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Abstract: Restorative dentistry is the repairing of damaged teeth and restoring oral health and
function. Dental implants are typically placed within the cortical bone of the jaw to provide stability
and support for prosthetic restorations. The successful restoration of complex anatomical features
of the maxillary anterior is difficult for prosthodontists. Using a 3D slicer, CT scan images were
used to create a detailed three-dimensional model of the maxilla bone. This study utilizes ANSYS
Workbench, a finite element software program, to analyze the abutment angles, ranging from 0° to
25°, and the impact stress distribution within peri-implant bone. The outcomes of our studies align
with and substantiate certain evidence in the literature documenting bone resorption, specifically at
the level of the implant neck and near the cortical bone. The study aims to provide a comprehensive
understanding of angled abutment stress patterns in the bone surrounding dental implants, offering
valuable insights for clinical applications in critical areas of the mouth.
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1. Introduction

Restorative dentistry is the repairing of damaged teeth and restoring oral health and
function. Whether it is fixing cavities, replacing missing teeth with implants, bridges, or
dentures, or repairing cracked or broken teeth, the primary objective is to enhance the
overall health of the mouth and improve the chewing and speaking ability [1,2]. For patients
with missing teeth, achieving a natural and aesthetic appearance is critical. For successful
restorations, replicating the shape and size of the teeth, gum contours are essential [3].
Due to the complex anatomical features of the maxillary anterior teeth, restorations are
difficult for prosthodontists [4]. To address these challenges, prosthodontists employ
advanced imaging technologies such as CT scans and digital impressions to derive a better
understanding of a patient’s anatomy. Dental implants and dentures are used as the
materials and techniques to address functional aspects, but also ensure the desired aesthetic
outcome [5].

The temporomandibular joint (TM]) produces varying degrees of force during chewing
hard or soft foods, speaking, and even grinding teeth. These forces can impact not only
the joint itself, but also the teeth and their supporting structures [6]. When a tooth is
lost, the underlying bone in the jaw starts to resorb or shrink over time due to lack of
stimulation, leading to changes in the bone structure. This can complicate the placement
of dental implants or affect the fit of prosthetic devices. Additionally, surrounding teeth
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tend to shift or move into the space left by the missing tooth. This can cause misalignment
issues, affecting both aesthetics and bite function. To effectively rehabilitate a missing tooth,
dentists or prosthodontists need to consider the specific circumstances of each patient.
This includes assessing the condition of the surrounding teeth, the health of the gums and
jawbone, and the patient’s preferences [7]. Dental implants are often considered the gold
standard for tooth replacement because they mimic the natural tooth root and provide
stability for various prosthetic options [8]. However, the success of implants depends on
adequate bone volume and quality. Bridges and partial dentures are alternative options, but
they may have limitations in terms of stability, the impact on adjacent teeth, and long-term
maintenance [9]. Dental implants are typically placed within the cortical (dense outer) bone
of the jaw to provide stability and support for prosthetic restorations. In cases of bone
deficiency, additional procedures such as bone grafting may be necessary to augment the
bone before implant placement. This can increase the complexity and time involved in the
overall treatment process.

If the natural orientation of the bone is not ideal for implant placement, implants
may need to be inserted at angles to achieve proper support for prosthetic restorations.
This process is technically challenging, and the use of angled abutments or specialized
implant systems may be required. Precise planning through imaging techniques such
as CT scans is crucial to avoid complications during implant placement [10,11]. Angled
abutments are indeed valuable tools in managing the placement of an implant in the
premaxilla zone of the mouth due to bone morphology and adjacent teeth angulations. In
such cases, the positioning of implants might deviate from the ideal angle perpendicular to
the occlusal plane. Typically, angled abutments range from 10° to 60°. These abutments
enable adjustment of the orientations of the tilted position of the implants [12,13].

Customized angled abutments offer a highly tailored solution in situations where
standard angled abutments might not perfectly fit the patient’s unique anatomy [14]. The
fabrication of customized angled abutments often involves advanced CAD/CAM technol-
ogy or traditional laboratory techniques, such as casting or milling based on digital designs.

