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Abstract: Carrot yield maps are an essential tool in supporting decision makers in improving their
agricultural practices, but they are unconventional and not easy to obtain. The objective was to develop
a method to generate a carrot yield map applying a random forest (RF) regression algorithm on a
database composed of satellite spectral data and carrot ground-truth yield sampling. Georeferenced
carrot yield sampling was carried out and satellite imagery was obtained during crop development.
The entire dataset was split into training and test sets. The Gini index was used to find the five
most important predictor variables of the model. Statistical parameters used to evaluate model
performance were the root mean squared error (RMSE), coefficient of determination (R2) and mean
absolute error (MAE). The five most important predictor variables were the near-infrared spectral
band at 92 and 79 days after sowing (DAS), green spectral band at 50 DAS and blue spectral band at
92 and 81 DAS. The RF algorithm applied to the entire dataset presented R2, RMSE and MAE values
of 0.82, 2.64 Mg ha−1 and 1.74 Mg ha−1, respectively. The method based on RF regression applied to a
database composed of spectral bands proved to be accurate and suitable to predict carrot yield.

Keywords: horticultural crops; random forest regression; remote sensing; satellite imagery; spectral
bands; yield estimation; yield forecast

1. Introduction

Yield maps are one of the most used features in precision agriculture (PA) [1]. PA is a management
strategy that assists decision makers by leveraging predicted variability from the collected, processed
and analyzed spatial, temporal and individual data [2]. PA aims to improve resource use efficiency,
yield, quality, net economic return and sustainable production [2].

Yield maps can be generated from data collected through different harvesting systems: (a) manually
harvested (citrus and horticultural crops [3]) and (b) mechanically harvested (data from yield monitors,
for example, in soybean and corn [4]). Yield mapping from manually harvested data is challenging
since the harvesting process is highly laborious yet produces better sampling quality [5]. On the other
hand, yield mapping from yield monitors that collect high-density data with less human labor is
limited by several factors that affect data quality such as the need for constant inspection of the sensor
system and calibration before and during the harvesting process [6].

Data quality is one of the key features that determines the accuracy and correct interpretability of
the results, and this topic has already been explored by [7]. In the era of big data, massive volumes
of highly varied data can be obtained, analyzed and used to support decision-making [8]. Hence,
machine learning (ML) presents itself as a potential tool in identifying rules and patterns in these kinds
of datasets [9] that can cope both with linear and non-linear problems [10].
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In this light, remote sensing (RS) becomes a suitable alternative in assessing yield maps instead
of using yield monitor data [11,12], where data is compromised by sensor system factors such as
inappropriate calibration [6]. RS generates sufficiently large amounts of data to be considered big
data [13]. RS techniques provide instantaneous, non-destructive, quantitative information on crop
conditions and yield estimation [14–16]. RS imagery is commonly applied to forecast annual crop yield
as an alternative to yield monitors. However, few studies have investigated the use of RS imagery to
estimate yield for horticultural crops [12].

The use of yield maps is widespread for annual crops such as corn and soybean [4], yet this
technique remains unutilized for horticultural crops like carrots, even though it is known that yield
mapping provides beneficial data to support decision makers [17]. As carrot crops present high
economic value, efforts to optimize its crop management based on PA techniques are justified, for
example, by applying site-specific management [17].

Different approaches to estimate crop yield have been developed, and the application of ML
algorithms on databases composed of vegetation indices (VIs) derived from satellite imagery data is
being largely adopted [18–21]. The random forest (RF) algorithm currently stands out among the others
in predicting crop yield on datasets composed of VIs (sunflower [22], sugarcane [23], and rice [24]) or
spectral bands (corn [25]). Using ML to predict yield from VIs has shown potential in discovering new
interactions [9]. It is thus important to look for similar methods in predicting yield based on spectral
bands, as there is still a lack of knowledge on how they relate to crop production.

Given the lack of yield map availability for horticultural crops [12], especially for carrot crops, and
keeping in mind the existence of methods to generate yield maps from manually harvested crops [3], it
is also important to look for alternatives that will allow carrot farmers to have access to yield maps
similar to what has been done for citrus crops [26].

