ensure consistency between labels, a distance constraint is placed on the position of
poses. Only poses lying within 130 m of the origin pose—as measured along the route—are kept,
thus supervising the network (c.f. Section 4.2 below) to propose routes of consistent length. Routes of
length 130 m traverse a significant proportion of the radar scan, helping to make maximum use of the
large radar sensing horizon available (about 165 m).

4.1.2. Spline Interpolation

Spline interpolation is performed between the poses collected along the pose chain as
per Section 4.1.1. A linear interpolating spline is used to model the motion of the vehicle and, in doing
so, allow the computation of a function that describes the motion of the vehicle.

In this manner, the set of discrete poses are mapped to a continuous route r(s) through the area
measured by the radar scan. Here, s denotes cumulative distance travelled from the first (origin) pose
and r is the position vector of the vehicle. Since the route taken by the test vehicle may present as
any arbitrary curve in the xy-plane, it is necessary to express the interpolating spline as a function of
vehicle displacement, s.
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Therefore, two separate splines are fitted to the x and y components of ego-motion with respect to
a third variable, allowing arbitrary paths in the x-y plane. The vehicle displacements are calculated as
the cumulative sum of the root of squared x and y coordinate differences, according to

Si = Si−1 +
√
(xi − xi−1)2 + (yi − yi−1)2 (5)

where S0 is initialised to 0. A dense set of vehicle positions is then retrieved by interpolating points
with a linear spline. A linear spine is a suitable choice for this dense set due to the low computational
cost of linear interpolation compared to the quadratic or cubic spline counterparts, while still providing
a path which appears smooth to the eye.

For consistency between routes of different length, the cumulative displacement is normalised by
the total cumulative sum of all relative poses, resulting in a route function of the form r(p) : p ∈ [0, 1].

4.1.3. Pixelwise Segmentation of the Moving Vehicle Wheelbase

In the final stage of the route labelling pipeline, a radar mask is produced from the function r(p),
whereby all bins intersected by the route are labelled with a value of 1 and all others 0. The resulting
mask contains a route segment of only one bin width, which would provide a weak supervision
signal and not accurately represent the dimensions (wheelbase) of the test vehicle. Stated alternatively,
the route r(p) corresponds only to the positions of the Frequency-Modulated Continuous-Wave
(FMCW) radar sensor itself, analogous to treating the car as a zero dimensional point. This is corrected
for by labelling all bins within a 16× 16 neighbourhood of the route bins with a value of 1, increasing the
apparent width of the route segment to 1.4 m, inline with the track width of typical vehicles.

4.1.4. Route Labels

A sample of route labels generated by the proposed labelling algorithm are presented in
Figures 11 and 12 for scenes encountered by the test vehicle featuring junctions and open areas,
respectively. Please note that these route labels are of the same resolution as the traversability labels
described above and shown in Figures 9 and 10 as well as the radar scans themselves, which is
important in the final architecture to be discussed later in Section 4.2. Note also that learning route
proposals in the fashion proposed in this section makes no account for whether the route traced out in
the radar scan is traversable. This is to say, the labelled radar scan only represents the environment as
measured at one instant along the route, and it is possible that the labels pass through objects or sensor
artefacts. We address this in Section 4.2 by forcing the encoder to learn demonstrated routes which are
also traversable.

4.2. Multi-Task Traversable Route Prediction Network

In this section, we detail the application of the labelling pipeline described in Section 4.1.4 to the
training of a Neural Network (NN) for route proposal. In this way, a weak supervision approach is
used to learn the driving behaviour of humans.

However, this route prediction network is initialised with parameters obtained from the the
traversability prediction to provide a better initialisation state for training. The intuition here is
that drivable routes are by definition traversable. Since Neural Network (NN) are highly non-linear,
providing a better initialisation state is expected to allow convergence on a lower and better performing
local minimum, while biasing the network to avoid obstacles and select high traversability routes.
Specifically, the learned radar features that encode route viability are expected to have a strong
dependency on those features which encode traversability.

4.2.1. Neural Network Architecture

As before (c.f. Section 3.3.1), the U-Net architecture is applied to this task. This model corresponds
to the encoder-decoder path shown in Figure 1 which is formed by E→D2 (blue and orange).
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As with Section 3.3, a sigmoid output layer is added to the output of the network decoder to ensure
output bin values in the range [0, 1], representing confidences in the proposed route.

