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Abstract: A field emission scanning electron microscope (FESEM) is a complex scanning electron
microscope with ultra-high-resolution image scanning, instant printing, and output storage capabilities.
FESEMs have been widely used in fields such as materials science, biology, and medical science.
However, owing to the balance between resolution and field of view (FOV), when locating a target
using an FESEM, it is difficult to view specific details in an image with a large FOV and high resolution
simultaneously. This paper presents a deep neural network to realize super-resolution of an FESEM
image. This technology can effectively improve the resolution of the acquired image without changing
the physical structure of the FESEM, thus resolving the constraint problem between the resolution and
FOV. Experimental results show that the apply of a deep neural network only requires a single image
acquired by an FESEM to be the input. A higher resolution image with a large FOV and excellent
noise reduction is obtained within a short period of time. To verify the effect of the model numerically,
we evaluated the image quality by using the peak signal-to-noise ratio value and structural similarity
index value, which can reach 26.88 dB and 0.7740, respectively. We believe that this technology will
improve the quality of FESEM imaging and be of significance in various application fields.

Keywords: deep learning; super-resolution; convolutional neural network; field emission scanning
electron microscope; field of view

1. Introduction

A field emission scanning electron microscope (FESEM) is a scanning electron microscope that
uses a field emission electron gun to generate electrons that converge into a very fine electron beam to
irradiate the surface of the prepared sample. When the beam strikes the sample surface, it interacts
with the sample and excites secondary electrons. The detection system collects a secondary electronic
signal and converts it into a video signal based on a certain rule. After being amplified, the signal is
sent to the picture tube of the synchronous scan, modulated, and then imaged.

The most important feature of an FESEM is its ability to scan ultra-high-resolution images,
particularly with the latest digital image processing technology, which can provide high-magnification
and high-resolution (HR) scanned images, and print or save the output instantly. These properties
make an FESEM one of the most effective instruments to observe and analyze microscopic morphology,
organization, and composition. This is why an FESEM is widely used in various fields, such as
scanning electron microscopy for carbonate sediments and the imaging of bacteria in rocks [1],
semiconductor superlattice imaging [2], and the quality prediction of noisome from maltodextrin-based
proniosomes [3].
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However, there is a problem with the FESEM when it comes to using it for locating a certain area
of interest in the sample. Owing to the balance between the resolution and field of view (FOV), images
with a large FOV have a relatively low resolution, which renders the details ambiguous, making an
accurate location difficult to determine. By contrast, if we increase the resolution to such an extent that
we can achieve an accurate location, the FOV becomes so limited that we cannot cover all possible
target areas. This problem has largely restricted the application of the FESEM.

Image stitching [4] and interpolation methods have been traditionally used to improve the image
resolution. However, image stitching requires high mechanical precision, and multiple imaging limits
the imaging speed. An interpolation method for improving the image resolution identifies a specific
pixel point in the actual captured image to calculate the logical pixel points around it and consider them
to be supplementary pixels, thereby enhancing the overall resolution of the image. Common algorithms
include the nearest neighbor interpolation [5], bilinear interpolation [6], and bicubic interpolation [7].
Although an interpolation method is fast and simple to implement, there are still defects that occur
at the image boundaries, such as jagged ridges and blurring effects. Moreover, these interpolation
methods have a common problem. The same algorithms are used for super-resolution tasks of different
devices, which means that generated HR images do not necessarily have the best resemblance to the
original HR images for a specific device.

Deep learning [8] is an active fields of machine learning, and its concept comes from artificial
neural networks. There are billions of neurons in the human brain, and because of this, the human
brain has comparable data processing capability to computers. The artificial neural network establishes
a kind of neural network computing model by abstracting the human brain neurons and forming a
large topology between the different neurons. Deep learning is to achieve complex data processing
functions by stacking multi-layers artificial neural networks to form a deep neural network structure.