As technology advances in agriculture, with high-performance computers becoming the norm,
machine learning techniques becoming more popular and satellite imagery data becoming easily
accessible, there is opportunity to develop fast, accurate and reliable methods in generating carrot
yield maps based on (a) spectral data from satellite imagery instead of VIs, (b) on-field punctual carrot
yield sampling (ground-truth) and (c) the application of a random forest regression algorithm. Hence,
the objective of this work was to develop a method to generate carrot yield maps by applying an RF
regression algorithm on a database composed of raw spectral data from satellite imagery and on-field
carrot yield sampling data to further extrapolate the fitted model to larger carrot cultivated areas.

2. Materials and Methods

2.1. Study Site

This study was carried out during the 2017 crop season in two irrigated agricultural fields with a
central pivot located in Uberaba (19◦31′7” S and 47◦46′45” W), state of Minas Gerais, Brazil (Figure 1).
The site has a tropical climate classified as Aw (Koppen-Geiger classification) with an annual average
precipitation, temperature and altitude of 1571 mm, 22.3 ◦C and 789 m, respectively. Carrot (cv. Verano)
was mechanically seeded in May 2017. The soil was previously prepared with one plowing and two
harrowing procedures. Carrot seeding was done in beds of 1.75 m width, and seed deposition was
arranged in three sets: triple rows at each of the edges and double rows at the central position. Carrot
harvesting was initiated in August 2017.
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Figure 1. Pivot location of the study sites in Brazil 

2.2. Harvesting and Yield Mapping 

A semi-mechanized carrot harvesting system was used in this study as shown in Figure 2. The 
harvester (Figure 2A), a Dewulf GKIIISE (Dewulf Group, Roeselare, Belgium), harvests the carrot 
roots, removes the soil, cuts the leaves and places the carrots on the left side of the harvester with 5.25 
m displacement (Figure 2B). As the harvester machine travels through the field, carrots are collected 
and displaced 16.5 m ahead of the point where they were initially taken. To account for this, an offset 
was applied to adjust the sample deposition location. The harvesting operation was carried out in a 
single direction due to the operating mode of the harvester. This resulted in systematic root 
deposition errors throughout the entire harvesting path. These positioning errors were removed in a 
post-processing procedure. Pre-instructed collectors selected the roots according to market standards 
[27]. The roots that did not fit market standards were discarded in the field (Figure 2C) and the others 
placed in plastic boxes with dimensions of 0.30 m × 0.33 m × 0.55 m and capacity of 52 L. Following 
the methodology described by [3], which we adapted to the above conditions, all boxes in the field 
were georeferenced using a global navigation satellite system (GNSS) receiver, model SMART-AG 
(NovAtel Inc., Calgary, Canada) (Figure 2D). 

 
Figure 2. Semi-mechanized carrot harvesting system. Carrot harvester (A). Deposition of the roots 
next to the harvester (B). Root selection and roots suitable (inside boxes) and not suitable (on the floor) 
for trading (C). Carrot box georeferencing procedure (D) 

Carrot yield map generation was carried out in three steps according to the methodology 
adapted from [3]. First, a layer was created using a regular polygon grid extracted from satellite 
imagery with a spatial resolution of 3 m × 3 m (Figure 3A and 3B). Second, the number of boxes in 
each pixel was counted (Figure 3C and 3D). Outliers were removed according to the method in [28]. 
Areas presenting missing values were estimated based on the mean value among their neighbors. As 
a result of the previous steps, a carrot box quantity map (box ha−1) was made. Third, the carrot box 
quantity map was converted into a yield map (Mg ha−1) by multiplying the number of boxes inside 

Figure 1. Pivot location of the study sites in Brazil.

