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Abstract: The use of hyperspectral imaging in marine applications is limited, largely due to the
cost-prohibitive nature of the technology and the risk of submerging such expensive electronics.
Here, we examine the use of low-cost (<5000 GBP) hyperspectral imaging as a potential addition
to the marine monitoring toolbox. Using coral reefs in Bermuda as a case study and a trial for the
technology, data was collected across two reef morphologies, representing fringing reefs and patch
reefs. Hyperspectral data of various coral species, Montastraea cavernosa, Diploria labyrinthiformis,
Pseudodiploria strigosa, and Plexaurella sp., were successfully captured and analyzed, indicating the
practicality and suitability of underwater hyperspectral imaging for use in coral reef assessment. The
spectral data was also used to demonstrate simple spectral classification to provide values of the
percentage coverage of benthic habitat types. Finally, the raw image data was used to generate digital
elevation models to measure the physical structure of corals, providing another data type able to
be used in reef assessments. Future improvements were also suggested regarding how to improve
the spectral data captured by the technique to account for the accurate application of correction
algorithms.
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1. Introduction

Hyperspectral imaging (HSI) is an emerging technology for studying underwater
environments. It has been shown that HSI can be used in a wide variety of applications
for characterizing such environments. For example HSI has been demonstrated in marine,
industrial, and archaeological fields. In archaeology, Ødegård et al. (2018) [1] conducted a
study which demonstrated the effectiveness of HSI in classifying and identifying marine
artifacts within underwater wrecks. It has also been shown to be an invaluable tool for
determining the state of wrecks, the presence of nails and rust [2], and in differentiating
between biological and non-biological substances [3]. HSI has also been utilied in industrial
applications, including the detection of marine litter, particularly plastics and microplastics.
Researchers have utilized HSI to accurately identify and quantify marine debris, aiding in
environmental monitoring and pollution management [4–8]. The technique can also be used
to view anthropogenic structures in activities such as seafloor pipeline inspections [2] and
the detection and quantification of biofouling of ship hulls [8]. HSI has been applied in the
nuclear sector, specifically for the characterization of waste materials in spent fuel ponds [9].
Finally, in marine applications, HSI has been employed in mapping and monitoring seafloor
benthos [2,10]. By capturing hyperspectral data, researchers can analyse and understand the
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composition, distribution, and ecological significance of benthic communities. Additionally,
HSI can aid in assessing the area of coverage, physiological state, growth rates, and health
of various organisms, such as macroalgae [11,12] and corals [12–19].

Most instances of current marine-based hyperspectral imaging occurs above the wa-
ter’s surface, with hyperspectral systems mounted on either drones, light aircraft, or
satellites [20–24]. Surveys of this type typically focus on shallow water applications; this is
especially true of satellites, where their viable survey depth is around 25 m and is highly
dependent on water clarity [12,25]. Above-water hyperspectral imaging comes at a trade-
off in terms of cost of implementation (equipment and payload vehicle), spatial scale, and
spectral resolution [12]. Underwater hyperspectral imaging (UHI) reduces the associated
cost of implementation and increases spatial resolution, but it does suffer a reduction in
spatial scale [12].

UHI is a rapid, non-invasive diagnostic tool especially for marine monitoring, and it
is able to infer “health” assessments of organisms and to determine zonation and distri-
bution of benthic communities. However, it is not widely implemented in current marine
monitoring surveyance due to the high cost associated with the instruments, as well as the
associated cost, both physical and risk, of utilising them in the marine environment [12],
i.e., bespoke underwater housings to waterproof the equipment. However recent advances
in spectral technologies, such as linear variable filters (LVF), allow for low-cost (<5000 GBP)
hyperspectral imagers, such as the Bi-Frost DSLR, to be constructed using off-the-shelf
components, cameras, and underwater housings. Thus reducing the financial burden of the
technique by as much as one-third when compared with commercially available hyperspec-
tral imagers [12]. Additionally, traditional hyperspectral imagers require a stable scanning
platform, i.e., a tripod, in order to capture data, as any unstable movements in the system
will affect the quality of the data acquired. As such, this precludes the utilization of HSI
technologies in many field applications such as marine monitoring. However, due to the
way in which the Bi-Frost DSLR captures data and the way it is processed, the system can be
operated by a diver, as the image stitching algorithm used allows for unstable and irregular
movements. The data collected by the imager also allows for 3D reconstruction, meaning
that one device can deliver multiple datasets required to make meaningful assessments of
marine environments.