4.2.2. Learned Objective

Since route proposal is a segmentation task, the loss function L2 (c.f. Figure 1) is a summation of
the loss and soft dice loss functions. A disadvantage of binary cross-entropy (BCE) is that it takes an
average of values calculated for each voxel, making it susceptible to the level of class-imbalance seen
in Figures 11 and 12. Indeed, the proposed route should be based on the features in the radar scan rather
than just a leaned prior distribution of route voxels, so this is undesirable. For example, the loss could
be decreased simply by reducing the number of voxels segmented in the route set, regardless of the
features in the radar scan where they lie. In addition, since loss is computed voxel-wise, cross entropy
fails to capture the relationships between voxels.

These disadvantages are often mitigated using a weighting scheme to scale the loss associated
with distinct ground truth classes differently, compensating for the effects of class-imbalance. However,
the soft dice loss provides a measure of overlap between sets which is particularly important for
the accurate prediction of segment boundaries [45]. This loss captures important global information
missed by binary cross-entropy (BCE). In this way, the dice coefficient is robust to class-imbalance
because it considers the ratio of the total number of correctly predicted route voxels to the total number
of route voxels – a measure normalised by class incidence.

(a) (b) (c)

(d) (e) (f)
Figure 11. Radar scans and corresponding route labels at junctions, prepared as per Section 4.1.
In (a,d), the vehicle veers left while travelling south-to-north. In (b,e), the vehicle takes a left turn
while travelling north. In (c,f), the vehicle takes a right turn shortly after taking a left turn. All of
these driving behaviours (and others) are possible in various scenes typically sensed by the radar at
long range, and we expect that the Neural Network (NN) model designed in Section 4.2 below will
generalise beyond simply learning the demonstrations shown to it during training. We indicate this
experimentally in Section 6.2.
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(a) (b) (c)

(d) (e) (f)
Figure 12. Radar scans and corresponding route labels where open areas are present, prepared as
per Section 4.1. In (a,d), the test vehicle travels from one narrow street (south-east) to another narrow
street (north-east) via an open area. In (b,e), the vehicle travels around an open area only. In (c,f),
the vehicle travels from one open area (south) to another open area (north) via a narrow street.

The loss L2 (c.f. Figure 1) therefore considers both local and global similarity.
In Section 6 we consider training networks which include just the single encoder-decoder

path with L2 (demonstrated routes alone) as well as both encoder-decoder paths with L1 and L2

(traversability labels and demonstrated routes) and show that the latter approach is superior.

4.2.3. Data Augmentation

Due to the bias of road orientation discussed in Section 3.3.3, a random rotation in the range
[0, 2π] is applied to each item in the training data. The position of the vehicle on the road during
this step must also be considered, since any rotation of the radar scan and route mask pair greater in
magnitude than π/2 will result in an apparent change in vehicle position relative to the road. In the
United Kingdom (UK) (c.f. Section 5.2 for a description of the dataset) vehicles are required to drive on
the left side of the road. This rule of the road should be observed during data augmentation. This is
not the case for a random rotation, where any rotation greater than π/2 in magnitude transforms the
route mask to the right side of the road. This is addressed by reflecting both the radar scan and route
mask about the x axis after any rotation greater in magnitude than π/2. This transforms the route
mask back onto the left side of the road, ensuring consistency in the route masks.

4.2.4. Training Configuration

Stochastic gradient descent (SGD) is used to optimise L2 using a batch size of 2 and a low learning
rate of 0.0015.
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The network is presented with Cartesian radar frames of dimension 1256 × 1256 and route masks
of equal dimension, representing a downsampling of three times from the raw radar scan resolution to
satisfy graphics processing unit (GPU) VRAM constraints, as described in Section 3.3.

5. Experimental Setup

The experiments are performed using data collected from the Oxford RobotCar platform [46] which
is equipped as described in the recently released Oxford Radar RobotCar Dataset [12].

5.1. Sensor Suite

Our data collection platform is pictured in Figure 13a.

(a) (b)
Figure 13. (a) The autonomous-capable Nissan Leaf data collection platform as equipped in Section 5.1
for the dataset described in Section 5.2 and (b) the 10 km route driven in the Oxford Radar Robotcar
Dataset. The route is partitioned into training, validation and test data. These are coloured as blue, red,
and purple respectively.