2.2. Harvesting and Yield Mapping

A semi-mechanized carrot harvesting system was used in this study as shown in Figure 2.
The harvester (Figure 2A), a Dewulf GKIIISE (Dewulf Group, Roeselare, Belgium), harvests the carrot
roots, removes the soil, cuts the leaves and places the carrots on the left side of the harvester with 5.25 m
displacement (Figure 2B). As the harvester machine travels through the field, carrots are collected and
displaced 16.5 m ahead of the point where they were initially taken. To account for this, an offset was
applied to adjust the sample deposition location. The harvesting operation was carried out in a single
direction due to the operating mode of the harvester. This resulted in systematic root deposition errors
throughout the entire harvesting path. These positioning errors were removed in a post-processing
procedure. Pre-instructed collectors selected the roots according to market standards [27]. The roots
that did not fit market standards were discarded in the field (Figure 2C) and the others placed in plastic
boxes with dimensions of 0.30 m × 0.33 m × 0.55 m and capacity of 52 L. Following the methodology
described by [3], which we adapted to the above conditions, all boxes in the field were georeferenced
using a global navigation satellite system (GNSS) receiver, model SMART-AG (NovAtel Inc., Calgary,
Canada) (Figure 2D).
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Figure 2. Semi-mechanized carrot harvesting system. Carrot harvester (A). Deposition of the roots
next to the harvester (B). Root selection and roots suitable (inside boxes) and not suitable (on the floor)
for trading (C). Carrot box georeferencing procedure (D).

Carrot yield map generation was carried out in three steps according to the methodology adapted
from [3]. First, a layer was created using a regular polygon grid extracted from satellite imagery with a
spatial resolution of 3 m × 3 m (Figure 3A and 3B). Second, the number of boxes in each pixel was
counted (Figure 3C and 3D). Outliers were removed according to the method in [28]. Areas presenting
missing values were estimated based on the mean value among their neighbors. As a result of the
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previous steps, a carrot box quantity map (box ha−1) was made. Third, the carrot box quantity map
was converted into a yield map (Mg ha−1) by multiplying the number of boxes inside each pixel by
the weight of one carrot box. The weight assigned to one carrot box was calculated by averaging the
weight of 150 carrot boxes.
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Figure 3. Procedure to generate a carrot yield map. Extract polygon grid from a PlanetScope image 
with 3 m × 3 m spatial resolution (A and B); carrot boxes inside each pixel of 3 m × 3 m (C). Count of 
the number of boxes inside each pixel of 3 m × 3 m (D). 

2.3. Satellite Imagery Data 

Cloud Planet Scope satellite images (spatial resolution of 3 m × 3 m) were downloaded from the 
archives of the Planet website [29] for the study period from May 1st to August 31st of 2017. Images 
were collected from sowing to harvest period. The set of images was provided in 16-bit GeoTiff 
format, each containing four spectral bands: blue (B) (455–515 nm), green (G) (500–590 nm), red (R) 
(590–670 nm) and near-infrared (NIR) (780–860 nm). Data was received as an Ortho Scene product 
(level 3B), which relates to a top-of-atmosphere (TOA) reflectance suitable for analytic and visual 
applications. Then, a python algorithm to automatically correct the radiance and calculate the 
reflectance was adapted from [30] to work in the R environment. With this, each spectral band in the 
images was calibrated using the data-specific utilities of R v3.5.5 [31] software, in which the digital 
numbers of the sensor were converted into spectral radiance to measure the amount of 
electromagnetic radiation reflected from a spot on the surface. Spectral radiance (Lλ) was determined 
by applying the calibration coefficients from the image metadata [19]. Then, reflectance images were 
generated from the calculated radiance. Reflectance (dimensionless) is usually the ratio between the 
reflected and incoming radiance [31]. In this case, the reflectance was calculated through Equation 1, 
which is the TOA reflectance, not taking into account any atmospheric influence [32]. 

REF(i) = [RAD(i) π SunDist2] [EAI(i) cos(SolarZenith)]−1 (1) 

where REF = reflectance value, RAD = radiance value, i = number of the spectral bands, SunDist = 
Earth-Sun distance on the day of acquisition, EAI = exo-atmospheric irradiance, SolarZenith = 90°—
sun elevation. Note that all these variables are available in the image metadata. 

Images were chosen according to the sensor archive availability and cloud cover. All the images 
were acquired on days of low cloud cover (<1%). In this study, the spectral bands from the temporal 
stack were used as data input to analyze their relation with the ground-truth carrot yield data 
samples. 