In this study, a low-cost hyperspectral imager, the Bi-Frost DSLR, was used to capture
spectral data on two coral reefs in Bermuda. The data presented herein represents a case
study to demonstrate the effectiveness of the technology and its suitability in marine
monitoring surveyance, specifically highlighting its applicability to coral reef monitoring
studies.

2. Materials and Methods
2.1. Hyperspectral Data Collection

Hyperspectral images were collected using the Bi-Frost DSLR hyperspectral camera,
mounted in a waterproof case (Ikelite, Indianapolis, IN, USA) carried by a diver. The
hyperspectral imager uses a similar method to push-broom imaging to generate 3D data
from a 2D imager whereby the camera is scanned; in this instance, the method is known as
“windowing”. These imagers obtain data by scanning across the scene in one dimension
[Y], but in so doing, it is acquiring a 2D image [X, λ] in a single frame [26]. The pass band
on the filter is a function of its position on the filter.

To enable full spectral information of the survey area to be generated, the camera was
required to start and finish imaging one full frame before and after the survey area. This
ensures that every part of the LVF has covered the target area so that there is a complete
spectral reconstruction at each band. For maximum coverage, two “mow the lawn” or
raster scan pattern surveys were used, one vertically across the site and one horizontally, as
depicted in Figure 1. The individual transects were identical, with the second rotated and
adjusted to account for the field of view of the camera. To record the image data, the DSLR
was operated in video mode to capture the upper limit of the camera’s frame rate (30 fps);
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this allows for the option to bin or subsample the images in processing to balance the size
and resolution required.
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Figure 1. The Bi-Frost DSLR was operated by a diver following a “mow-the-lawn” survey pattern.
The diver begins imaging before the start of the survey area to ensure that full spectral data is recorded
to generate complete reconstructions. (Figure adapted from [12].)

Images from the Bi-Frost DSLR were converted into hypercubes using a bespoke
software solution developed at the University of Bristol. The resulting hypercube is
comprised of 192 wavebands ranging from 339 nm to 789 nm at a resolution of 18 nm at
band 450 nm. Hypercubes were then loaded into hyperspectral data software, ENVI (Harris
Geospatial, Boulder, CO, USA), for analysis. The region of interest (ROI) tool was used
to generate an average spectrum across a user-defined area of individual coral colonies
within the hypercube; these were then used in the corrections outlined below. The coral
colonies were arbitrarily selected to highlight an array of examples of the primary coral
species present in Bermudan reefs.

2.2. Hyperspectral Data Correction

The two-flow shallow water reflectance model (Equation (1), [27]) was used to correct
the hyperspectral data for radiative transfer effects. R(Z,H) is the reflectance at depth Z
in the water column (i.e., the imager) over a seafloor at depth H (i.e., the reef). R(Z,H)
represents the image as collected by the Bi-Frost DSLR. R∞ is the reflectance, just below the
sea surface, of an infinitely deep ocean. A is bottom albedo, and finally, exp[−2K(H − Z)]
accounts for the exponential attenuation of reflectance between depths Z and H. Equation
(1) shows that the reflectance of a water column is equal to the reflectance of the same water
body in the absence of a bottom (R∞), plus the contrast between the bottom albedo and the
reflectance of the body of water denoted by (A − R∞), which can be a positive or negative
value, that is altered by attenuation through the water column. R∞ can be expanded, as
shown in Equation (2), into backscatter (bb) over 2K.