A CTS350-X Navtech Frequency-Modulated Continuous-Wave (FMCW) scanning radar operating
at 76 GHz to 77 GHz with a beam-width of 1.8◦ is used. It offers a full 360◦ field-of-view (FOV).
Range is discretised into 3768 bins, providing a resolution of 4.38 cm at each of 400 azimuth angles
about an axis perpendicular to the ground—representing an angular resolution of 2◦. Scans are
performed at a sampling frequency of 4 Hz.

In contrast, a Velodyne HDL-32E 3D LiDAR provides a sampling frequency of 20 Hz with a
horizontal field-of-view (FOV) of 360◦ and a vertical field-of-view (FOV) of 41.3◦. The point clouds are
constructed using 32 stacked laser planes and achieve a maximum range of 100 m compared to 165 m
for radar.

5.2. Dataset

Here we describe the dataset used to train and evaluate our system.

5.2.1. Ground Truth Odometry

For preparing the pose chain along which the dense accumulated point cloud is constructed and
preprocessed (c.f. Sections 3.1.1–3.1.3), we use the ground truth odometry described in [12] which is
computed by a global optimisation using Global Positioning System (GPS), robust Visual Odometry
(VO), and visual loop closures.
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5.2.2. Dataset Splits

The Oxford Radar Robot Dataset [12] is partitioned according to Figure 13b, which represents
relative proportions of training, validation and test data of 88 %, 5 %, and 7 % respectively. In doing so,
one of the approximately 9 km trajectories in the Oxford city centre was divided into three distinct
portions: train, valid, and test. Figure 13b shows the Global Positioning System (GPS) trace of the
trajectory. The test split was specifically selected as the vehicle traverses a portion of the route in
the opposite direction and exhibits interesting junctions. The valid split selected was quite simple,
consisting of two straight periods of driving separated by a right turn, and was used for automatic
selection of the checkpoints deployed for testing on the test split (c.f. Section 5.3 below).

5.3. Model Selection

We describe here some aspects of the training of each of the three proposed models.

5.3.1. Traversability Model

Consider the first model deployed: the traversability model of Section 3. Training was run
for a total of 26 epochs over which the loss is evaluated over the valid partition of the dataset.
This validation loss is seen to level off after epoch 15, though fluctuations—attributed to the small
batch size—do remain. Epoch 22 is selected for the traversability model because it minimises the loss
on the validation set.

5.3.2. Traversable Route Prediction Model

Consider the second model deployed: the traversable route prediciton model of Section 4.
Training was run for a total of 86 epochs. The validation loss is minimised at epoch 59, after which
it increases due to over-fitting of the training data. Consequently, the network state at epoch 59 is
selected for the combined model.

5.4. Compute Hardware

Our system is fairly lightweight, capable of average frame rates of 7.63 Hz (including all memory
transfer and data parsing overheads) on an Nvidia RTX 2060 graphics processing unit (GPU),
allowing for potential real-time applications.

6. Results and Discussion

This section describes the observed performance of the two models described in Sections 3 and 4
in the experimental setup described in Section 5.

6.1. Traversability Predictions

Here we evaluate the facility of our learned feature extraction at retrieving information from radar
scans regarding the traversability of the scanned environment.

A sample of traversability maps inferred for radar scans in the test portion of the dataset
(c.f. Section 5.2) using this first network with weights equal to those at the chosen epoch (c.f. Section 5.3)
are presented in Figures 14 and 15, representing cases which are challenging due to radar artefacts and
unusual road layout respectively.

6.1.1. Sensor Artefacts

In Figure 14, repeated reflections of the millimetre-wave (MMW) radiation result in duplicate
roads running parallel to the real road in the radar scans, presenting a challenge for this traversability
prediction network. In Figure 14a,d we observe that the traversable area of the sensed environment
does not extend out to the duplicate road boundaries manifested by this sensor artefact. In Figure 14b,e
the street is narrower than in Figure 14a,d, which the radar-to-traversability model has no problem
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understanding. This is an indication that the network has not learned to yield a fixed size area around
the centre of the scan (the vehicle location) as traversable. In Figure 14c,f, even though not visible to the
human eye in the radar scan, a wide open area (top right of the frames) is understood to be traversable.

(a) (b) (c)

(d) (e) (f)
Figure 14. Traversability predictions on straight road segments in the presence of radar artefacts as
described in Section 6.1. In (a,d), saturation lines (radiating from the vehile location at the centre of the
scans). In (b,e), ringing effects cause the appearance of duplicate roads. In (c,f), occlusion effects obscure
the perception of the environment (top right open area). All of these effects present no significant issue
to the traversability model.