The deep convolutional neural network, as a typical structure of a deep neural network, has been
widely applied in various types of supervised and unsupervised learning, such as image classification [9],
style transfer [10], voice recognition [11], and natural language processing [12]. However, it was found
that, as the depth of the neural network increases, the accuracy of a convolutional neural network has
a tendency toward saturation or even degradation. In 2015, He et al. [13] proposed a new type of
deep neural network, called the residual network. By fitting a residual function instead of a primitive
function, they enabled a deep neural network to learn more efficiently, leading to a better performance.
In recent years, the residual network has been used to solve all kinds of imaging problems, such as
tomography [14], infrared polarization imaging [15], and magnetic resonance imaging [16].

This study proposes a novel deep neural network based on the residual network, which can
effectively improve the resolution and quality of an image acquired by an FESEM. Our deep neural
network considers the image acquired by the FESEM to be the input, and rapidly generates an HR
image, while simultaneously obtaining a large FOV and achieving the noise reduction effect.

2. Method

Samples: Butterfly specimens (Figure 1) were chosen as the experimental sample from which the
image datasets were obtained. The super-resolution task not only focuses on improving the resolution
of the entire image, but also on improving the details of different textures or patterns. Butterfly wings
are covered by flat scaly hair, and different varieties of butterflies have different scaly hair patterns,
as shown in Figure 2, which makes them very suitable for use in image data. We clipped the wings of
different butterfly specimens and stuck them on a carrier. Owing to the poor electrical conductivity of
butterfly wings, it was necessary to use an instrument to coat the surface of the sample with a silver
conductive film in order to avoid the charging effect.
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Figure 1. Butterfly specimens. 

 

Figure 2. Different scaly hair patterns. 

Image shooting: Images were acquired using a ZEISS Sigma 500 FESEM (Carl Zeiss AG, Jena, 

Germany), which adopts a mature GEMINI optical system design, and has a resolution of over 0.8 

nm. A total of 1000 sets of image data were obtained, each of which contained a low-resolution (LR) 

image (1000× magnification) and an HR label image (2000× magnification). 

Dataset: To obtain optimal results, the images used to train the neural network must be paired, 

i.e., LR input images with HR label images. As LR images have a large FOV, the HR images have a 

small FOV, and the image sets used in the super-resolution tasks need to have a constant FOV, the 

LR images were cropped to match the FOV of the HR images. Due to the positional shift when 

switching the magnification during shooting, we cannot directly crop an LR image at the center 

position. Pixel matching is required before we crop the LR images. This study uses the pixel matching 

method to reduce the HR image fourfold, and then scans the pixel to the best matching position in 

the LR image and crops it. In addition, considering that the dataset is relatively small, we used data 

expansion while creating our dataset. Original images were flipped horizontally and vertically, both 

individually and simultaneously. Finally, a total of 4000 sets of data were used in the training, 

validation, and testing of our deep neural network, where each set of images included an LR image 

(200 × 200) and an HR image (400 × 400). 

3. Super-Resolution Deep Neural Network Structure 

The structure of the super-resolution deep neural network is shown in Figure 3. Assume that the 

size of the input LR image is W × H × 3, where W and H represent the width and height of the image, 

and 3 represents three color feature maps, namely, red, green, and blue (RGB). First, the input image 

is applied with a mean subtraction conversion. The average value is subtracted from each 

independent feature map, and the input data are normalized in each dimension, which not only 

avoids unnecessary numerical problems, but also enables the network to converge more quickly. 
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Figure 2. Different scaly hair patterns.

Image shooting: Images were acquired using a ZEISS Sigma 500 FESEM (Carl Zeiss AG, Jena,
Germany), which adopts a mature GEMINI optical system design, and has a resolution of over 0.8 nm.
A total of 1000 sets of image data were obtained, each of which contained a low-resolution (LR) image
(1000×magnification) and an HR label image (2000×magnification).