R(Z, H) = R∞ + (A− R∞)exp[−2K(H − Z)] (1)

R∞ =
bb
2K

(2)

In order to apply Equation (1), the values for the diffuse attenuation coefficient (K) and
diffuse backscatter coefficient (bb) need to be derived. The attenuation coefficient of water
(K) is well established [28,29], and values have been obtained for a variety of water types
and turbidities [12]. The backscatter (bb) of water is also well established [28]. However, it
is their values at the time and place of image collection that are required for the application
of Equation (1). Both parameters can also be obtained in situ using a variable depth target
calibrator (VDTC), which consists of five white reference targets set at different heights
on a PVC pipe structure. Given the known height of each target, values for K and bb can
be derived via nonlinear regression. Approximations of H − Z can be obtained from the
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recorded depth of the diver and from structure-from-motion reconstructions, as outlined
below, but as discussed in Section 3, more robust mechanisms are required to properly
apply corrections. With all these variables parameterized, Equation (1) can be inverted to
analytically solve for A, the bottom reflectance.

2.3. Strucutre-from-Motion (SfM) Photogrammetry

Due to the overlaps required for hyperspectral imaging, the images produced from
the camera are also ideal for use in photogrammetry software. Raw images gathered
from the imager were processed in Metashape (v1.7, Agisoft, St. Petersburg, Russia) to
generate digital elevation models, as outlined in [12,30]. This technique also creates a
composite image of all the stitched photo data, known as a photomosaic, which can be
used for the identification and zonation of reefs. However, crucially, colour information
is not present in these images due to the filtering of the Bi-Frost DSLR, and as such, the
images are in grey scale, as is any resulting photomosaic. The technique also maps camera
positions, i.e., where each image is relative to the whole scene; these can be used to gather
approximations of the distance between the position of the imager and the scene (reef),
allowing for approximations of H − Z.

2.4. Spectral Classification

To gather data on benthic habitat coverage, automatic spectral classification was used
in ENVI (Harris geospatial solutions, Version 5.5).

Spectral classification was conducted using training data in the form of three ROIs
created from areas of basic benthic habitat type, such as substate (sand/rock), hard coral,
and soft coral, as previously defined by Hochberg, 2000 [31]. An additional two reference
ROIs were used to classify the void, areas outside of the reconstruction, and the white
reference target. The algorithm used for classification was a minimum distance classifier,
which uses the mean of each ROI class and calculates the Euclidean distance from each
unknown pixel to each class. The pixels are then assigned an ROI class based on the nearest
class, with no thresholding. During the classification process the data was smoothed by
applying a kernel size of 3, which removes speckling noise, and a minimum aggregate size
of 9 to remove small regions of less than 9 pixels.

2.5. Survey Area

To demonstrate the capabilities of the imaging system, small sections of a shallow
reef (<15 m) were imaged at a distance of 3–4 m. Using the camera’s field of view and
defined distances for the survey area, it is possible to plan other parameters of the survey,
such as diver swimming speed. This was calculated assuming that a diver moving 0.51 m
per second, or 1 knot, would yield a frame-to-frame overlap of 99.02%. For traditional
photogrammetry surveys, the overlap required for “good” reconstruction is typically
around 60–80% [32]. However, for this method, higher overlap increases the number
of points used in each wavelength band, thus increasing the resolution of the resulting
hypercubes. For multiple line transects, a standard sidelap of 40% [32] is adequate, as for
these surveys, each transect was required to be spaced 0.95 m from the next. The depths of
the survey were measured using the diver’s dive computer (Zoop, Suunto, Vantaa, Finland)
and pressure gauge to determine the average depth of the reef, as well as the depth of the
diver.

