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Abstract: Machine learning tools can be applied to peptide-mediated biomineralization, which is an
emerging biomimetic technique of creating functional nanomaterials. In particular, they can be used
for the discovery of biomineralization peptides, which currently relies on combinatorial enumeration
approaches. In this work, an enhanced hyperbox classifier is developed which can predict if a given
peptide sequence has a strong or weak binding affinity towards a gold surface. A mixed-integer linear
program is formulated to generate the rule-based classification model. The classifier is optimized to
account for false positives and false negatives, and clearly articulates how the classification decision is
made. This feature makes the decision-making process transparent, and the results easy to interpret for
decision support. The method developed can help accelerate the discovery of more biomineralization
peptide sequences, which may expand the utility of peptide-mediated biomineralization as a means
for nanomaterial synthesis.

Keywords: machine learning; bionanotechnology; nanomaterials; hyperbox classifier; mixed integer
linear programming

1. Introduction

Peptide-mediated biomineralization is a promising bio-inspired technique for creating inorganic
nanomaterials that possess functional properties [1]. This biomimetic technique has produced
nanomaterials for a wide array of applications, such as highly efficient catalysts [2], plasmonic
materials with tailorable optical properties [3], and bimetallic nanoparticles for electrooxidation [4],
among others. These interesting materials were produced due to the ability of the biomineralization
peptide to regulate the size, shape, and morphology of the nanomaterial. This level of control is
achieved due to the binding affinity of the biomineralization peptide towards a particular material
surface, which leads to the selective binding of the biomineralization peptide at specific faces of the
growing nanomaterial [5,6]. The binding affinity of the peptide is known to be affected by peptide
properties such as the oligomerization state [7], conformation [8], and sequence [9].

In order to broaden the utility of peptide-mediated biomineralization as an effective platform for
nanomaterial synthesis, a method for the quick identification of biomineralization peptide sequences
should be developed. Currently, the discovery of biomineralization peptides has mainly depended on
the tedious laboratory assays which are combinatorial in nature. Since acquisition of experimental
data is costly, typically only small data sets are available in this domain [10]. Thus, the use of modern
computational tools such as artificial intelligence (AI), data mining, and machine learning (ML) for this
purpose presents significant potential to address this problem since these tools have been used for
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the discovery of novel materials [11–13] and their properties [14–16]. Data from both experimental
results and computations from theoretical simulations can be used to train ML models [17,18]. ML may
therefore accelerate the discovery of novel biomineralization peptide sequences, which will lower the
costs of producing nanomaterials through biomineralization. Mainstream ML tools used for Big Data
are not optimized for dealing with small data sets [19]. Interactive ML techniques that combine expert
knowledge with information from these small data sets are more appropriate for such applications [20].

Past works on classifying biomineralization peptide binding affinity class have reported the
creation of models that classify biomineralization peptide sequences into strong and weak binders.
These models used the Needleman–Wunsch algorithm [21], graph theory [22], and support vector
machines (SVMs) [23] for the classification task. While these classification algorithms demonstrate
satisfactory predictive ability, the impact of the variables on the classification task is not clearly
interpretable. This characteristic limits the practicality of the classification model, and renders the
interpretation of the results by material scientists difficult. Thus, a rule-based algorithm is more
appropriate for this kind of application. A rule-based algorithm clearly articulates the classification
process through a set of rules extracted from the dataset, leading to transparent and unambiguous
decision-making. Predictive models that rely on the generation of rules, such as rough sets and decision
trees, can provide effective decision support for material scientists via case-based reasoning [24].

In this work, we develop a rule-based classification model built using the hyperbox algorithm
for predicting biomineralization peptide binding class. The rest of this article is organized as follows.
Section 2 describes the methodology itself. Section 3 applies the classifier model to this nanomaterial
discovery problem. Section 4 gives conclusions and discusses prospects for future work.