6.1.2. Unusual Road Layout

In Figure 15, the radar frames captured near to the roundabout suffer from occlusion but the
traversability labels are not affected—at least insofar as they are useful for local environment perception.
Comparing Figure 15a,d against Figure 15b,e or Figure 15c,f, it is clear that the “occlusion” effect is
caused by something in the top-right (in the frame of reference of Figure 15a,d) of the turn that the
vehicle is navigating.
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(a) (b) (c)

(d) (e) (f)
Figure 15. Traversability predictions for radar scans in a challenging urban environment as described
in Section 6.1. These radar scans are taken in close proximity to one another, as the vehicle turns in a
tight circle. Large areas of the radar scans are occluded by an elevated central roundabout, resulting
in unusual road geometry. In (a,d), the vehicle approaches the turn. Here, the urban canyon behind
the vehicle is understood by the model to be traversable, as is the way (left) into the turn. In (b,e),
the vehicle is mid-way around the turn. Here, the road ahead and behind of the vehicle is entirely made
up of turn, which is understood to be traversable. The model no longer sees the urban canyon due
to the occlusion of the central feature. In (c,f), the vehicle is exiting the turn and reentering a straight
urban canyon. Here, the model understands that the urban canyon as well as the original turn around
the central feature are traversable.

6.1.3. Traversability Planning

The utility of the radar traversability predictions may be further evaluated by the optimally
traversable routes they imply. Indeed, the traversability map data representation is equivalent to a
vertex-weighted graph, so it is suitable for the application of graph search algorithms for path planning.
The performance of A* route planning for several challenging radar frames is therefore presented
in Figure 16—indicating the utility of the traversability maps learned by this first model. However,
any route inferred from the predicted traversability maps should satisfy the motion constraints of the
vehicle and influenced by obstacles—for example, by showing some degree of smoothness. In this
sense, the planned paths shown in Figure 16 are slightly jagged, and would not be suitable without
smoothing for direct use in controlling the motion of an autonomous vehicle (AV). Section 6.2 shows
smoother inferred paths which are learned end-to-end as per Section 4.
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(a) (b) (c)

(d) (e) (f)
Figure 16. A sample of maximally traversable routes evaluated using the A* graph search algorithm.
(a–c) show the optimally traversable routes (red) projected onto the corresponding FMCW radar
scans. (d–f) represent the vertex weighted graphs which are computed from the inferred traversability
maps and on which the minimum cost routes between the start and destination points are projected.
The routes evaluated using the A* algorithm are found to be robust for a wide range of radar scans in
the test data, including those with significant artefacts present. They reliably navigate around obstacles
while exhibiting paths that are direct, implying good performance from the traversability prediction
network. The smoothness of the inferred paths leaves something to be desired; however, an issue
which is resolved by the multi-task learned model in Section 6.2.

6.2. Traversable Route Prediction

A sample of path proposals evaluated for radar scans in the test partition of the dataset is
presented in Figures 17 and 18.

Generally, the paths inferred by this multi-tasking network configuration (c.f. Section 4) are
smoother and broader than those shown for the single-task network configuration (c.f. Section 3),
as compared to the A* search results discussed in Section 6.1 and shown in Figure 16 above.
The routes show a high degree of smoothness and reliably navigate around obstacles. Most importantly,
as compared to Figure 16, we are able through the joint network configuration to predict several likely
paths for the autonomous vehicle (AV) to take, rather than only the maximally traversable.

The model deployed in Figure 17 was trained only using route labels (c.f. L2 in the learned
objectives of Section 4.2.2). The model deployed in Figure 18—in contrast—was trained using
traversability maps as well as route labels (c.f. L1 and L2 in the learned objectives of Section 4.2.2).

In Figure 18a as compared to Figure 17a, the proposed vehicle track stays consistently wide.
We see similar performance in Figure 18b as compared to Figure 17b—suggesting that straight urban
canyons are equally easily to understand by L1 and L2 as compared to L2 alone. In Figure 18e as
compared to Figure 17e, gaps in the proposed routes are not as evident. In Figure 18d as compared
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to Figure 18d, both options for the next manoeuvre are complete—or more perfectly understood by
the model as traversable and potential paths.

