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Abstract: Learning to maintain postural balance while standing requires a significant, fine
coordination effort between the neuromuscular system and the sensory system. It is one of the
key contributing factors towards fall prevention, especially in the older population. Using artificial
intelligence (AI), we can similarly teach an agent to maintain a standing posture, and thus teach
the agent not to fall. In this paper, we investigate the learning progress of an AI agent and how it
maintains a stable standing posture through reinforcement learning. We used the Deep Deterministic
Policy Gradient method (DDPG) and the OpenSim musculoskeletal simulation environment based
on OpenAI Gym. During training, the AI agent learnt three policies. First, it learnt to maintain the
Centre-of-Gravity and Zero-Moment-Point in front of the body. Then, it learnt to shift the load of the
entire body on one leg while using the other leg for fine tuning the balancing action. Finally, it started
to learn the coordination between the two pre-trained policies. This study shows the potentials
of using deep reinforcement learning in human movement studies. The learnt AI behaviour also
exhibited attempts to achieve an unplanned goal because it correlated with the set goal (e.g., walking
in order to prevent falling). The failed attempts to maintain a standing posture is an interesting
by-product which can enrich the fall detection and prevention research efforts.
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1. Introduction

Postural balance is one of the key contributing factors towards fall prevention [1]. Despite the
common misconception, maintaining a standing posture does require a huge co-ordination effort
between neuromuscular and sensory systems. It also involves coordinated activity of muscles [2,3].
In contrast, walking was referred to as controlled falling [4]. Walking, which is similar to a swinging
pendulum, utilises the potential energy preserved by the upper body and actuated by gravity,
where efficiency in walking is maintained by the effective interchange between potential and kinetic
energy [4–6]. In addition, from a standing posture, gait is initiated by the de-innervation of the
muscles responsible of maintaining balance which causes the body to fall forwards, then a series of
coordinated protective steps are performed [7,8]. In postural balance, walking, running and other
human movements, the coordinated motor control of the neuro-musculoskeltal units (muscles) plays
an essential role [9].

Studies of the biomechanical and physiological aspects of human movement were conducted
to understand the neural control needed to maintain the type of movement desired [4,6,10–13].
Most of these studies included human participants recruitment, data collection using motion capture
techniques, force plates and/or electromyography electrodes (EMGs). Biomechanics analysis platforms
such as OpenSim [14] are also used extensively in different human movement studies [15–22]. The main
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challenge facing this type of studies is the fact that they involve human participants which entails
ethical and safety consideration to maintain the safety and well-being of the participants. Simulation
based studies using Opensim provided a solution away from human participants [14]. It had been
used to predict movement such as walking [23] and jumping [24].

Recently machine learning techniques have been used beside statistical analysis tools in human
movement studies with emphasis on classification, prediction and estimation tasks [25]. Bipedal and
quadrupedal robotics movement has also been studied extensively where the use of different machine
learning techniques were investigated [26–28]. Reinforcement learning (RL) [29] and especially deep
reinforcement learning (DRL) that utilised deep learning techniques are slowly but steadily providing
solutions to many simulation studies [30–33]. Reinforcement learning is observing an environment and
then learning to perform actions that will maximise a score [29]. Learning to maximise the score is done
through exploration of the environment and exploitation of past experience, where the challenge is how
to create a balance between exploration and exploitation. Continuous action spaces are still imposing
a bigger challenge for agents but more sophisticated learners were developed to solve it [34–37].
Recently, DRL was used to train a human musculoskeletal model, based on OpenSim models, to walk
and run [31–33] and even to walk with a prosthetic leg [30]. Pilotto et al. has discussed the importance
of technology in the advancement of geriatrics and prevention of falls in the elderly population [38].
While the results demonstrated by Lee et al. demonstrate posture stability, their solution presented
in [39] relied on providing a reference motion collected from participants. In our work, we focused
our efforts on self induced motion leading to posture stabilisation. In this paper, we discuss the use of
Artificial Intelligence (AI) and especially DRL to learn how not to fall. More specifically, we investigate
the learning progress of an AI agent towards maintaining a standing posture. We adopted a modular
design of the control neural network by separating the observation from the policy. We also used
multiple policies, each trained separately, as well as a coordination policy to coordinate between the
learnt policies. The rest of this paper is organised as follows. Section 2 describes the materials and
methods used in this study. Section 3 reports the results. Section 4 discusses the behaviour learnt by
the AI agent. Finally, Section 5 derives conclusions and introduces to future directions.