2. Methodology

The hyperbox model developed here is an extension of the work of Xu and Papageorgiou [25].
The original approach they developed used a mixed integer linear programming (MILP) model
to generate non-overlapping hyperboxes to enclose clusters of data; additional hyperboxes can be
determined iteratively to improve classification performance. Further algorithmic improvements were
reported by Maskooki [26] and Yang et al. [27]. The presence of user-defined parameters makes the
training of hyperbox models highly interactive. Expert inputs can be integrated into the procedure to
augment small data sets with mechanistic domain knowledge. The resulting optimized hyperboxes
constitute a rule-based model that can be used as a classification model. One of the key advantages of
this technique is that the hyperboxes can be readily interpreted as IF–THEN rules, which can be used
effectively and intuitively to support decisions [27].

The main features of the model extension developed here are as follows:

• The model is a binary classifier such that a pre-defined number of hyperboxes are meant to
enclose samples which positively belong to the group and to exclude samples which do not.
The initial default assumption is that of negative classification, but the activation of at least one
rule results in a positive classification. This approach eliminates the need for negative classification
rules. The number of hyperboxes is user-defined and the training is done interactively with
expert knowledge inputs to augment small data sets that are typical in this domain [19,20].
This consideration makes it possible to identify alternative rule sets which may make more sense
to the expert or may improve the performance of the model. However, a balance should be made
between generalizability and over-fitting.

• A user-defined margin is utilized as the minimum distance needed to separate the negative
samples from the boundaries of the resulting hyperboxes. Thus, each hyperbox actually consists
of concentric inner and outer hyperboxes separated by the said margin. This feature serves the
same purpose as the gap between parallel hyperplanes in SVMs.

• The model accounts for Type I (number of false positives) and Type II (number of false negatives)
errors such that a user may select which type of error should be minimized while indicating an
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upper limit for the other. This feature was introduced in an extension of the hyperbox model by
Yang et al. [27].

• The model is meant to define the dimensions of the hyperboxes to adequately classify the training
data. Reduction of attributes can result in more parsimonious ML models and is thus regarded as
an important feature during training [28]. These dimensions may extend to infinity, rendering
some attributes to be insignificant for classification. This feature is achieved by enabling the
model to remove the lower bound and/or upper bound of each hyperbox along each dimension,
as needed.

The overall objective of the model is to minimize Type I errors, α, while ensuring that Type II
errors, β, are kept below a defined threshold ε. Type I (α) and Type II (β) errors are then defined where
j represents a sample in the training set ST.

Minα (1)

β ≤ ε (2)

α >

∑
j (c j −C∗j)

NT , ∀ j ∈ ST (3)

β >

∑
j (C
∗

j − c j)

PT , ∀ j ∈ ST (4)

Each sample j in the training data has performance level in attribute i with the value of X ji.
The lower (xL

ik) and upper (xU
ik ) limits along dimension i for hyperbox k are determined to enclose as

many positive samples as possible. The dimensions of the outer hyperbox and the dimensions of the
inner hyperbox are separated by the user-defined margin ∆.

X ji > xL
ik − ∆ −M

(
1− b jk

)
, ∀ i, j (5)

X ji < xU
ik + ∆ + M

(
1− b jk

)
, ∀ i, j (6)

X ji > xL
ik −M

(
1− b jk

)
, ∀ i, j (7)

X ji < xU
ik + M

(
1− b jk

)
, ∀ i, j (8)

The possibility of semi-infinite (i.e., having no lower limit or no upper limit) or infinite dimensions
(i.e., having no lower and upper limits) for the hyperbox are also considered. In the latter case,
the absence of lower and upper limits allows the hyperbox to be projected to a lower dimensional
space, and removes the corresponding attribute from the associated decision rule.