The finite element method is a valuable tool in medical implant and human organ
research, providing a detailed and quantitative understanding of the mechanical behavior
of implants in the oral environment [15-18]. This study utilized finite element analysis to
investigate the varying abutment angles, ranging from 0° to 25°, impact stress distribution
within the peri-implant bone. Specifically focusing on the anterior maxilla, the goal was to
systematically measure and compare stress levels. The study aimed to provide a compre-
hensive understanding of angled abutment stress patterns in the bone surrounding dental
implants, offering valuable insights for clinical applications in critical areas of the mouth.

2. Materials and Methods
2.1. Modelling

Utilizing computed tomography (CT) scans of the mandible, we employed advanced
imaging technology to generate three-dimensional (3D) models representing the intricate
structures of these respective jawbones. Using 3D slicer-free, open-source software rep-
resents a cost-effective and accessible approach to constructing the models based on the
CT scans. This software enables the conversion of CT scan images into detailed three-
dimensional models of the maxilla bone (Figure 1a). A cross-sectional view of the complete
dental components used in this study is shown in Figure 1b. The maxilla was modelled
with a core of cancellous bone encapsulated inside cortical bone with a thickness of 2 mm.
The implant model was developed based on the Alpha-Bio Tech product catalogue. The
adopted model utilized an implant with a length of 11.5 mm and a diameter of 3.75 mm, as
stated in the catalogue. To model the implant, CATIA 3D experience was used (Figure 2).
The implant was tapered in dimensions, where A and B represent the upper and lower
diameters in mm, and D represents the diameter of the implant used.
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Figure 1. (a) Three-dimensional model from the CT scans using a 3D Slicer; (b) cross-sectional view
of the dental component assembly.
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Figure 2. Implant model: (a) catalogue model; (b) drafting view of the 3D model; (c) 3D model.

For the analysis, both straight and angled abutments were modelled. Figure 3 il-
lustrates the CATIA 3D experience model of the abutments and crown, with the crown
comprising zirconia material.
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Figure 3. Angled abutment and crown.

2.2. Meshing and Boundary Conditions

In this study, numerical models of the crown-abutment-implant-bone assembly were
created using 4-node tetrahedral elements within ANSYS Workbench R2-2023, 3D finite
element analysis software. Mesh convergence was carried out on the crown for the 200 N
load case by varying the mesh size from 1 mm to 0.1 mm with an interval of 0.1 mm. It was
observed that there were no significant differences in von Mises stresses, with a mesh size of
less than 0.5 mm. Thus, a mesh size of 0.5 mm was finalized for further analysis. Figure 4b
shows the mesh convergence study. The number of nodes and elements in the final model
is given in Table 1. Figure 4a shows the meshed models of the implant structures.
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Figure 4. (a) Meshed model; (b) mesh convergence graph.

Table 1. Details of the models and corresponding nodes and elements for each model.

Components Node Elements
Crown 47,575 31,658
Abutment 91,614 63,194
Implant 55,416 35,432
Cortical bone 363,346 251,040
Cancellous bone 162,859 114,354

For the analysis, the dental implant materials were assumed to be homogenous and
elastic in behavior. The material properties were determined based on the literature source,
as shown in Table 2. The mechanical properties employed in our study were chosen to
precisely represent the material behavior within the simulation model.
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Table 2. Mechanical properties of the implant structure.

Anatomic Structure ~ Modulus of Elasticity (GPa) Poisson’s Ratio References
Implant 110 0.35 [19]
Abutment 110 0.28 [19]
Crown structure 210 0.33 [20]
Cortical bone 13.7 0.3 [19]
Cancellous Bone 1.10 0.3 [21]

For this study, the range of occlusal force was deliberately limited to a minimum
of 40 N and a maximum of 200 N. This decision was based on previous research that
highlighted the significant influence of the application angle of force on stress and strain
patterns in the bone [12,22,23]. The load was applied in the vertical direction to the crown
and the lower surface of the cortical bone was completely constrained, as shown in Figure 5.
The contact between each component of the implant was assumed to be bound, as no
sliding occurred between the implant components.

B: Copy of Static Structural
Force
Tirne: 1. 5

. Fized Support
. Force: 40, M

Figure 5. Boundary conditions.