The study areas in Bermuda were Hog Reef (64◦49′48.36′′ W, 32◦27′47.23′′ N) and
John Smith’s Bay (64◦42′43.05′′ W, 32◦18′51.38′′ N), as shown in Figure 2. These reefs were
selected mainly due to their accessibility and to coincide with other ongoing field research
at the Bermuda Institute of Ocean Sciences. Hog Reef lies on Bermuda’s northern rim reef
and has a lower coral cover ≈ 10–30%. John Smith’s Bay has a fringing reef, with a high
coral cover ≈ 50–70% [33]. The selection of these study areas allows for a comparative
analysis between reefs with varying coral cover and reef types. Reefs with higher coral
cover, such as John Smith’s Bay, enable the imaging system to capture a greater number of
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points of interest. The higher density of the coral colonies and associated structures in these
areas provides more distinct features for matching and alignment in the image stitching
process. This increased number of points improves the accuracy and precision of the final
stitched images, enhancing the overall quality of the data captured. On the other hand,
reefs with a lower coral cover, like Hog Reef, present a different testing scenario. In these
areas, fewer coral colonies and their associated structures reduce the number of distinct
points of interest and unique features available for imaging alignment and matching by the
stitching software.
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Figure 2. A map to show the reef locations in Bermuda, along with the percentage of coral cover
using data from [33].

3. Results
3.1. RGB Represetations of Hyperspectral Data

Since hyperspectral data is inherently three-dimensional, the following Figures 3 and 4
present two-dimensional projections of the hyperspectral data. To achieve this, the data
is displayed as an RGB image using user-defined bands, specifically red (640 nm), green
(549 nm), and blue (471 nm). It is important to note that these datasets comprise 192
individual reconstructions at each wavelength band, captured by the linear variable filter
(LVF). As a result, when overlaying the data, minor alignment errors may occur. Addi-
tionally, incomplete spectral data can be observed along the edges and ends of the dataset,
indicating a lack of complete spectral information across the entire spectral range.

The lower section of the images highlights the regions of interest, which correspond
to specific coral colonies. By selecting all the points in the three-dimensional data within
these regions, an averaging process is performed, generating a single representative spec-
trum. This approach allows for a more comprehensive analysis by capturing the overall
characteristics and properties of the coral colonies in question.
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3.2. Incident Light Corrected Hyperspectral Data

Figures 5 and 6 depict the average spectra of each region of interest (ROI) that have
been corrected to account for the incident light, resulting in reflectance units. As evident
in the data, the characteristic trough between 650 and 600 nm represents the absorption
profile of chlorophyll. The ROIs represent a selection of common coral species found in
Bermudan waters.
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3.3. Simple Spectral Classification

Using spectral classification, i.e., the automatic grouping of pixels within the hypercube
based on spectral similarities. Figures 7 and 8 show the simple spectral classification of
each reef using spectral data gathered from ROIs of a selection of benthic types: hard corals,
soft corals, sand/rock, and the white reference. Tables 1 and 2, show the percentage cover
of these benthic types for both reefs.
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Figure 8. Simple spectral classification of hyperspectral data at John Smith Reef, Bermuda, into three
habitat classes (hard corals, soft corals, sand/rock) and to identify the white reference target.

Table 1. Percentage coverage of types of benthos at Hog Reef, Bermuda, based on ENVI classification
shown in Figure 8.

Class Pixel Count Percentage Coverage (%)

Hard Coral 30,358 25.437

Soft Coral 25,258 21.248

Sand/Rock 57,513 48.190

White Reference 6116 5.125

Table 2. Percentage coverage of types of benthos at John Smith Reef, Bermuda, based on ENVI
classification shown in Figure 8.

Class Pixel Count Percentage Coverage (%)

Hard Coral 46,875 30.179

Soft Coral 81,835 52.689

Sand/Rock 22,951 14.777

White Reference 3657 2.355
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3.4. Digital Elevation Models (DEM) of Reefs from Images Taken by a Hypersepctral Imager

The presented Figures 9 and 10 showcase the digital elevation models generated by
Agisoft Metashape using image data captured by the Bi-Frost hyperspectral imager. Due
to the images being stitched by different software, they differ slightly to the hypercube
reconstructions made using the same images. The color representation within the figures
serves to highlight the variation in height, emphasizing the three-dimensional nature of
the data. By assigning different colors to distinct height levels, the figures provide a visual
representation of the topographical characteristics of the captured scene.
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during the spectral reconstruction. The red box highlights the white reference plates of the variable
depth target calibrator (VDTC).
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Figure 10. Birdseye view projection of the digital elevation model (DEM) for John Smith’s Bay
generated during the spectral reconstruction.