ZL
ik −M

(
1− bL

ik

)
≤ xL

ik ≤ ZL
ik + MbL

ik, ∀ i, k
If bL

ik = 1, ZL
ik ≤ xL

ik ≤ ZL
ik + M,∀ i, k

If bL
ik = 0, ZL

ik −M ≤ xL
ik ≤ ZL

ik, ∀ i, k
(9)

ZU
ik −MbU

ik ≤ xU
ik ≤ ZU

ik + M
(
1− bU

ik

)
, ∀ i, k

If bU
ik = 1, ZU

ik −M ≤ xU
ik ≤ ZU

ik , ∀ i, k
If bU

ik = 0, ZU
ik ≤ xU

ik ≤ ZU
ik + M, ∀ i, k

(10)

For instances in which sample j lies outside the boundaries of the hyperbox, sample X ji may lie
below the lower limit of hyperbox k in dimension i by more than the user-defined margin, ∆ (11) or X ji
may lie above the upper limit of hyperbox k in dimension i by more than the user-defined margin,
∆ (12). If the sample satisfies any of the two conditions, then this indicates that the sample is outside
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the hyperbox and qL
ijk or qU

ijk will be equal to 1. Consequently, in such instances, the sample should be
considered a negative sample and b jk = 0.

X ji ≤ xL
ik − ∆ + M(1− qL

ijk), ∀ i, j (11)

X ji ≥ xU
ik + ∆ −M(1− qU

ijk), ∀ i, j (12)∑
i
qL

ijk + qU
ijk ≤M

(
1− b jk

)
, ∀ j, k (13)∑

i
qL

ijk + qU
ijk ≥

(
1− b jk

)
, ∀ j, k (14)

In instances in which there are multiple hyperboxes, a sample is said to be a positive sample,
c j = 1, if it is enclosed by at least one hyperbox. Thus, each hyperbox corresponds to one rule, and the
resulting classifier consists of a set of disjunctive rules. The relationship among a set of such rules can
be represented by a Venn diagram as shown in Figure 1. Samples that do not activate any of the rules
(i.e., are not enclosed by any of the hyperboxes) are classified as negative by default.∑

k
b jk ≤Mc j, ∀ j (15)∑
k

b jk ≥ c j, ∀ j (16)

AI 2020, 1, FOR PEER REVIEW 4 

the hyperbox and 𝑞𝑖𝑗𝑘
𝐿  or 𝑞𝑖𝑗𝑘

𝑈  will be equal to 1. Consequently, in such instances, the sample should 

be considered a negative sample and 𝑏𝑗𝑘 = 0.  

 

Figure 1. Venn diagram for a three-rule hyperbox classifier. 

𝑋𝑗𝑖 ≤ 𝑥𝑖𝑘
𝐿 − ∆ + 𝑀(1 − 𝑞𝑖𝑗𝑘

𝐿 ) ∀ 𝑖, 𝑗 (11) 

𝑋𝑗𝑖 ≥ 𝑥𝑖𝑘
𝑈 + ∆ − 𝑀(1 − 𝑞𝑖𝑗𝑘

𝑈 ) ∀ 𝑖, 𝑗 (12) 

∑ 𝑞𝑖𝑗𝑘
𝐿

𝑖

+ 𝑞𝑖𝑗𝑘
𝑈 ≤ 𝑀(1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑘 (13) 

∑ 𝑞𝑖𝑗𝑘
𝐿

𝑖

+ 𝑞𝑖𝑗𝑘
𝑈 ≥ (1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑘 (14) 

In instances in which there are multiple hyperboxes, a sample is said to be a positive sample, 

𝑐𝑗 = 1, if it is enclosed by at least one hyperbox. Thus, each hyperbox corresponds to one rule, and 

the resulting classifier consists of a set of disjunctive rules. The relationship among a set of such rules 

can be represented by a Venn diagram as shown in Figure 1. Samples that do not activate any of the 

rules (i.e., are not enclosed by any of the hyperboxes) are classified as negative by default. 

∑ 𝑏𝑗𝑘

𝑘

≤ 𝑀𝑐𝑗  ∀ 𝑗 (15) 

∑ 𝑏𝑗𝑘

𝑘

≥ 𝑐𝑗  ∀ 𝑗 (16) 

Finally, the binary variables are as follows: 

𝑏𝑗𝑘 , 𝑏𝑖𝑘
𝑈 , 𝑏𝑖𝑘

𝐿 , 𝑞𝑖𝑗𝑘
𝑈 , 𝑞𝑖𝑗𝑘

𝐿 , 𝑐𝑗 ∈ {0,1} ∀ 𝑖, 𝑗, 𝑘 (17) 

This MILP model can be solved to global optimality using the branch-and-bound algorithm, 

which is available as a standard feature in many commercial optimization software packages. 