2.4. Dataset 

On-farm punctual carrot sampling data was incorporated into the satellite imagery data with 
the same spatial resolution (3 m × 3 m). Each pixel contained (a) temporal spectral bands (red, green, 
blue and NIR) from the satellite images taken during the carrot growing period and (b) carrot yield 
observed values. This resulted in a dataset composed of 89 variables (one response variable and 88 
predictive variables) and 15,093 sampling points. Furthermore, the data was divided into training 
(2/3) and test (1/3) datasets to apply the RF regression algorithm. After the application of the RF 
regression model to the training and test datasets, the fitted model was applied to the entire dataset 
as well as an area outside the ground-truth sampling region. 

2.5. Random Forest Regression Prediction 

Figure 3. Procedure to generate a carrot yield map. Extract polygon grid from a PlanetScope image
with 3 m × 3 m spatial resolution (A,B); carrot boxes inside each pixel of 3 m × 3 m (C). Count of the
number of boxes inside each pixel of 3 m × 3 m (D).

2.3. Satellite Imagery Data

Cloud Planet Scope satellite images (spatial resolution of 3 m × 3 m) were downloaded from the
archives of the Planet website [29] for the study period from 1 May to 31 August of 2017. Images were
collected from sowing to harvest period. The set of images was provided in 16-bit GeoTiff format, each
containing four spectral bands: blue (B) (455–515 nm), green (G) (500–590 nm), red (R) (590–670 nm)
and near-infrared (NIR) (780–860 nm). Data was received as an Ortho Scene product (level 3B), which
relates to a top-of-atmosphere (TOA) reflectance suitable for analytic and visual applications. Then,
a python algorithm to automatically correct the radiance and calculate the reflectance was adapted
from [30] to work in the R environment. With this, each spectral band in the images was calibrated
using the data-specific utilities of R v3.5.5 [31] software, in which the digital numbers of the sensor were
converted into spectral radiance to measure the amount of electromagnetic radiation reflected from a
spot on the surface. Spectral radiance (Lλ) was determined by applying the calibration coefficients
from the image metadata [19]. Then, reflectance images were generated from the calculated radiance.
Reflectance (dimensionless) is usually the ratio between the reflected and incoming radiance [31]. In
this case, the reflectance was calculated through Equation (1), which is the TOA reflectance, not taking
into account any atmospheric influence [32].

REF(i) = [RAD(i) π SunDist2] [EAI(i) cos(SolarZenith)]−1 (1)

where REF = reflectance value, RAD = radiance value, i = number of the spectral bands,
SunDist = Earth-Sun distance on the day of acquisition, EAI = exo-atmospheric irradiance,
SolarZenith = 90◦—sun elevation. Note that all these variables are available in the image metadata.

Images were chosen according to the sensor archive availability and cloud cover. All the images
were acquired on days of low cloud cover (<1%). In this study, the spectral bands from the temporal
stack were used as data input to analyze their relation with the ground-truth carrot yield data samples.

2.4. Dataset

On-farm punctual carrot sampling data was incorporated into the satellite imagery data with the
same spatial resolution (3 m × 3 m). Each pixel contained (a) temporal spectral bands (red, green,
blue and NIR) from the satellite images taken during the carrot growing period and (b) carrot yield
observed values. This resulted in a dataset composed of 89 variables (one response variable and 88
predictive variables) and 15,093 sampling points. Furthermore, the data was divided into training (2/3)
and test (1/3) datasets to apply the RF regression algorithm. After the application of the RF regression
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model to the training and test datasets, the fitted model was applied to the entire dataset as well as an
area outside the ground-truth sampling region.

2.5. Random Forest Regression Prediction

RF regression is a combination of decision trees, where each tree depends on the values of a
random vector sampled independently from the input vector with the same distribution for all trees in
the forest [33]. According to [34], RF differs from single decision tree models because it relies on the
average result of many trees (ntree).