2. Material and Methods

In this work, we focus our efforts on studying the muscle control strategies an AI agent can
learn in order to prevent falling. This is achieved via biomechanical simulation using OpenSim
and reinforcement learning via deep neural networks. The biomechanics simulation serves as the
environment and the deep neural network serves as the motor control part of the brain.

2.1. Biomechanic Simulation Environment

The used environment is based on OpenSim [31], and OpenAI gym [40]. The human
musculoskeletal model used is based on the previous works presented in [41–43], where the model
is made up of seven body parts. The head, neck, torso and pelvis are represented as a single body
for simplicity, in addition, each leg is represented by three body parts, upper leg, lower leg and foot.
The model has 14 degrees-of-freedom (DoF), 6 DoFs (3 rotational and 3 translational) for the pelvis,
2 rotational DoFs for each hip, 1 rotations DoF foe each knee and finally, 1 rotational DoF for each
ankle. The model is actuated by 22 muscles [44], 11 muscles for each leg. The muscles actuating each
leg included the hip adductor, hip abductor, hamstrings, biceps femoris, gluteus maximus, iliopsoas,
rectus femoris, vastus intermedius, gastrocnemius, soleus, and tibialis anterior. In addition, contact
with the ground is modelled using the Hunt-Crossley model [45]. As shown in Figure 1, for each foot,
contact spheres are positioned at the heel and toes. In addition, another rectangular contact plane is
placed over the ground. Force is generated when the objects come into contact, which depends on the
velocity of the collision and depth of penetration of the contact objects [31].
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Figure 1. The actor part of the proposed AI agent. The observations (from different modalities)
read from the environment, are fed into light weight MLP networks (mini-observers) to produce an
encoded latent features. The encoded features are then fed into all policies to produce a set of actions.
The produced actions are then multiplied by the weight factors produced by the coordination network
based on the state reported by the environment. The final, weighted, action is then fed back into the
environment to actuate the muscles.

The observation fed to the AI agent included 100 values covering ground reaction forces, pelvis
velocities, joint angles and muscle state. These readings were grouped as listed in Table 1. Three values
were providing random numbers, summarising velocity vector field, from the environment were
incorporated to introduce a randomisation factor to the AI training. Typically, the AI agent should
learn how to progress within the environment by observing the score provided by the environment.
This score reflects how good or bad the AI agent behaved towards achieving the desired goal. It is
worth noting that the AI agent must be completely oblivious to what the desired goal is and thus,
it should learn based on the praise it receives from the environment (much like a toddler learning to
stand and walk). The scoring function was designed to provide a positive reward for having contact
with the ground via Fg while penalising undesired actions resulting in change in pelvis height H,
and velocity ||ṗ||, || ˙θp||. In order to maintain a standing posture the score was penalised with the
magnitude of values and change in the joint angles ||θJ||, ||∆θJ||. The score also includes penalty
for the change in joint angles in order to prevent the scissor legs posture described in [30]. This was
achieved by penalising the adduction angles θ

J
add of both legs. The muscular state was not incorporated

in the score function. The scoring function is then formulated as

RGRF = { 1, ||Fg|| > 0
0, otherwise

(1)

RAlive = 1 (2)

Cost = ||ma|| (3)

+ 8(H − Hs)2 (4)

+ 8||ṗ||+ 8||θ̇p||+ 64||θJ||+ 64||∆θJ|| (5)

+ 8γ2 + 8φ2 (6)

+ 512 θ
J
add (7)

Norm. Score = RAlive + RGRF − Norm. Cost (8)
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where Hs is the baseline pelvis height when standing, and || · || is the Euclidean norm. All angles were
normalised by π. The Norm. Cost term is the normalised cost using the sum of the weights.

Table 1. Observation Table.