Alternative solutions (rule sets) can be determined for any given MILP using standard integer-cut 

features in such software; additional solutions can also be found by adjusting the model parameters. 

Figure 2 shows the interactive training procedure for the hyperbox classifier. 

Figure 1. Venn diagram for a three-rule hyperbox classifier.

Finally, the binary variables are as follows:

b jk, bU
ik , bL

ik, qU
ijk, qL

ijk, c j ∈ {0, 1}, ∀ i, j, k (17)

This MILP model can be solved to global optimality using the branch-and-bound algorithm,
which is available as a standard feature in many commercial optimization software packages.
Alternative solutions (rule sets) can be determined for any given MILP using standard integer-cut
features in such software; additional solutions can also be found by adjusting the model parameters.
Figure 2 shows the interactive training procedure for the hyperbox classifier.
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The case study utilizes data from the work of Janairo [23], which looks into the classification of
the biomineralization peptide binding affinity using SVM. There are 31 cases, each representing a
biomineralization peptide sequence. These biomineralization peptide sequences are characterized
by 10 parameters, called the Kidera factors, and the peptides are classified into two categories of
either weak or strong binding affinity. Kidera factors are descriptors related to the structure and
physico-chemical properties of proteins derived from rigorous statistical analyses [29]. The 10 Kidera
factors are K1: helix/bend preference, K2: side-chain size, K3: extended structure preference, K4:
hydrophobicity, K5: double-bend preference, K6: partial specific volume, K7: flat extended preference,
K8: occurrence in alpha region, K9: pK-C, K10: surrounding hydrophobicity. The datapoints were
randomized and further divided into two sets with 20 datapoints used for training and the remaining 11
used for validation. The data was initially normalized to transform X ji to X∗ji, where xMIN

ji is the lowest

value in dimension i among all samples j while xMAX
ji is the largest value observed in dimension i among

all samples j. The raw data for all 31 datapoints are included in Table S1 of the supplementary material.

X∗ji =
X ji − xMIN

ji

xMAX
ji − xMIN

ji

(18)
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The training was done by solving (1) subject to constraints defined in (2) to (17) with a ∆ = 0.05,
ZL

ik = −50.00 and ZU
ik = 50.00. The model was implemented in LINGO 18.0 and solved using a laptop

with an Intel® CoreTM i7-6500U 2.5 GHz CPU with 8.0 GB RAM.

3. Case Study

Using just one hyperbox, with ε < 0 and a constraint that at least one attribute can be removed,
the optimal solution was obtained in 0.20 s. The optimal solution was able to correctly classify all
training data such that α = β = 0. The resulting dimensions for the 10 attributes considered are shown
in Table 1 where shaded entries indicate that there is no limit for the lower or upper bound for the
corresponding attribute. Table 1 can be translated into IF–THEN rules as follows. Only five attributes
remained relevant—K3, K6, K7, K9, and K10—with K3, K6, K7, and K9 having one-sided limits and
K10 being the only attribute bound by an upper and a lower limit.

Rule 1: IF (−0.9186 ≤ K3). and IF (K6 ≤ 0.4148) and IF (−0.7155 ≤ K7) and IF (K9 ≤ 0.3411) IF
(−0.5159 ≤ K10 ≤ 0.7397) THEN binding is Strong.

Table 1. Dimensions of Hyperbox Decision Model 1.

Attribute xL
i1 xU

i1
K1 −50.00 50.00
K2 −50.00 50.00
K3 −0.9186 50.00
K4 −50.00 50.00
K5 −50.00 50.00
K6 −50.00 0.4148
K7 −0.7155 50.00
K8 −50.00 50.00
K9 −50.00 0.3411

K10 −0.5159 0.7397

Shaded entries indicate that limit has not been activated in corresponding attribute.