Dataset: To obtain optimal results, the images used to train the neural network must be paired,
i.e., LR input images with HR label images. As LR images have a large FOV, the HR images have a
small FOV, and the image sets used in the super-resolution tasks need to have a constant FOV, the LR
images were cropped to match the FOV of the HR images. Due to the positional shift when switching
the magnification during shooting, we cannot directly crop an LR image at the center position. Pixel
matching is required before we crop the LR images. This study uses the pixel matching method to
reduce the HR image fourfold, and then scans the pixel to the best matching position in the LR image
and crops it. In addition, considering that the dataset is relatively small, we used data expansion while
creating our dataset. Original images were flipped horizontally and vertically, both individually and
simultaneously. Finally, a total of 4000 sets of data were used in the training, validation, and testing
of our deep neural network, where each set of images included an LR image (200 × 200) and an HR
image (400 × 400).

3. Super-Resolution Deep Neural Network Structure

The structure of the super-resolution deep neural network is shown in Figure 3. Assume that the
size of the input LR image is W × H × 3, where W and H represent the width and height of the image,
and 3 represents three color feature maps, namely, red, green, and blue (RGB). First, the input image is
applied with a mean subtraction conversion. The average value is subtracted from each independent
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The input convolutional layer maps 3 feature maps to 64 feature maps, as depicted in Figure 4.
While adjusting the hyperparameters, the number of convolution kernels C was empirically set to 64,
the convolution kernel size K was set to 3, the step size S was set to 1, and the zero padding P was
calculated using P = K//2 (where ‘//’ indicates a floor division). Thus, the size of the output image of
the convolutional layer can be calculated according to the following formula:

W’ = (W - K + 2P)/S + 1 (1)

H’ = (H - K + 2P)/S + 1 (2)

C’ = C = 64 (3)

where W’, H’ and C’ represent the width, height, and number of feature maps of the output image of
the convolutional layer, respectively.

The convolutional layer is followed by 32 residual modules, each of which consist of two
convolutional layers and an activation function. The convolutional layer hyperparameter is consistent
with the input convolutional layer, and the activation function introduces nonlinear characteristics into
the network, which enables the network to learn complex function mappings from the data. This paper
uses the Rectified Linear Unit (ReLU) activation function, which is expressed as ReLU(x) = max(0, x).
Thus, the calculation for each convolution module is as follows:

Xn+1 = Xn + ReLU(Xn ×Wn
(1)) ×Wn

(2) (4)

where * denotes a convolution operation, Xn and Xn+1 represent the input and output of the nth residual
module, and Wn

(1) and Wn
(2) represent the parameter matrix of the first and second convolutional

layers, respectively.
This is followed by an upsampling layer, which has a convolutional layer and a pixel conversion

operation. The number of output feature maps of the convolutional layer is set to 4 times the number
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of input feature maps. For example, if the input size of the convolution layer is W ×H × 64, the output
size after the convolution becomes W × H × 256.The pixel conversion operation is responsible for
rearranging all feature map pixels, and the image size is changed from W × H × 256 to 2W × 2H × 64.
Finally, after the convolutional layer and mean subtraction conversion, the number of image feature
maps is changed from 64 to 3 (RGB).

AI. 2019, 9, x 4 of 9 

 

Figure 3. Super-resolution structure of the deep neural network. 

The input convolutional layer maps 3 feature maps to 64 feature maps, as depicted in Figure 4. 

While adjusting the hyperparameters, the number of convolution kernels C was empirically set to 64, 

the convolution kernel size K was set to 3, the step size S was set to 1, and the zero padding P was 

calculated using P = K//2 (where ‘//’ indicates a floor division). Thus, the size of the output image of 

the convolutional layer can be calculated according to the following formula: 

W’ = (W – K + 2P)/S + 1 (1) 

H’ = (H – K + 2P)/S + 1 (2) 

C’ = C = 64 (3) 

where W’, H’ and C’ represent the width, height, and number of feature maps of the output image of 

the convolutional layer, respectively. 

 

Figure 4. Details of the input convolutional layers. Figure 4. Details of the input convolutional layers.