3. Results
3.1. Stress Distribution in the Implant System

Figures 6 and 7 show the stress distribution in the entire implant model for loads of 40
and 200 N, respectively. The highest stress concentrations were observed at the interfaces
between the implant collar and the cortical bone [24]. This finding was significant as it
highlighted areas where the structural integrity and load-bearing capacity of the implant
system may be most challenged. Additionally, a stress effect was found on the portion of
cortical bone and coronal cancellous bone [25]. The maximum stress concentrations at the
interfaces between the implant collar and the cortical bone indicate that this region bears
a substantial load during biomechanical loading. High stress concentrations at interfaces
lead to issues such as material fatigue, implant loosening, and bone resorption. Under
a load of 40 N, the maximum stress in the crown of the implant was 55.745 MPa; under
a higher load of 200 N, the maximum stress increased to 278.72 MPa. These maximum
stresses were exhibited by the implant crown for the 25° angulation of abutment. In the
cortical and cancellous bone, the highest stresses recorded with a 20° abutment angle were
7.854 MPa and 39.275 MPa for the cortical bone, and 6.662 MPa and 33.278 MPa for the
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cancellous bone. At the implant-bone interface, the maximum stress observed at a 15°
abutment angle was 22.276 MPa and 110.15 MPa. Stress distribution on both the implant
shaft and implant neck showed that maximum stresses were located at the implant neck,
irrespective of the forces applied; minimum stresses were located at the implant shaft [26].
The stress distribution in dental implants is notable due to its concentration in distinct
regions. Stress is concentrated in the area near the first thread of the implant [27]. Angled
abutments create non-axial forces on the implant, leading to an increase in the stress at
the implant-bone interface. This could affect the stability of the implant and potentially
compromise its long-term success.

The results obtained through simulation analysis in this study offer innovative in-
sights into the stress distribution within dental implants, particularly focusing on angled
abutments. Figures 6 and 7 depict the stress distribution in the entire implant model
under different loads, highlighting the highest stress concentrations at interfaces between
the implant collar and the cortical bone. This finding is crucial as it underscores areas
where the structural integrity and load-bearing capacity of the implant system may face
significant challenges. Moreover, the study identified stress effects on both the cortical
and coronal cancellous bone, with maximum stress concentrations observed at the implant
collar interfaces. These findings are significant as they shed light on the biomechanical
loading experienced by these regions, potentially leading to issues such as material fatigue,
implant loosening, and bone resorption.
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Figure 6. Implant structure stress distribution for the 40 N load case.
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3.2. Validation of the Obtained Result with the Literature

To validate the results obtained in the current study, a comparison was performed
with the findings obtained Cardelli et al. [28], in their article specifically focusing on loading
conditions of 100 N. We obtained von Mises stress results for the loading conditions of
100 N, as presented in Figure 8. Importantly, the present study incorporated the crown
in the simulations, whereas Cardelli et al. did not include the crown in their study. A
dental crown serves as a protective cover for a damaged or weakened tooth, helping to
restore its shape, strength, and functionality. When a tooth is crowned, it can withstand
biting forces and chewing pressure better than an untreated tooth. Dental crowns play a
crucial role in preserving the structural integrity of teeth and preventing further dental
problems [29]. However, both cortical and cancellous bones exhibit nearly identical results,
as shown in Figure 8. The potential variations in the values of screw and abutment, as with
the presence or absence of a crown, can significantly influence stress distribution within
the implant-bone system.
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Figure 8. Validation of the obtained result with Cardelli et al. [28].

3.3. Comparison of Different Loading Conditions on the Angled Abutment

Figure 9 shows the maximum von Mises stresses in the dental structure for different
abutment angles at a load of 40 N. It is clear from Figure 9 that the maximum stress of
55.74 MPa was obtained in the crown for an abutment angle of 25°. The minimum was
obtained in the cancellous bone, as it took the stress at the end. When the 0°, 15° and 25°
angulations were considered, there was a linear variation in the stress magnitude observed
from the cancellous bone to the crown. However, for the 15° angulation of abutment, high
stresses are obtained in the abutment as compared with the implant and the cortical bone.
Similar stress behavior was observed in the load case of 200 N, as shown in Figure 10. The
maximum stress of 287.72 MPa was obtained at a 25° abutment; the minimum stress was
in the cancellous bone. This is because the cortical and cancellous bones receive the same
force simultaneously, and as the abutment angle variation takes place, the stress transfer
to the cancellous bone is minimized due to stress absorption by the cortical bone. The
biomechanical phenomenon underscores the importance of considering abutment angles
in implant design, as it directly impacts the stress distribution within the surrounding bone
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structures. The 15° abutment angle consistently resulted in higher stresses in the abutment
compared with the implant and cortical bone, in both the 40 N and 200 N load cases.
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Figure 9. The 40 N load case comparison for different abutment angles.