RF regression was implemented in the R framework [31] with the randomForest package [35].
From this package, the randomForest() and predict() functions were used to fit the RF regression
model and predict yield respectively. To improve the model accuracy, it was necessary to fine-tune
some parameters (ntree and predictor subset value—mtry). Thus, a bootstrapping sample size equal to
two-thirds of the entire dataset was used to grow each tree, and the remaining one-third was used to
calculate out-of-bag (OOB) error. The set.seed(123) function was used to obtain reproducible results.
The default predictor subset (mtry) value of the randomForest package [35] is typically equal to the
number of predictors (p) divided by three. However, it is necessary to calculate the optimal mtry value
since it depends on the data [36]. According to [33], RF can grow as many trees as desired and the
results will not overfit. In contrast, [36] suggests that too many trees would result in a model that is too
rich, which could increase variance and affect prediction accuracy. To mitigate this, the prediction error
rates were calculated for the RF regression algorithm for each ntree value from 0 to 500. The ntree value
that presented the lowest error before stabilization was selected. A mean decreased Gini index was
applied to find the five most important variable predictors used by the model to estimate yield. Variable
selection through a mean decreased Gini index has been largely applied in RF algorithms [37,38].

The performance indicators used to evaluate the model’s goodness of fit were the root mean
squared error (RMSE—Equation (2)), coefficient of determination (R2—Equation (3)) and mean absolute
error (MAE—Equation (4)) [19]. For each sampled point, the prediction error (the difference between
the predicted carrot yield (Mg ha−1) of the model and observed yield (Mg ha−1)) and the absolute error
percentage were calculated. Maps were made with Quantum Geographic Information System (QGIS)
software [39].

RMSE = {n−1 [
∑

(yi - ŷ)2 + . . . + (yn - ŷ)2]}0.5 (2)

where RMSE = root mean squared error, n = number of samples, y = observed variable response and
ŷ = predicted variable response.

R2 = 1− {[
∑

(yi - ŷ)2 + . . . + (yn - ŷ)2] [
∑

(yi - ӯ)2 + . . . + (yn - ӯ)2]−1} (3)

where R2 = coefficient of determination, n = number of samples, y.= observed variable response,
ŷ = predicted variable response and ӯ= mean value of the observed response variable.

MAE = {n−1 [
∑

(|yi - ŷ|) + . . . + (|yn - ŷ|)]} (4)

where MAE = mean absolute error, n = number of samples, y = observed variable response and
ŷ = predicted variable response.

A flowchart corresponding to the carrot yield prediction and mapping procedure is shown in
Figure 4. It presents the process through the stages of data collection using satellite imagery (including
pre-processing and data selection), georeferenced carrot yield sampling, data merging (satellite imagery
and carrot yield sampling data), data splitting (train and test data) and RF regression application.
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Figure 4. Carrot yield prediction and mapping flowchart 
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The descriptive statistics of the weight of 150 carrot root boxes are presented in Table 1. It shows 
a standard deviation of 0.62 kg box−1, a coefficient of variance of 2.15%, a minimum value of 27.20 kg 
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from May 1st and August 31st of 2017 were selected. A total of 88 spectral bands were obtained for 
the period of the crop cycle. The 88 spectral bands did not present a correlation with carrot yield 
values, despite the reflectance of the bands showing a relationship with the plant vegetative stage. 
This non-linear correlation highlights the suitability of applying RF to this dataset since it can cope 
with non-linear problems. The NIR band reflectance increased during the growing period and the 
reflectance values of R, G and B bands decreased at 40 days after sowing (DAS) (Figure 5). In this 
period, aerial parts (leaves) of the crop are in intense development stages [40–42]. At 40 DAS, the 
amplitude across R, G and B bands decreases in association with the highest growth phase of carrot 
roots [40–42]. Similar reflectance behavior was found for crops other than carrots, such as (a) tomato, 
(b) potato and (c) watermelon, when the NIR band has the highest reflection rate during the growth 
period [43]. 

As shown in Figure 5, despite the difficulties in obtaining satellite imagery during the carrot 
crop cycle caused by the rainy season, it was possible to gather images from almost all the stages 
leading up to harvest with minimal gaps (6–21 DAS, 57–65 DAS and 69–78 DAS). [44] emphasized 
the problem of obtaining satellite images during rainy seasons in predicting carrot and corn crop 
water footprints. Nevertheless, despite the absence of satellite images during the rainy season, it was 
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3. Results and Discussion

3.1. Harvesting and Yield Mapping

The descriptive statistics of the weight of 150 carrot root boxes are presented in Table 1. It shows
a standard deviation of 0.62 kg box−1, a coefficient of variance of 2.15%, a minimum value of
27.20 kg box−1, a maximum value of 30.09 kg box−1, a median value of 28.68 kg ha−1 and an average
weight value of 28.59 kg box−1. From this, a value of 28.59 kg was assigned to each carrot box to
continue the procedure to generate carrot yield maps.