3.5. Physical Information of the ROIs Derived from DEMs

Tables 3 and 4 show the extracted physical information derived from the DEM data of
the same ROIs used in the spectral data analysis. These tables highlight the diverse range
of data that can be extracted from the DEM, including measurements such as perimeter
and area.
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Table 3. Perimeters and areas of the regions of interest (ROIs) associated with corals at Hog Reef
derived from the digital elevation model (DEM) shown in Figure 4.

Label Species Perimeter (cm) Area (cm2)

ROI #4 DLAB 52.66 1.53

ROI #5 PSTR 75.33 3.75

ROI #6 PSTR 74.83 3.70

ROI #7 DLAB 83.13 2.53

ROI #8 PSTR 61.63 2.36

ROI #9 PSTR 23.22 0.35
DLAB: Diploria labyrinthiformis; PSTR: Pseudodiploria strigosa.

Table 4. Perimeters and areas of the regions of interest (ROIs) associated with corals at John Smith’s
Bay derived from the digital elevation model (DEM) shown in Figure 5.

Label Species Perimeter (cm) Area (cm2)

ROI #5 MCAV 20.81 0.32

ROI #6 MCAV 17.25 0.20

ROI #7 DLAB 23.84 0.32

ROI #8 PSTR 12.40 0.11

ROI #9 MCAV 17.97 0.22

ROI #12 MCAV 17.04 0.21

ROI #13 DLAB 30.30 0.63
MCAV: Montastraea cavernosa; DLAB: Diploria labyrinthiformis; PSTR: Pseudodiploria strigosa.

4. Discussion

Due to the Bi-Frost DSLR being a modified camera, we are able to run the raw images
through traditional SfM photogrammetry processes to generate a digital elevation model
(DEM) for each scene (Figures 8 and 9). Most commercial grade hyperspectral imagers do
not offer this as an option, as they often do not capture data in the same way. The only
drawback to using images captured by the Bi-Frost DSLR for this purpose is that due to the
LVF, the individual images are greyscale and have a gradient across them which represents
the differing amount of light present at each of the wavebands positioned across the sensor.
This means that the outputs from the photogrammetry models may not be suitable for
tasks involving the photomosaic, such as identification, but they do contain all the relevant
information for DEMs.

To demonstrate an application of DEM data, the coral ROIs previously isolated for
spectral data were utilized to provide surface area measurements (Tables 3 and 4). These
measurements can be used to determine important factors such as topography, rugosity,
and surface area of the reef. The use of these topographic measurements is limited by the
photogrammetry software’s ability to reconstruct the 3D information of objects. Thick,
static objects are the easiest to reconstruct, as they have many reference points that can be
used for alignment. In contrast, thin objects tend to have fewer reference points due to their
reduced surface areas. The reconstruction of the white reference tower in Figure 9 (marked
by a red square) illustrates this problem: the 2 mm thick targets have only been partially
reconstructed. This photogrammetric technique is also unable to reconstruct dynamic
objects, such as soft corals and fish, because they change position and shape between image
frames. This causes the reference points to change drastically, and matching these objects
from one image to the next is often not possible. Another potential drawback of using
this technique for assessments of surface area measurements is that corals with complex
morphologies, such as arborescent and corymbose corals (branching corals) will be under
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reconstructed. Due to their complex structure and the limitations of the current image
reconstruction software, any top-down only measurements will need to be complemented
with additional angles to provide more complete measures of the 3D structure. However,
this is very time consuming on a reef scale. Conversely, the technique works well for
measures of more simple coral morphologies, such as massive corals, as presented in this
study.