Using this rule to classify the validation data resulted in all weak binding samples (total of eight
out of 11) being correctly classified and all strong binding samples (total of three out of three) also
correctly classified. The confusion matrix for this optimal rule is summarized in Table 2. The previous
SVM classifier also found that K3, K6, K7, and K9 as significant descriptors for the prediction of the
biomineralization peptide binding affinity class [23]. However, the SVM classifier arrived at this
model after 12 optimization steps, as opposed to the quick and straightforward manner of the present
hyperbox model. Moreover, using the same set of descriptors, the hyperbox model outperforms the
prediction accuracy of the SVM classifier, which was 92%.

Table 2. Confusion matrix of Hyperbox Decision Model 1.

N = 11 Predicted Positive Predicted Negative

Actual Positive 3 0
Actual Negative 0 8

α = 0.0
β = 0.0

It is also possible to identify alternative sets of rules from degenerate solutions or near-optimal
solutions. An example is given in Table 3, which corresponds to the 10th solution for the problem
considered. The rule generated is relatively more complex than Rule 1 because seven attributes (i.e., K2,
K5, K6, K7, K8, K9, and K10) are needed to predict peptide binding affinity.

Rule 2: IF (−0.6154 ≤ K2) and IF (K5 ≤ 1.1882) and IF (K6 ≤ 0.4163) and IF (−0.6020 ≤ K7) and IF
(K8 ≤ 0.3285) and IF (K9 ≤ 1.3469) and IF (K10 ≤ 0.8883) THEN binding is Strong.
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Table 3. Dimensions of Hyperbox Decision Model 2.

Attribute xL
i1 xU

i1
K1 −50.00 50.00
K2 −0.6154 50.00
K3 −50.00 50.00
K4 −50.00 50.00
K5 −50.00 1.1882
K6 −50.00 0.4163
K7 −0.6020 50.00
K8 −50.00 0.3285
K9 −50.00 1.3469

K10 −50.00 0.8883
Shaded entries indicate that limit has not been activated in corresponding attribute.

This rule was able to classify the training data correctly with α and β still equal to 0. Similarly,
it was effective in classifying all 11 samples in the validation data as summarized in Table 4.

Table 4. Confusion matrix of Hyperbox Decision Model 2.

N = 11 Predicted Positive Predicted Negative

Actual Positive 3 0
Actual Negative 0 8

α = 0.0
β = 0.0

The model is then extended to consider five hyperboxes with ε = 0.30. The consideration of
additional hyperboxes enables the possibility of identifying alternative rule sets which can be used to
classify data and potentially improve the performance of the model. Five hyperboxes, for example,
translates to having five different rule sets to classify objects. Additional constraints to limit attribute
overlaps between the boxes have been added as indicated in (19) to (21).

H∑
k=1

bL
i,k ≤ nA (19)

H∑
k=1

bU
i,k ≤ nA (20)

H∑
k=1

(
bL

i,k + bU
i,k

)
≤ 2nA (21)

Optimizing with nA = 3 results in the boundaries summarized in Table 5. The optimal solution
was obtained in 5 s computational time and was able to classify seven out of nine positive samples and
11 out of 11 negative samples from the training data. The rules are disjunctive, and can be summarized
as follows:

Rule 3a: IF (0.1400 ≤ K1) and IF (−0.6033 ≤ K2) and IF (−0.3300 ≤ K3) and IF (−0.1750 ≤ K4) and IF
(−0.9633 ≤ K8) and IF (K9 ≤ 0.2267) IF (K10 ≤ 0.3475) THEN binding is Strong.
or
Rule 3b: IF (0.5275 ≤ K7) and IF (0.2092 ≤ K8 ≤ 0.2092) THEN binding is Strong.
or
Rule 3c: IF (−0.6033 ≤ K2) and IF (0.2083 ≤ K3) and IF (K6 ≤ 0.0636) and IF (K9 ≤ 0.2683) THEN
binding is Strong.
or
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Rule 3d: IF (−0.0043 ≤ K1) and IF (−0.5721 ≤ K2) and IF (0.3443 ≤ K4) and IF (0.0636 ≤ K6) and IF
(K7 = −0.015) and IF (−0.3142 ≤ K8) THEN binding is Strong.
or
Rule 3e: IF (−0.6343 ≤ K1) and IF (−0.5358 ≤ K3) and IF (−0.4650 ≤ K4) and IF (−0.2775 ≤ K7) and
IF (K8 ≤ 0.2092) and IF (−0.2421 ≤ K10).