Von Mises stress (MPa)

Crown Implant Abutment Corticle Cancellous

Figure 10. The 200 N load case comparison for different abutment angles.

Figure 11 presents different loads that affect the implant structure at abutment angles
of 25°,20°,15°, and 0°, labelled as (a—d), respectively. The load cases were examined to gain
insights into the impact of angulation on the implant assembly. The predominant observa-
tion in both load cases depicted in Figure 11a,b,d (angles of 25°, 20°, and 0°, respectively)
is that the maximum stress consistently occurs in the crown. This aligns with the expected
biomechanical scenario, given that the crown is the initial component that bears loads
during the grinding of food. As the load transfers from the crown to the cancellous bone, a
discernible reduction in stress levels is observed. Contrastingly, the implant structure at a
15° angle (Figure 11c) exhibits a non-linear pattern in stress distribution. Notably, the screw
structure within the implant displays the second highest stress magnitude, particularly at
the interfaces between the implant collar and the cortical bone.
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Figure 11. Load case comparison for abutment angles: (a) 25° (b) 20° (c) 15°, and (d) 0°.

4. Discussion

The present research aligns with the findings of Kapoor et al. [30], as both studies
utilized finite element analysis to assess stress distribution within angulated implant
structures and their adjacent bone regions under axial loading conditions. Consistent
with the observations of Kapoor et al. [30], our study identified the highest stresses to
be concentrated in the cortical bone surrounding the implant neck, particularly in cases
involving angulated abutments at 25°, 20°, and 0°. Furthermore, our results indicate a
similar trend of the maximum stress observed.

The investigation conducted by Bholla et al. [31] revealed a notable 26% increase in
stress value in the interface of cortical bone and cancellous bone when comparing a 25°
abutment with a 0° abutment. In our research, a similar trend was observed, demonstrating
a 19.5% increase in stress value when comparing both 25° and 0° abutments. These
findings contribute to the growing body of evidence indicating the influence of abutment
angles on stress distribution within the implant and surrounding bone structures. Similar
observations were also reported by Kao et al. [32].

In the studies conducted by Clelland et al. [33] and Papavasiliou et al. [34], the sim-
ulation results demonstrated that stresses were concentrated in the cortical bone, and
the magnitude of these stresses increased with increases in the abutment angulation. In-
terestingly, our research yielded similar results, with observed increases in stress values
associated with higher abutment angulations [35-38]. Baggi et al. [19] showed that the
implant neck bears the maximum load due to contact stress. The presence of a stiffer
cancellous bone proves advantageous by effectively reducing stress concentrations in the
cervical area surrounding the terminal abutment, where stresses typically reach their peak.
The complex interplay between bone biomechanics and implant structures emphasizes the
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importance of considering bone characteristics in the overall assessment of stress dynamics
around dental implants. Our findings indicate that stress is concentrated in the area near
the first thread of the implant, emphasizing the significance of this region in terms of
mechanical loading. Additionally, there is a concentration of stress in the bone around the
implant neck. Similar findings have been reported by Mahajan et al. [39].

5. Conclusions

The outcomes of our studies align with and substantiate certain evidence in the
literature documenting bone resorption, specifically at the level of the implant neck and
near the cortical bone. The stress concentrations identified in our research, notably in the
area near the first thread and around the implant neck, correspond to regions where clinical
evidence has reported bone resorption. The heightened stresses at the interfaces of the
implant collar and cortical bone underscore potential areas of concern, warranting detailed
examinations of structural integrity and biomechanical performance. The increased stresses
of pre-angled abutments at the coronal zone may have implications for the long-term
stability and health of the implant-bone interface. By leveraging FEA, researchers can
assess and optimize the performance of proposed designs, contributing to the ongoing
evolution of implant technologies aimed at minimizing stress-related issues and improving
the overall success and longevity of dental implants.
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