The spectral data in Section 3.2 represents the signal measured by the camera converted
into units of reflectance. This was achieved by blocking the field of view (FOV) of the camera
using a white PTFE slate, considered to have 100% reflectance, to capture the incident light
present at the camera before each survey. This incident light correction demonstrates that
reflectance data can be captured in situ by low-cost hyperspectral imagers. However, in
order for these datasets to be utilised in ecological monitoring, the spectral signal at the
imaged object needs to be obtained. The primary issue faced by LVF-based imagers is that
due to the attenuation of light in water, the amount of light available across all the bands in
the sensor means that the camera’s wavelength range is reduced, and thus, the amount of
the usable image required for stitching is reduced. As a result, both the final wavelength
range and the stitching software’s ability to match images to one another are hindered.

As discussed in Section 2.2, to fully correct the data, the two-flow shallow water
reflectance model (Equation (1), [27]) must be applied. Given that both K and bb are per unit
depths, the depth is an important consideration, especially for morphometrically complex
environments such as reefs. Therefore, having an accurate depth measurement is vital to
generating the ‘true’ spectra of the object being imaged. To highlight this issue, ROI #6
from John Smith’s Bay was corrected using Equation (1) and values from the literature
in [28,29] for k and bb, where the depth was adjusted every 0.1 m, as shown in Figure 11.
This highlights that the depth measurement should be as accurate as possible, as even a
10 cm difference can have a significant impact on the spectra.
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Figure 11. The effect of depth on spectra (ROI #6 from John Smith Reef) to demonstrate the accuracy
required for underwater hyperspectral data collection.

The primary aim of this experiment was to show that hyperspectral data could be
generated by low-cost hyperspectral imagers for underwater environments, as the chal-
lenges with image stitching and imaging underwater are difficult. As a result of this, the
true depths of the ROIs are not known, and we cannot accurately compare our spectra
to known values. However, the data could still be used to perform a simple automatic
classification using ENVI’s spectral classification tool to demonstrate how the data can be
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utilised. Using ROI “training” data from areas of different benthic types, such as hard coral,
soft coral, and sand/rock, in the hypercube, an automatic classification was performed
(Figures 7 and 8). The classification assigns a likelihood, based on user defined parameters,
of how similar each pixels spectra is to those of the reference groups and assigns it to
a specific group, depicted by a colour in this example. This data can then be used to
determine the percentage cover of each of the benthic groups used (Tables 1 and 2), thus
giving researchers a method to quickly assess coral cover and the change in the distribution
of benthic types. As shown by the data, this is not a perfect solution, as some small areas
are clearly misidentified, i.e., the white reference, which has been identified in several areas
outside of where the targets were situated. The data presented in this study highlights that
for accurate assignment, the spectral classification requires sufficient training or reference
data. The more data available to it the more accurate the classification will be; therefore,
more accurate the spectral data in turn leads to more accurate classifications.

Through this study, valuable insights have been gained that can inform future improve-
ments to the imaging device, particularly in achieving more accurate depth measurements.
One simple potential enhancement is the incorporation of a range finding system, such
as an echosounder or range finding LIDAR, incorporated into the system. This addition
would enable each captured image to be associated with a corresponding depth measure-
ment, providing depth information for each individual image (as shown in Figure 12A),
accounting for any changes in distance from the reef to the imager, such as changes in
the buoyancy of the diver. It is important to note that while a range finding system could
provide depth measurements per image, its applicability may be limited to environments
with relatively low complexity and rugosity. In such environments, where objects within
the image exhibit minimal height variations, depth measurements from a range finding
system could yield reasonably accurate results.
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Figure 12. A visual depiction of future improvements to underwater hyperspectral imaging to gain
‘true’ spectra, accurately accounting for depth. (A) An echosounder can provide a simple measure of
depth per image, which is unsuitable for highly complex terrains. (B) Incorporating structure-from-
motion photogrammetry into the software would allow a pixel-by-pixel measure of depth, but at
great computing cost.