Table 5. Dimensions of Hyperbox Decision Model 3.

Hyperbox 1 Hyperbox 2 Hyperbox 3 Hyperbox 4 Hyperbox 5

Attribute xL
i1 xU

i1 xL
i2 xU

i2 xL
i3 xU

i3 xL
i4 xU

i4 xL
i5 xU

i5
K1 0.1400 50.00 −50.00 50.00 −50.00 50.00 −0.0043 50.00 −0.6343 50.00
K2 −0.6033 50.00 −50.00 50.00 −0.6033 50.00 −0.5721 50.00 −50.00 50.00
K3 −0.3300 50.00 −50.00 50.00 0.2083 50.00 −50.00 50.00 −0.5358 50.00
K4 −0.1750 50.00 −50.00 50.00 −50.00 50.00 0.3443 50.00 −0.4650 50.00
K5 −50.00 50.00 −50.00 50.00 −50.00 50.00 −50.00 50.00 −50.00 50.00
K6 −50.00 50.00 −50.00 50.00 −50.00 0.0636 0.0636 50.00 −50.00 50.00
K7 −50.00 50.00 0.5275 50.00 −50.00 50.00 −0.015 −0.015 −0.2775 50.00
K8 −0.9633 50.00 0.2092 0.2092 −50.00 50.00 −0.3142 50.00 −50.00 0.2092
K9 −50.00 0.2267 −50.00 50.00 −50.00 0.2683 −50.00 50.00 −50.00 50.00

K10 −50.00 0.3475 −50.00 50.00 −50.00 50.00 −50.00 50.00 −0.2421 50.00

Shaded entries indicate that limit has not been activated in corresponding attribute.

If a sample meets at least one of these rules, then the sample can be considered to have Strong
binding. The rules were then used to evaluate the validation data; its performance is summarized in
Table 6.

Table 6. Confusion matrix of Hyperbox Decision Model 3.

N = 11 Predicted Positive Predicted Negative

Actual Positive 3 0
Actual Negative 2 6

α = 0.25
β = 0.0

Again, an alternative set of rules (fifth near-optimal solution) is explored and the results are as
shown in Table 7. These can be translated into the following:

Rule 4a: IF (0.7705 ≤ K1) and IF (−0.6154 ≤ K2) and IF (−0.9186 ≤ K3) and IF (K5 ≤ 1.1882) and IF
(−0.3512 ≤ K6 ≤ 0.0834) THEN binding is Strong.
or
Rule 4b: IF (K1 ≤ 0.2158) and IF (−0.3655 ≤ K4 ≤ 0.2448) and IF (K5 ≤ 0.7986) and IF (K9 ≤ 0.2408)
THEN binding is Strong.
or
Rule 4c: IF (K1 ≤ 0.0494) and IF (K3 ≤ 0.4671) and IF (0.3443 ≤ K4) and IF (−0.5197 ≤ K10 ≤ 0.5854)
THEN binding is Strong.
or
Rule 4d: IF (1.1655 ≤ K1) and IF (K8 ≤ 0.2287) and IF (0.3412 ≤ K9) THEN binding is Strong.
or
Rule 4e: IF (−0.4561 ≤ K2) and IF (0.1083 ≤ K4) and IF (K8 ≤ −0.4592) and IF (K10 ≤ 0.3633) THEN
binding is Strong.
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Table 7. Dimensions of Hyperbox Decision Model 4.