(a) (b) (c)

(d) (e) (f)
Figure 17. A sample of route proposal cases for straight road segments (top row) and junctions
(bottom row). The model deployed here was trained only using route labels (c.f. L2 in the learned
objectives of Section 4.2.2). In (a), the vehicle track width of 1.4 m is not totally maintained by the
model—see Figure 18 for an improvement to this. In (b), no turns off of the current route are perceived
or proposed. The situation in (c), in contrast, is understood by the model as feasible to continue driving
straight or turn left off of the current route. In (d), a slight left past a non-traversable feature is yielded
as the traversable route. In (e), there are some gaps in the traversable route proposed by the network.
These drop-outs in predictions are resolved in Figure 18. In (f), the model understands that a left or
right turn after the current path terminates is feasible. Please see Section 6.2 for further discussion.

Consider Figure 19; here, each frame shows a planed route for the vehicle to follow. The left
examples are the result of an A* search in the inferred traversability map. The A* search is performed
in the pixel space of this traversability map. For comparison, therefore, and to format the inferred
routes from the combined architecture (e.g., Figure 18), we apply a thinning technique – specifically the
Medial Axis Transform (MAT) [47]—to reduce the proposed routes to a pixel width. A pruning process
is applied to the thinned route to remove unwanted spurs. Specifically, the longest path through the
skeleton is evaluated and all other branches are removed. The proposed routes are suggested by the
network natively, whereas A* requires a start and goal location. For fair comparison, therefore, the A*
search was initiated and terminated at the endpoints of the thinning procedure described above.
What is found is that the proposed routes learned by including vehicle demonstration (c.f. Section 4)
are qualitatively smoother and more suitable for the feasible kinematics of the vehicle (i.e., the jittering
orientation changes and small lateral jumps are not an ideal aspect of the A* plans).

Lastly, routes are proposed at an average rate of 8.41 Hz (including all memory transfer and data
parsing overheads) making them suitable for real-time applications.
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(a) (b) (c)

(d) (e) (f)
Figure 18. A sample of routes proposed for several different urban settings. The model deployed here
was trained using traversability maps as well as route labels (c.f. L1 and L2 in the learned objectives
of Section 4.2.2). The proposed routes are seen to outperform those presented in Figure 17. As compared
to Figure 18a, the proposed vehicle track of (a), is more consistent in width. In (a,e) an obstacle ahead
of the vehicles trajectory is understood to be non-traversable, and routes to the left or right of this
feature are proposed. In (b), the vehicle drives along a narrow urban canyon, and no turns off of this
route are seen as possible. In (c), the model admits for a left or right turn at the end of a narrow urban
canyon. In (d), the model understands that a right turn off of the current path is feasible. In (f), the
vehicle is circumnavigating a walled off park, and the turn out of this urban feature is not yet visible.
Please see Section 6.2 for further discussion.

(a) (b)

Figure 19. Cont.
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(c) (d)

(e) (f)

(g) (h)
Figure 19. Examples of planned routes through various environments. Left (a,c,e,g) are shown the
plans generated by A* planning through the traversability map. Right (b,d,f,h) are shown the plans
generated by Medial Axis Transform (MAT) or “skeletonization” of the routes inferred by the model
trained using traversability maps and route labels in conjunction. In all cases, the routes yielded by the
A* approach do not exhibit the same level of “smoothness” as those shown right, which better reflect
the kinematic capabilities of the vehicle.

7. Conclusions

In this work, an appearance-based radar traversability methodology was introduced and shown
to infer traversability maps that are robust to occlusion and artefacts while exceeding the range of
existing vision and LiDAR methodologies. The computation of maximally traversable routes through
the application of graph search algorithms on inferred traversabilty maps was shown to be a robust
method of path planning over long ranges. Furthermore, a weak supervision approach using LiDAR
traversability labels generated via a geometric traversability analysis has been shown to be a robust
and scalable means to train radar appearance methodologies without the requirement for manual
labelling. In an extension to traversability analysis, an end-to-end radar path proposal system was
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presented and shown to propose paths that reliably navigate around obstacles. The final form of
the system we propose employs joint learning by the encoder of features which can be decoded for
both traversability of the scene as sensed by the radar as well as feasible routes demonstrated by the
survey vehicle. The proposed system is shown to predict smooth, feasible routes in various typical
urban driving scenes. We expect that the proposed system will have utility in enabling autonomy in
previously unvisited environments (as it is “mapless”) which are challenged by extreme weather and
lighting conditions.

8. Future Work

In the future, post-processing methods exist which could improve the performance of the labels
provided, notably spatio-temporal filtering using the predictions of neighbouring radar frames.
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