Table 1. Descriptive statistics of 150 boxes of carrot roots.

Min 1 Median Mean a Max 2 Standard Deviation b CV 3,c

kg box−1 %

27.20 28.68 28.59 30.09 0.62 2.15
1 Minimum, 2 maximum, 3 coefficient of variance; a mean = [

∑
(yi + . . . + yn)] n−1, b standard deviation (s) = {(n-1)−1

[
∑

(yi – ӯ)2 + . . . + (yn – ӯ)]2}0.5, c CV = 100 s ӯ−1, where y1 = observed response variable, ӯ= mean value of the
observed response variable and n = number of samples.

3.2. Satellite Imagery Data

A total of 22 satellite images that presented less than 1% of cloud cover over the area of study from
1 May and 31 August of 2017 were selected. A total of 88 spectral bands were obtained for the period
of the crop cycle. The 88 spectral bands did not present a correlation with carrot yield values, despite
the reflectance of the bands showing a relationship with the plant vegetative stage. This non-linear
correlation highlights the suitability of applying RF to this dataset since it can cope with non-linear
problems. The NIR band reflectance increased during the growing period and the reflectance values
of R, G and B bands decreased at 40 days after sowing (DAS) (Figure 5). In this period, aerial parts
(leaves) of the crop are in intense development stages [40–42]. At 40 DAS, the amplitude across R, G
and B bands decreases in association with the highest growth phase of carrot roots [40–42]. Similar
reflectance behavior was found for crops other than carrots, such as (a) tomato, (b) potato and (c)
watermelon, when the NIR band has the highest reflection rate during the growth period [43].
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possible to move forward with the RF regression model in this study to predict carrot yield by relying 
on spectral bands collected from satellite imagery data during the dry periods. 

 
Figure 5. The reflectance of the Planet Scope image bands throughout the crop cycle 

3.3. Random Forest Regression Prediction 

The predictive precision curves shown in Figure 6 were constructed from the mean execution 
error values using actual and predicted carrot yield values generated by each reduced model. A mtry 
value equal to 29 (33% of the observations) was used, similar to the default value of the randomForest 
package. According to Bernard et al. [45], this default value of mtry is reasonable but can be improved 
upon. After adjustments of the mtry values, ntree values were changed from 0 to 500 with an 
increment of one tree at a time (Figure 6A). When the number of decision trees in RF increases, the 
error rate in each case decreases and gradually converges [46]. The average error rate of RF was close 
to 8.8% for both ntree values of 100 and 500. Therefore, a ntree value of 100 was chosen, as it was close 
to the minimum error rate, maximizing accuracy. This value corresponds with the elbow on the 
graph, a method used to select the best number of trees, similar to [47]. 

 
Figure 6. Random forest tuning. Error rate vs. number of trees (A) and variable importance according 
to mean decrease Gini (B). BAND = spectral bands; NIR = near-infrared; G = green; B = blue; R = red; 
DAS = days after sowing. 

The five most important variables used to predict carrot yield with RF regression were identified 
as (a) NIR spectral band at 92 DAS, (b) NIR spectral band at 79 DAS, (c) green spectral band at 50 
DAS, (d) blue spectral band at 92 DAS and (e) blue spectral band at 81 DAS (Figure 6B). The removal 
of important predictor variables in RF regression compromises the model’s accuracy, as it causes an 

Figure 5. The reflectance of the Planet Scope image bands throughout the crop cycle.

As shown in Figure 5, despite the difficulties in obtaining satellite imagery during the carrot crop
cycle caused by the rainy season, it was possible to gather images from almost all the stages leading up
to harvest with minimal gaps (6–21 DAS, 57–65 DAS and 69–78 DAS). [44] emphasized the problem of
obtaining satellite images during rainy seasons in predicting carrot and corn crop water footprints.
Nevertheless, despite the absence of satellite images during the rainy season, it was possible to move
forward with the RF regression model in this study to predict carrot yield by relying on spectral bands
collected from satellite imagery data during the dry periods.