Observation Size Notation (in Score fn.) Comments

Ground Reaction Forces 6 Fg 3 per foot
Pelvis Orientation/Linear/Angular Velocity 9 p, θ̇p, H, γ, φ

Joint Angles 8 θJ 4 per leg
Change in Joint Angles 8 ∆θJ 4 per leg
Muscle Actuation 22 ma 11 per leg
Muscle Force 22 mf 11 per leg
Muscle Length 22 ml 11 per leg
Random Values 3 velocity vector field [30]

2.2. Artificial Neural Network Model

For any AI agent, the choice of an artificial neural network (ANN) is largely affected by the
inputs provided from the environment for several reasons. First, the dynamic range of input values
from the environment differs based on the measured phenomenon. For example, joint angles range
from [−π,+π] and increase on a spherical scale while muscle length is normalised between [0, 1] and
increases linearly. Even with normalisation of joint angles as θ̄i = θi/π, the rate of change remains
different. The second challenge was how information leakage from different measured values during
the training of the ANN. To address these two challenges, we designed smaller neural networks to act
as mini-observers trained for encoding the input values of the phenomena sharing the same dynamic
range and purpose in the simulation. The output of these mini-observers were then concatenated into
one encoded output.

The complexity of the task also affected the design of the ANN. Specifically, during the training
of the neural network, it attempts to minimise the error between the estimated output and the target
output via calculated update gradients. The update gradients update the parameters of the neural
network at once which prevents the network from solving sub-tasks (e.g., joint flexion and extension)
in order to solve the desired task (e.g., do not fall). In order to address this challenge we chose to train
each policy separately with different initialisation parameters and then train a coordination policy
to derive a mixture of the actuation signals from different policies. There are two solutions to this
problem. The first solution is to enable only certain parts of the neural network to train while locking
the rest of the network. The other solution, which is bio-inspired, is to expand the network as needed.
In this work, we manually adapted the second solution, by training different policies separately and
then integrating them with the coordination policy. Ideally, this approach should be done automatically
by using the Neuro-Evolution of Augmenting Topology algorithm (NEAT) [46]. The NEAT algorithm
is an evolutionary algorithm which relies on generating several MLP architectures and harnessing the
power of mutations and cross-over for exploration of thousands for generations. However, the NEAT
algorithm is more suitable to figuring out the MLP topology (i.e. policy). To the best of our knowledge,
there is no evidence it could be expanded for an entire architecture of deep neural networks especially
with the computationally expensive training and the vast amount of data and/or trials requirement.
While UBER is now investing the expansion of the NEAT algorithm to deep learning [47], perhaps
the meta-learning research [48] is the closest approach to expanding the NEAT algorithm on an entire
deep learning architecture.

To that end, as shown in Figure 1, the AI model proposed in this work consists of three neural
networks; mini-observer networks (one for each modality provided by the environment), policy
networks (one for each sub-task) and a coordination network to combine the actions from different
policies into a final actuation signal.
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2.3. Reinforcement Training Procedure

Due to the dynamic nature of the problem, we chose to utilise deep reinforcement learning.
We adopted the Deep Deterministic Policy Gradient (DDPG) method because of its impressive results
in continuous action spaces [34]. The DDPG model consists of an actor network (described above) and
a critic network to evaluate the actions produced by the actor in relation to the environment. The critic
network takes the actions produced by the actor network and the values obtained from the environment
and produces a score [34,49,50]. In our setup, the actor is the entire coordinated multi-policy shown in
Figure 1 while the critic is a classical multi-layer-perceptron (MLP) neural network model which takes
the observations and coordinated action as input and produces an estimated score. The estimated
score is then compared to the actual score reported from the environment.

In our experiments, we altered the training algorithm to suit the incremental expansion of the
policy neural networks. The proposed training was carried out in two stages, action policy training and
policy aggregation. We started by training two policy networks for 10,000 steps (roughly 100 episodes).
Both policies were initialised with different seeds in order to obtain diversity in the outcome. During the
training the neural network model with the best score was stored. In the second stage, both action
policies were combined and a new coordination policy was constructed. The coordination policy works
as a switch to choose the weight of the actuation signals of different muscles and produce the final
action. During this stage, the aggregated policies and the coordination policy were trained with a fresh
experience replay buffer and a critic neural network. The rationale behind this is that the environment
has changed from the policies’ point of view and thus new experiences must be gathered.