4. Results

The dataset used to train the super-resolution deep neural network is obtained from the images
of the butterfly wing specimen taken using an FESEM. To obtain optimum results while training,
we enlarged the sample by 1000× and 2000× so as to obtain lower-resolution images of 200 × 200 pixels
and higher resolution images of 400 × 400 pixels. There is a total of 4000 sets of image data, from which
3000 sets were randomly selected to be the training set for the neural network, and the remaining 1000
sets were used to verify the trained neural network to avoid over-fitting.

A schematic diagram of the training process of the super-resolution deep neural network is
shown in Figure 5. An LR image is the input required for the neural network to generate an
output image. This output image is compared with the HR label image to generate a loss function.
The back-propagation algorithm [17] is employed to adjust the parameters in the super-resolution
neural network to minimize the loss function. The final optimized neural network model is acquired
through many training iterations.
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We use the L1 loss function [18] to optimize the network. The expression of the L1 loss function is
as follows:

loss(X, Y) =
∑

(c)

∑
(w)

∑
(h)|Yc,w,h − Xc,w,h| (5)

where Yc,w,h and Yc,w,h represent the pixels at position (w, h) in the cth feature map of the network
output image and the HR label image, respectively. In addition, 2W and 2H indicate the width and
height of the network output image, respectively. The errors of the network output image and the
HR label image are calculated using the L1 loss function, and then propagated back to the network.
The parameters in the network are optimized using the Adam optimizer, and the initial value of the
learning rate is empirically set to 10−4.

We trained a total of 300 epochs. After the completion of each training epoch with the training set,
we validated the L1 loss using the validation set. The change in loss is shown in Figure 6. The blue
line in the figure represents the training set loss, and the orange line represents the validation set loss.
It can be seen from the validation set loss that the value of the loss has monotonically decreased, finally
becoming stable. It means that the training of the network has not been over-fitted.
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At the time of verification, we also compared the network output image with the HR label image
by calculating the peak signal-to-noise ratio (PSNR) value and structural similarity index (SSIM) value.
These two indicators are often used to evaluate the image quality [19]. The larger the PSNR, the smaller
the distortion of the output image, and the larger the SSIM, the higher the similarity between the
output image and the label image. As shown in Figures 7 and 8, there is a high similarity in the trends
of the two curves, first increasing and then stabilizing with a maximum PSNR and SSIM of 26.88 dB
and 0.7740, respectively. It indicates that the network gradually converges during the training process
and fits the super-resolution task well.



AI 2019, 1 7

AI. 2019, 9, x 6 of 9 

The parameters in the network are optimized using the Adam optimizer, and the initial value of the 

learning rate is empirically set to 10−4. 

We trained a total of 300 epochs. After the completion of each training epoch with the training 

set, we validated the L1 loss using the validation set. The change in loss is shown in Figure 6. The 

blue line in the figure represents the training set loss, and the orange line represents the validation 

set loss. It can be seen from the validation set loss that the value of the loss has monotonically 

decreased, finally becoming stable. It means that the training of the network has not been over-fitted. 

 

Figure 6. Training set loss curve and validation set loss curve. 

At the time of verification, we also compared the network output image with the HR label image 

by calculating the peak signal-to-noise ratio (PSNR) value and structural similarity index (SSIM) 

value. These two indicators are often used to evaluate the image quality [19]. The larger the PSNR, 

the smaller the distortion of the output image, and the larger the SSIM, the higher the similarity 

between the output image and the label image. As shown in Figures 7 and 8, there is a high similarity 

in the trends of the two curves, first increasing and then stabilizing with a maximum PSNR and SSIM 

of 26.88 dB and 0.7740, respectively. It indicates that the network gradually converges during the 

training process and fits the super-resolution task well. 

 

Figure 7. Peak signal-to-noise ratio (PNSR) curve of the validation set. Figure 7. Peak signal-to-noise ratio (PNSR) curve of the validation set.AI. 2019, 9, x 7 of 9 

 

Figure 8. Structural similarity index (SSIM) curve of the validation set. 