However, to address the complexities associated with depth measurements in more
diverse environments, a more comprehensive solution is needed. One such solution
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involves generating distance information from each pixel to the object, accounting for both
angle and distance (depicted graphically in Figure 12B). This could be achieved using
advanced stitching software, such as SfM photogrammetry, and combining it with the
hypercube reconstruction. By using the point cloud information generated in the SfM
workflow, we can derive each pixel’s location, its waveband, and the distance from each
pixel to the point cloud. Using the distance information, as provided by the point cloud,
allows the algorithm to be written to automatically apply the attenuation coefficient to
each pixel individually. This would lead to extremely accurate hyperspectral data in UHI
applications and allow for the generation of 4D [x, y (image), λ (wavelength), Z (height)]
data. However, it is important to consider the computational requirements associated
with this approach. The processing power necessary for generating the hyperspectral
reconstruction as part of the photogrammetry process may necessitate the utilization of
supercomputers and lead to very long processing times. However, these advancements
would not only enhance the quality of the data collected but also enable the generation of
comprehensive 4D representations of marine environments, providing valuable insights
for various applications in research and monitoring.

As highlighted in the introduction, the application of UHI extends beyond this specific
case study. Numerous other disciplines and fields can benefit from advances in UHI, and
it is important to recognize that the challenges associated with UHI are not limited to a
single application. Therefore, the proposed solutions discussed above hold relevance for all
of these disciplines. By addressing the technical and financial limitations associated with
UHI, the full potential of this technology can be unlocked, facilitating advancements across
various scientific disciplines. The utilization of low-cost hyperspectral imagers constructed
from off-the-shelf components and their capability to compensate for unstable movements
are not only relevant to this marine applications, but also hold promise for a broad range of
applications outside the marine environment.

The data presented in this study represent two small areas of reef, and additional
work is required to gather data across larger sections. Scaling up the software used is of
paramount importance to effectively handle these larger datasets, enabling the efficient
processing and analysis of the acquired hyperspectral data. Furthermore, integrating
pixel distances into the analysis pipeline to generate 4D hyperspectral data would offer
invaluable insights for a range of HSI applications particularly in environmental contexts.

Building upon a successful demonstration of 4D hyperspectral data, the next step
would be to conduct repeat surveys of reef areas over multiple time periods. This approach
would enable the creation of a time-series dataset, which is essential for studying temporal
changes and dynamics in reef health. By comparing data collected at different time points,
change detection algorithms could be applied to track and quantify alterations in reef
condition, such as coral bleaching events, changes in coral cover, damage from storm
events, or shifts in biodiversity, over extended time periods. It is important to note that the
spectral data gathered can be used to accurately and automatically classify broad benthic
types (coral, algae, sand), as previously outlined by [31,34]. Due to the extensive coverage
provided by hyperspectral data, further refinement of the classifications will develop
rapidly with return surveys [35]. However, while identification of coral species by spectral
data alone is currently not possible, in future, a combination of enhanced spectral libraries
and the use of other complementary metrics, such as photomosaics and 3D information
machine learning algorithms, may achieve this goal. The true strength of the technique is
its allowance of non-invasive physiological assessments of organism health, which will
help us understand how marine habitats are impacted by stressors such as heatwaves, and
crucially, how they recover from such events. This will enable us to better understand the
impacts and to identify pathways to mitigate and adapt.

In conclusion, the Bi-Frost DSLR was able to effectively process underwater data to
generate hypercubes and extract spectral information from coral reefs. The successful
implementation of the Bi-Frost imager represents a major milestone in the development of
a low-cost, in situ marine hyperspectral imaging technique. By providing an affordable
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spectroscopy tool, the capacity to expand the current capabilities of marine scientists to
understand and preserve marine ecosystems is increased. This affordability opens up ex-
tended opportunities for data collection across larger reef areas, enhancing our understand-
ing of ecosystem dynamics and enabling comprehensive monitoring using spectroscopic
techniques. This study is the first step in laying the groundwork for establishing the Bi-
Frost imager’s use in coral reef monitoring. Future advancements will focus on improving
the image processing algorithms to generate hyperspectral data, expanding the spectral
range, and incorporating advanced data analysis techniques into standard surveyance.
These developments will contribute to a robust and reliable marine hyperspectral imaging
technique, aiding ongoing efforts to assess and monitor coral reef and marine ecosystem
health.
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