Attribute
Hyperbox 1 Hyperbox 2 Hyperbox 3 Hyperbox 4 Hyperbox 5

xL
i1 xU

i1 xL
i2 xU

i2 xL
i3 xU

i3 xL
i4 xU

i4 xL
i5 xU

i5
K1 0.7705 50.00 −50.00 0.2158 −50.00 0.0494 1.1655 50.00 −50.00 50.00
K2 −0.6154 50.00 −50.00 50.00 −50.00 50.00 −50.00 50.00 −0.4561 50.00
K3 −0.9186 50.00 −50.00 50.00 −50.00 0.4671 −50.00 50.00 −50.00 50.00
K4 −50.00 50.00 −0.3655 0.2448 0.3443 50.00 −50.00 50.00 0.1083 50.00
K5 −50.00 1.1882 −50.00 0.7986 −50.00 50.00 −50.00 50.00 −50.00 50.00
K6 −0.3512 0.0834 −50.00 50.00 −50.00 50.00 −50.00 50.00 −50.00 50.00
K7 −50.00 50.00 −1.744 50.00 −50.00 50.00 −50.00 50.00 −50.00 50.00
K8 −50.00 50.00 −50.00 50.00 −50.00 50.00 −50.00 −0.2287 −50.00 −0.4592
K9 −50.00 50.00 −50.00 0.2408 −50.00 50.00 0.3412 50.00 −50.00 50.00

K10 −50.00 50.00 −50.00 50.00 −0.5197 0.5854 −50.00 50.00 −50.00 0.3633

Shaded entries indicate that limit has not been activated in corresponding attribute.

This alternative solution was able to classify eight out of nine positive samples and 11 out of
11 negative samples, resulting in α = 0 and β = 0.1111 for the training data set. The rules were then
used for the validation data set and the confusion matrix is shown in Table 8.

Table 8. Confusion matrix of Hyperbox Decision Model 4.

N = 11 Predicted Positive Predicted Negative

Actual Positive 3 0
Actual Negative 0 8

α = 0.0
β = 0.0

The performance of the algorithm was further tested by performing the procedure five more
times using a different sampling of training and validation data each time. The k-fold validation
was completed in 1 min and 38 s. The performance of the rules for training and validation data is
summarized in Table 9.

The variables that the enhanced hyperbox algorithm automatically determined to be significant
in making the biomineralization peptide binding class prediction were K3 (extended structure
preference), K6 (partial specific volume), K7 (flat extended preference), K9 (pK-C), and K10 (surrounding
hydrophobicity). The inclusion of these variables in the algorithm affirms and reinforces the findings
of past studies which systematically analyzed the factors that governed peptide binding to surfaces.
The inclusion of the variables that relate to the peptide conformation (K3 and K7) and protonation
state (K9) are consistent with the findings of Hughes et al., wherein they concluded that peptide
conformation is a major feature that influences the size, shape, and stability of peptide-capped
materials [30]. In addition, the incorporation of peptide variables related to water interaction, such as
K6 and K10, likewise supports the results of the atomistic simulations of Verde et al., wherein they
reported how peptide solvation influences structural flexibility and surface adsorption [31]. Thus,
the presented enhanced hyperbox model has formalized these associations into a concise classifier,
with a clearly articulated set of rules. Aside from transparency on how the decision was reached through
rule generation, another major advantage of the enhanced hyperbox model is its accuracy, as shown in
Table 10. The present model outperforms common machine learning algorithms, which were simulated
in R [32], in terms of accuracy, sensitivity, and specificity.
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Table 9. Confusion matrix of k-fold validation.