3.3. Random Forest Regression Prediction

The predictive precision curves shown in Figure 6 were constructed from the mean execution
error values using actual and predicted carrot yield values generated by each reduced model. A mtry
value equal to 29 (33% of the observations) was used, similar to the default value of the randomForest
package. According to Bernard et al. [45], this default value of mtry is reasonable but can be improved
upon. After adjustments of the mtry values, ntree values were changed from 0 to 500 with an increment
of one tree at a time (Figure 6A). When the number of decision trees in RF increases, the error rate
in each case decreases and gradually converges [46]. The average error rate of RF was close to 8.8%
for both ntree values of 100 and 500. Therefore, a ntree value of 100 was chosen, as it was close to
the minimum error rate, maximizing accuracy. This value corresponds with the elbow on the graph,
a method used to select the best number of trees, similar to [47].
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The five most important variables used to predict carrot yield with RF regression were identified
as (a) NIR spectral band at 92 DAS, (b) NIR spectral band at 79 DAS, (c) green spectral band at 50 DAS,
(d) blue spectral band at 92 DAS and (e) blue spectral band at 81 DAS (Figure 6B). The removal of
important predictor variables in RF regression compromises the model’s accuracy, as it causes an
increase in the mean decreased Gini values. On the other hand, the removal of uninformative or
noisy predictor variables has little effect on accuracy [33,46,48], as mean decreased Gini values only
fluctuate slightly (Figure 6B). Figure 6B shows that the RF regression model can accurately predict
carrot yield with only five predictive variables instead of relying on the use of the 88 predictive
variables. In addition to that, NIR and blue bands are the most present in the top 30 important variables
used in the model. Thus, it suggests that carrot yield is more related to blue and NIR bands than red
and green bands.

As shown in Table 2, R2 values are equal for ntree values of 100 and 500, despite the datasets
used (training and test). This result is expected since the error rate was close to the minimum value,
as shown in Figure 6A. The training dataset is the only one that presents different absolute values
of RMSE and MAE across ntree values. The evaluation metrics in Table 2 are the result of the RF
regression model applied to datasets containing raw spectral data from satellite imagery, which differs
from the common approach based on the application of VIs derived from spectral bands to monitor
crops or predict yield in agriculture [18–21]. Most studies are conducted to predict crop yield relying
on vegetation indices, for example, wheat [49–51] and corn crops [52–55].

Table 2. Random forest variables setting and evaluation metrics.

P a Seed Mtry b Dataset Number of Observations Ntree c RMSE d R 2,e MAE f

88 123 29

Training 9961
500 2.98 0.80 1.97
100 2.97 0.80 1.96

Test 5132
500 2.99 0.78 1.97
100 2.99 0.78 1.97

Entire 15093
500 2.64 0.82 1.74
100 2.64 0.82 1.74

a Total predictor variables; b number of variables tried at each split; c number of trees; d root mean squared error in
Mg ha−1 (Equation (2)); e coefficient of determination (Equation (3)); f mean absolute error in Mg ha−1 (Equation (4)).

In this study, the RF regression algorithm using only five temporal spectral bands presented an
R2, RMSE and MAE of 0.80, 2.97 Mg ha−1 and 1.96 Mg ha−1 for the training dataset for ntree equal
to 100. The test dataset presented values of 0.78, 2.99 Mg ha−1 and 1.97 Mg ha−1 for R2, RMSE and
MAE, respectively. Furthermore, values of 0.82, 2.64 Mg ha−1 and 1.74 Mg ha−1 for R2, RMSE and
MAE, respectively were obtained using the entire dataset (Table 2).

Coefficient of determination values higher than 0.78 (Table 2) are not always found in studies that
use VIs or spectral bands to forecast yield from crops in which the commercial product is grown below
the ground, despite the use of statistical ML techniques. [19] predicted potato crop yield by applying
linear regression models to the VIs database and reached R2 values ranging from 0.39 to 0.65. [56]
estimated peanut crop yield from a simple simulation model that included the use of leaf area index
(LAI) and other variables, resulting in R2 values of 0.30. [44] found a value of 0.67 for R2 comparing
observed and predicted yields from a linear model based on a soil-adjusted vegetation index (SAVI)
obtained from Landsat-8 during the carrot growth period.