When expanding the policy pool with a new policy network in the second stage, the trained
weights of the previous policy network is copied to the new untrained policy network instead of the
standard random initialisation. This allows the newly added policy to have a training head start with
the current training state and protects the previously trained policies from being drastically altered
while adapting to the newly added policy.

During the coordination refinement stage of the training, we prevent all policy networks from
training and use the experience to fine tune the coordination network. This allows the coordination
network to adapt to the distinctive postural stability strategies adopted by different policies. Locking
the policies is also essential to preserve their trained strategies without leaking information from other
policies and the coordinator network.

3. Results

During the training of the AI agent, the final goal was clearly defined by the scoring function
implemented in the environment. However, in order to achieve this goal, the AI agent had to learn to
discover and solve two more intermediate tasks,

1. identify the importance of centre of gravity (COG); and
2. identify and exploit the dominant leg concept.

The training took place on two stages with incrementally increasing number of policies from one
policy towards a total of three policies.

As illustrated in Figure 2-top, in the first few training episodes the AI agent explored the extremes
of the de-innervating (10 episodes) and randomly innervating (100 episodes) the muscle-set controlling
the body before it discovered the concept of the centre of gravity (COG). This allowed the AI agent
attempt maintaining the COG and Zero-Moment-Point (ZMP) in front of the body. This, in return,
allowed it to fall bottom-first instead of head-first. This resembles the behaviour toddlers exhibit when
falling from a standing posture. It is worth noting that neither the COG nor the ZMP were provided as
an input to the AI agent. In contrast to toddlers, the newly discovered concept (from the AI agent’s
perspective) was derived from the need to balance. Toddlers, on the other hand, already grasp this
concept during the early stages of locomotion, which are sitting without assistance, crawling, standing
with assistance and standing without assistance with an average of 1.43± 2.1 months between different
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milestones [51]. This is achieved via inputs from the vestibular, visual, and somatosensory sensory
systems [52]. During the second stage of the training (two policies), the AI agent learnt to exploit the
concept of using a dominant leg [53]. This allowed it to shift the load of the entire body on one leg
while using the other leg for fine tuning the balancing action.

No Actuation Random Actuation Ok!! COG

Dominant Leg Ok!! Coordination Finer Coordination

WOW!! There is forward too!! Easy though!! Finally Standing!!!

Figure 2. The learning of an AI agent towards maintaining a standing posture. Rows: Individually
trained policies. Columns: Warm up episodes, better coordination, refined coordination (left to right).
Muscles are coloured based on innervation level (Blue = 0 to Red = 1).

The first policy was trying to prevent the backward falls by exploiting the dominant leg and
thrusting the pelvis forward. The second policy, however, adopted to perform a leaning forward action
by pivoting on the heels and adjusting the ZMP via shifting the weight of the upper body anteriorly
as shown in Figure 2-bottom. While it abused the newly discovered capability, the fine tuning of
the coordination neural network allowed it to maintain the balance between the new action and the
previously learnt actions. Finally, during the fine tuning and coordination between the two trained
policies, the AI agent explored the possibility of expanding the leg base and finally managed to stand.

As shown in Figure 3, the muscle actuation pattern has changed in four milestones. Each milestone
was trained for 500,000 simulation steps. The maximum training episode length was 500 simulation
steps or 5 s (1 step = 0.01 s). Each milestone was evaluated via 35 test trials. Actuation tables are
available in the supplementary materials. First, the AI agent adopted a strategy with three actuation
levels (no, medium and full actuation). While this strategy does not actually maintain balance, it did
serve as a foundation for subsequent milestones. In the next milestone, the AI agent adopted a left
dominant leg strategy by maximising the actuation of the left gluteus maximus (glut_max_l) muscle
to thrust the pelvis forward while locking the left knee with full extension by fully actuating the
vastus intermedius (vasti_l) muscle. Accordingly, the right gluteus maximus and vastus intermedius
muscles were actuated to achieve dexterous traction with the ground.
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Figure 3. Four milestones of training (one trained model each). The box plot shows the duration before
falling epsdlen for different milestones. The line plots show the AI-generated actuation signals for
different left and right leg muscles. The AI agent adopted a knee locking strategy while thrusting the
pelvis forward to control the centre of gravity. Each milestone was trained for 500,000 simulation steps.
The final agent was able to maintain balance for 4 s on average. The maximum training episode length
was 500 simulation steps or 5 s (1 step = 0.01 s). Solid blue line is the average of 35 test trials and the
light blue envelop is the estimated standard error at p < 0.05 using random bootstrapping [54].