After training, we tested the trained network with images outside the training and verification 

sets. We input an image of 200 × 200 pixels into the network to generate an output image of 400 × 400 

pixels and compared the output image with a ground truth 400 × 400 pixels image, as shown in Figure 

9. By observing the region of interest (depicted by the red box), it can be seen that the output image 

resolution achieves a significant improvement, particularly at the position indicated by the yellow 

arrow, where the shape of the cell, which was almost unobservable in the input image, is clearly 

distinguishable in the output image. In addition, the output image is also comparable to the ground 

truth image. Processing images using the neural network also produces a large FOV. Assume that 

the true FOV that can be achieved at 2000× magnification is 27 × 18 μm, whereas the true FOV that 

can be achieved at 1000× magnification is 54 × 36 μm. The use of a neural network enables the image 

at 1000× magnification to have the same resolution as the image at 2000× magnification, but with a 

larger FOV. The output image is then input into the network again, and an output image of 800 × 800 

pixels is generated. Compared with ground truth 400 × 400 pixels image, it is clear that the image 

resolution is further improved. The influence of noise is also reduced to a certain extent. The image 

therefore appears cleaner. 

 

Figure 9. Comparison of neural network output and ground truth. 

Figure 8. Structural similarity index (SSIM) curve of the validation set.

After training, we tested the trained network with images outside the training and verification
sets. We input an image of 200 × 200 pixels into the network to generate an output image of 400 × 400
pixels and compared the output image with a ground truth 400 × 400 pixels image, as shown in
Figure 9. By observing the region of interest (depicted by the red box), it can be seen that the output
image resolution achieves a significant improvement, particularly at the position indicated by the
yellow arrow, where the shape of the cell, which was almost unobservable in the input image, is clearly
distinguishable in the output image. In addition, the output image is also comparable to the ground
truth image. Processing images using the neural network also produces a large FOV. Assume that the
true FOV that can be achieved at 2000×magnification is 27 × 18 µm, whereas the true FOV that can
be achieved at 1000×magnification is 54 × 36 µm. The use of a neural network enables the image at
1000×magnification to have the same resolution as the image at 2000×magnification, but with a larger
FOV. The output image is then input into the network again, and an output image of 800 × 800 pixels
is generated. Compared with ground truth 400 × 400 pixels image, it is clear that the image resolution
is further improved. The influence of noise is also reduced to a certain extent. The image therefore
appears cleaner.
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Next, we compared the trained network with traditional image interpolation methods. We still
selected the image data outside the training and verification sets for testing and put 300 × 300 pixel
images into the network to generate 600 × 600 pixel output images. At the same time, we used
the nearest neighbor interpolation method and cubic interpolation method provided by OpenCV to
interpolate and magnify the 300 × 300 pixel images. The three different output images were compared
with the ground truth 600 × 600 pixels image. As shown in Figure 10, by calculating the PSNR and
SSIM values, we can conclude that the deep learning method has obvious advantages when compared
with a traditional image processing method. The values obtained from our method (PSNR = 22.40 dB
and SSIM = 0.9451) are higher than those obtained from the NEAREST and CUBIC interpolation
methods. (The test phase is numerically calculated for a single image, resulting in a difference in
performance from the average value during verification).
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5. Conclusions and Future Work

This study investigates a super-resolution method based on deep learning that can effectively
improve the image resolution and the image quality without having to change the physical structure
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of the applied FESEM. This deep learning approach can generate an improved image very quickly.
It only takes an average of ~0.5 s to output an improved HR image with a large FOV even using a
laptop computer.

This deep neural network structure can also be applied to other imaging devices. Training the
network with different datasets enables it to complete the super-resolution task of that corresponding
device, thus demonstrating excellent expandability.

Future research involves expanding the variety of network structures in our deep neural network
such as DenseNet [20], SENet [21], and GAN [22]. These networks exhibit a superior performance in
the imaging field, and can optimize end-to-end image generation.
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