The evaluation metrics shown in Table 2 highlight the suitability of using RF regression on a
database composed of raw spectral bands in predicting carrot yield, setting it apart from the common
approach based on vegetation indices [49–51]. It is worth noting that the application of ML on a
spectral band database instead of VIs corroborates the idea that ML applications are expected to find
new patterns that provide insight and help speculate about occluded interactions in the field where
there is a lack of prior knowledge and hypotheses [9].
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3.4. Carrot Yield Map Visualization

As shown in Figure 7A,B, the spatial yield patterns correspond to each other, highlighting the
model’s goodness of fit for the entire dataset, which is to be expected based on the statistical metrics
shown in Table 2. Figure 7C presents the error between predicted and observed yields, ranging from
−18.3 to 19.3 Mg ha−1 (35% variation, approximately). [44] found average error values of 4%, 14%, 18%
and 38% between observed and predicted yield over four experimental carrot plots. In this study, the
average yield error rate was about 0.3%, which again highlights the suitability of the RF regression
model in predicting carrot yield. Figure 7D shows that errors below 5% prevail when looking at the
punctual error rate between observed and predicted yield. Despite the lower error rate found in this
study, it is not possible to make a fair comparison between percentage errors from this work and those
in [44] because they presented only the observed carrot yield map and average results.
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In this study, it was possible to use 22 high-resolution satellite images (88 spectral bands with
3 m × 3m spatial resolution) to feed into the RF regression algorithm, selecting the five most important
predictors and then fitting a yield prediction model. This differs from [44], where 6–7 images with a
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lower spatial resolution (30 m × 30 m) were obtained during carrot crop development and fitted using
linear regression to predict yield, using only SAVI values of one day, instead of fitting a multiple linear
regression based on the temporal SAVI values, which could have yielded better results.

The focus in this paper was to generate an RF regression model to predict carrot yield based
on satellite spectral bands and ground-truth yield samples, a goal which was successfully achieved,
as seen on the metrics presented in Table 2 and visualized in Figure 7. The application of the generated
model beyond the limits of the ground-truth yield samples is shown in Figure 8.
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The prediction of carrot yield based on spectral bands and RF regression shows potential in its
application, as ML can find new relations between variables [9]. This highlights the importance of using
spectral bands instead of VIs to forecast yield, VIs being the result of the combination of spectral bands.

The patterns in Figure 6 are the same as highlighted in Figure 8A, indicating that the RF fitted
model in this study is suitable for predicting carrot yield without the necessity of being compared to a
ground-truth. The spatial variability of carrot yield in this field (Figure 8B) is useful in investigating
the causes of root variability and can guide decisions to improve crop management [57].

The fusion of punctual yield sampling (ground-truth) data, remote sensing imagery data and
application of a ML algorithm proved that carrot yield can be accurately estimated and mapped.
Having a carrot yield map supports the application of PA techniques in understanding and identifying
crop variability [58].

3.5. Future Perspectives

Future works should aim to evaluate the minimum area and number of ground-truth samples
necessary to faithfully represent larger areas when applying the RF regression algorithm to predict crop
yield based on temporal spectral data from satellite imagery, and not only for carrot crops. In addition
to that, it is also necessary to evaluate the possibility of estimating carrot yield from satellite imagery
with different spatial and temporal resolutions.

Hopefully, this approach of applying ML techniques to datasets containing a certain number of
ground-truth samples in a given area and the temporal spectral data from the crop canopy cycle will
allow the creation of accurate yield maps to help support decision makers in enhancing their crop
production with respect to the PA goals.

4. Conclusions

The application of a random forest regression algorithm on a database composed of temporal
spectral bands from high spatial resolution satellite imagery during carrot crop development and
carrot yield punctual sampling (ground-truth) proved to be a suitable machine learning approach
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to forecast carrot yield in commercial fields. The RF regression model was successfully developed
and implemented in predicting carrot yield based on raw temporal spectral bands with an error of
2.7 Mg ha−1, achieving a coefficient of determination of 0.82 within one crop season. A carrot yield
mapping tool was developed from a predictive model generated from a smaller area and then applied
to larger areas that contained the same predictive variables.
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