This strategy was further refined in the third milestone which allowed the agent to prolong the
balancing action by engaging the hamstrings (hamstrings) and the iliopsoas (iliopsoas) muscles for
finer hip and knee control while exploiting alternating foot tapping as shown in the actuation graphs of
the gastrocnemius (gastroc) and tibialis anterior (tib_ant) muscles. In the fourth and final milestone,
the AI agent further improved the actuation strategy to maintain longer standing duration. Because the
AI agent adopted a locked knee strategy, it did not attempt to actuate the soleus muscle (soleus).
This can be considered a local minimum caused by the negligible weight of the effort penalty term in
the score function (Equation (3)).

4. Discussion

Because each policy is self-contained, the proposed approach is expected to work with other
off-policy reinforcement learning algorithms such as Soft Actor Critic (SAC) [55] and Distributed
Distributional DDPG (D4PG) [56]. However, while early tests using SAC did show similar behaviour,
we anticipate technical challenges with D4PG because of the asynchronous update to the experience
replay buffer. In this section we discuss an interesting behaviour of the AI agent, limitations of the
study, and future directions.

4.1. An Interesting Behaviour

An interesting AI behaviour emerged during an early training stage of the coordination neural
network. Because the ultimate goal remains not to fall, the AI agent explored the option of taking a
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protective step to maintain a better balance. In doing so, the AI agent learnt to take few coordinated
steps as shown in Figure 4. This behaviour took place when we injected the AI agent with noise
to increase exploration. However, because the score function was designed for standing, the learnt
behaviour did not constitute a proper gait cycle. Also, the limited capacity of the AI model may have
limited the dexterity of the learnt gait cycle. That been said, the ambition of the AI agent to engage in
locomotion as a way to prevent falling remains an interesting behaviour. Considering Novacheck’s
conclusion that walking is controlled falling [4], the AI behaviour here cannot be considered walking
because it is not self induced. This behaviour known as the value misalignment problem in computer
science literature. This occurs when the score function is not specific enough to excite the AI agent
to learn the desired task, but instead it causes the AI agent to engage in an obsessive behaviour of
maximising the score by any means necessary. This problem poses a paradox because having a very
specific score function may lead the neural networks to overfit on the observed training scenarios and
fail to generalise to other variations in the environment. It is worth noting that this locomotion attempt
(3 steps) could not be reproduced with the same coordination demonstrated in the video attached in
the supplementary material.

A protective step can stabilise more!! Oh yeah :-)

Let’s exploit this ;-) Hey, we are walking!!

Figure 4. The AI agent explored the option of taking a protective step (top-left). When the associated
score was positive (top-right), the AI agent started exploiting this with both legs (bottom-left). One
thousand episodes later, the AI agent was able to provide coordinated actuation signals to perform
a short locomotion (3 steps). Muscles are coloured based on innervation level (Blue = 0 to Red = 1).
Locomotion video is available in the supplementary material.

4.2. Limitations

It is worth noting that, theoretically, the AI agent should be able to achieve the same result using
only two policies (ideally a much deeper single policy). This limitation is usually addressed via model
pruning which discards the redundant parts of the neural network. However, when applying model
pruning, the performance (measured by standing duration) dropped by 50% and the model could
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not sustain a standing posture for more than two seconds. This suggests that the two policies do
indeed contribute to posture stabilisation. We also noticed that after allowing training on a third policy,
the AI agent discovered a new sub-task of slowly spreading the feet laterally to achieve a wider base.
This behaviour opens the door for conducting further research into rearranging the policy neural
networks into a chain or a pipeline. In this case, there will be no need for the coordination network.
That being said, distributing the load over multiple neural networks does provide an explanation
advantage of the behaviour of the AI model which is an important step towards explainable AI (XAI).