Training Validation

Fold 2 Predicted Predicted Predicted Predicted
N = 20 Positive Negative N = 11 Positive Negative

Actual Positive 6 2 Actual Positive 4 0

Actual Negative 10 2 Actual Negative 0 7

Fold 3 Predicted Predicted Predicted Predicted
N = 20 Positive Negative N = 11 Positive Negative

Actual Positive 7 0 Actual Positive 5 0

Actual Negative 0 13 Actual Negative 0 6

Fold 4 Predicted Predicted Predicted Predicted
N = 20 Positive Negative N = 11 Positive Negative

Actual Positive 8 0 Actual Positive 4 0

Actual Negative 0 12 Actual Negative 2 5

Fold 5 Predicted Predicted Predicted Predicted
N = 20 Positive Negative N = 11 Positive Negative

Actual Positive 6 0 Actual Positive 6 0

Actual Negative 0 14 Actual Negative 1 4

Fold 6 Predicted Predicted Predicted Predicted
N = 20 Positive Negative N = 11 Positive Negative

Actual Positive 5 2 Actual Positive 5 0

Actual Negative 0 13 Actual Negative 0 6

Table 10. Performance comparison of the enhanced hyperbox model with commonly used machine
learning algorithms.

Algorithm Accuracy Sensitivity Specificity

SVM (as reported in [23]) 85 90 67
Logistic Regression 55 100 29
k-Nearest Neighbor 82 100 71

Random Forest 82 100 71
Enhanced Hyperbox (this work) 100 100 100

4. Conclusions

In this work, we developed a hyperbox-based ML technique that can accurately predict the binding
affinity class of a biomineralization peptide based from the sequence. The rule-based model highlights
a quick and straightforward model-building capability which does not compromise prediction accuracy.
Interactive training via an MILP model allows the hyperbox technique to combine expert knowledge
within formation drawn from small data sets that are typical in material science applications. The model
also features a clear and transparent set of rules from which the predictions are based, making the
classification tasks reproducible and the process interpretable. The presented model is a valuable
addition to machine learning tools, which are becoming pivotal components in materials discovery
and development. In particular, the presented model can accelerate the discovery of biomineralization
peptides while minimizing trial-and-error, thereby reducing cost. The use of this ML technique for
other problems in materials science and nanotechnology should thus be explored further. Future work
can focus on expanding the model to automatically adjust the margin between the concentric boxes,
establishing heuristics for defining the number of hyperboxes, and analyzing how variations in these
parameters can potentially influence the performance of the model.
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Table S1: Full dataset used in the creation of classification algorithms.

Author Contributions: Concept development—J.I.B.J., K.B.A., R.R.T.; Literature review—J.I.B.J., M.A.B.P.;
Model programming—K.B.A.; Case study analysis—J.I.B.J., K.B.A., M.A.B.P., R.R.T.; Manuscript writing
and editing—J.I.B.J., K.B.A., M.A.B.P., R.R.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Sets
H Subset of hyperboxes
M Set of attributes considered
S Set of samples available
ST Subset of N which represents training data
SV Subset of N which represents validation data
Indices
i Index for attribute considered
j Index of samples
k Index for hyperbox
Parameters
∆ User-defined margin to separate positive from negative samples
ε Threshold for proportion of false negatives (Type II error)
C∗j True membership of sample j
M Arbitrary large number
nA Maximum number of boxes to consider attribute A in a rule
NT Total number of samples that are not members of set (e.g., negative samples)
PT Total number of samples in the set
X ji Value of sample j in dimension i
ZL

ik Lowest possible bound of box k in dimension i
ZU

ik Uppermost possible of box k in dimension i
Decision Variables
α Proportion of false positives (Type I error)
β Proportion of false negatives (Type II error)

bL
ik

Binary variable bL
ik gets a value of 1 if the lower limit of box k in dimension i is

activated, and it gets a value of 0 if not

bU
ik

Binary variable bU
ik gets a value of 1 if the upper limit of box k in dimension i is

activated, and it gets a value of 0 if not
b jk Binary variable which indicates if sample j is enclosed in box k (bjk = 1)
c j Classification of sample j based on resulting hyperbox

qL
ijk

Binary variable which indicates if sample j is below the lower bound of box k in
dimension i (qL

ijk = 1)

qU
ijk

Binary variable which indicates if sample j is above the upper bound of box k in
dimension i (qU

ijk = 1)

xL
ik Lower bound of box k in dimension i

xU
ik Upper bound of box k in dimension i
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