The main challenge with training a single neural network on such a complex task is the lack of
control over the flow of gradient update. Not only does it update the entire policy at once which alters
the policy and the first few observation layers interacting with the environment, but also deprives
the agent from perfecting any of the sub-tasks required to solve the problem. This was observed
as an oscillation between two policies favouring leaning forward and backward in the 2D planar
setup, i.e., no lateral movement. In the 3D setup, we used in this work, the lateral movement became
a problem not only because of the added dimension but also because the hip adduction and hip
abduction muscles are now engaged. These muscles’ maximum isometric force is approximately
10 times the maximum isometric force of muscles like the biceps femoris which flexes the knee
joint. This highlights the discrepancy in the characteristics of different actuators and is now being
investigated using learnable parameterised activation functions in [57].

5. Conclusions

In this paper, we followed the learning journey of an AI agent attempting to assume a stable
standing posture. We used the Opensim biomechanics simulation environment [30]. We adopted the
DDPG reinforcement learning technique to derive coordinated continuous muscle actuation signals
in order to stabilise a standing posture [34,49,50]. The AI agent learnt to maintain a standing posture
for 4 s by learning two sub-tasks of leaning backward, forward and the coordination between the
two actions. While considered a short duration for maintaining a standing posture, it is worth noting
that maintaining a standing posture for prolonged periods requires recurrent backtracking through
different standing states. Such a recursive behaviour would require utilising Long-Short-Term-Memory
modules (LSTM). Nevertheless, it was very interesting to witness the evolution of learnt sub-tasks as
we allowed the AI agent to train on new policies.

The behaviour witnessed in this study highlights two more research points to be investigated.
The first research point is related to training AI models using synthetic data. The main motivation
deriving this area forward is the expanding gap in available data for training AI models. This issue
becomes more significant when considering sensitive applications where collecting realistic data
is difficult or may raise safety and ethical concerns. Fall detection and prevention is a growing
concerns among public health where there is a shortage in datasets of realistic fall posture sequences.
These datasets are usually recorded by stunt actors who can fall safely or generated by 3D artists [58].
However, both solutions do provide data that is not a real representation of fall occurrences. Fortunately,
the presented work does derive the coordinated actuation of muscles that do cause a realistic fall.
The AI agent’s failed attempts to maintain a standing posture can provide a comprehensive dataset of
falling posture sequences that can advance the fall detection and prevention research endeavours.

The second research point to be investigated is the discovered AI ambition to explore and
exploit locomotion as a mean to prolong not falling. This problem is known in AI research as value
misalignment problem and it has sparked a huge debate among computer scientists and philosophers.
The reason for this is that relying on maximising the score solely can excite the AI agent to achieve this
via exploiting the environment. While the argument of designing tighter score functions is sound,
it is a very fine line that we have to walk between resorting to classical rule-based AI and the modern
aspirations towards Artificial General Intelligence (AGI). This, in return, may introduce much feared
scenarios of having intelligent machines running critical aspects of human lives [59]. While these
scenarios are exaggerated in the media and the dystopian literature, it is unlikely to actually occur in
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the near future due to the limitation of compute power. However, not only does this debate raise good
questions regarding AI safety, ethics and even rights, it also raises questions about our societal rights
and duties.

Supplementary Materials: The following are available online at http://www.mdpi.com/2673-2688/1/2/19/s1.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AGI Artificial General Intelligence
ANN Artificial Neural Network
COG/COM Centre of Gravity/Mass
D4PG Distributed Distributional Deep Deterministic Policy Gradient
DDPG Deep Deterministic Policy Gradient
DoF Degree of Freedom
DRL Deep Reinforcement Learning
LSTM Long-Short-Term-Memory
MLP Multi-layer Perceptron
NEAT Neuro-Evolution of Augmenting Topology
RL Reinforcement Learning
XAI Explainable Artificial Intelligence
ZMP Zero Moment Point
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30. Kidziński, Ł.; Ong, C.; Mohanty, S.P.; Hicks, J.; Carroll, S.; Zhou, B.; Zeng, H.; Wang, F.; Lian, R.;
Tian, H.; et al. Artificial Intelligence for Prosthetics: Challenge Solutions. In The NeurIPS’18 Competition;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 69–128.
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