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Abstract: The evolution of anthropomorphic robotic hands (ARH) in recent years has been sizable,
employing control techniques based on machine learning classifiers for myoelectric signal processing.
This work introduces an innovative multi-channel bio-signal transformer (MuCBiT) for surface
electromyography (EMG) signal recognition and classification. The proposed MuCBiT is an artificial
neural network based on fully connected layers and transformer architecture. The MuCBiT recognizes
and classifies EMG signals sensed from electrodes patched over the arm’s surface. The MuCBiT
classifier was trained and validated using a collected dataset of four hand gestures across ten users.
Despite the smaller size of the dataset, the MuCBiT achieved a prediction accuracy of 86.25%,
outperforming traditional machine learning models and other transformer-based classifiers for
EMG signal classification. This integrative transformer-based gesture recognition promises notable
advancements for ARH development, underscoring prospective improvements in prosthetics and
human-robot interaction.

Keywords: convolutional transformer; deep learning; bionic prosthetics; EMG data classification;
anthropomorphic robotic hand

1. Introduction

Recent years have witnessed significant advancements in the field of robotic prosthetics
research. One of the most prominent challenges for researchers is designing anthropomor-
phic robotic hands that are capable of accurately replicating the appearance, movement,
and control based on the bio-signals of human hands. In this context, using myoelectric
sensors has emerged as a promising strategy to control robotic prostheses. Myoelectric
sensors allow for the capture and analyzation of bio-electrical signals generated by muscle
activity using sensors patched over the surface of the skin, avoiding invasive bio-signal
sensing [1] and achieving the intuitive and natural control of the prosthesis.

In electromyography (EMG), invasive electrodes are characterized by needles inserted
into specific muscle groups, aiming to replicate delicate movements. However, their
intrusive nature limits the prosthesis use to a particular user and exposes them to risks such
as infections due to unsanitary conditions or improper care [2]. Alternatively, strategically
positioned surface electrodes on the dermis offer a non-invasive interface for sensing
versatile and ergonomic EMG data [3]. Surface electrodes are particularly suitable for
monitoring and controlling prostheses in everyday use and facilitate adaptability to various
users, establishing themselves as a preferred option for more generalized applications [4].

Prosthesis 2023, 5, 1287-1300. https:/ /doi.org/10.3390/ prosthesis5040088

https://www.mdpi.com/journal /prosthesis


https://doi.org/10.3390/prosthesis5040088
https://doi.org/10.3390/prosthesis5040088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/prosthesis
https://www.mdpi.com
https://orcid.org/0000-0002-4481-9224
https://orcid.org/0000-0003-0077-8528
https://orcid.org/0000-0001-7401-4390
https://orcid.org/0009-0008-4650-4681
https://doi.org/10.3390/prosthesis5040088
https://www.mdpi.com/journal/prosthesis
https://www.mdpi.com/article/10.3390/prosthesis5040088?type=check_update&version=1

Prosthesis 2023, 5

1288

Anthropomorphism plays a pivotal role in developing dexterous robotic prosthetic
hands designed to assist individuals with different abilities. To achieve this goal, different
designing approaches have been explored, for instance, the combination of distributed
actuation [5], dual-mode torque actuation, and joint locking mechanism [6], and methods
of flexing and tensioning with ropes (i.e., artificial tendons) [7] used to emulate human
muscle action forces to predict the hand gesture strength in each finger movement [8].
These previous approaches have limitations regarding the angular mobility of the joints.
On the other hand, a fully mechanical motor-driven drive is presented in [9], allowing for
the full motion of the hand’s fingers. Also, a design based on the bone structure of the hand
was proposed to simulate how tendons provide firmness and degrees of mobility in each
hand section [10]. In addition, 3D printing has been widely used in the development of
anthropomorphic robotic hand designs due to its advantages in terms of fabrication time
and printing materials. Among different materials available, Thermoplastic Polyurethane
(TPU), developed by the authors of [11], has become a common choice in the production
of prostheses. This is attributed to its impressive flexibility, exceptional durability, and
resistance to breakage.

Machine learning (ML) algorithms have played essential roles in the control of robotic
prosthetic hands. Remarkable examples include artificial neural networks (ANNSs) [12],
Support Vector Machines (SVMs) [13,14], Linear Discriminant Analysis (LDA) [13], De-
cision Trees (DT), multi-layer perceptron (MLP) [15], and Encoder-Decoder Temporal
Convolutional Networks (ED-TCNs) [16]. These techniques aim to recognize and classify
patterns within myoelectric signals. While prior research has yielded promising results,
the effectiveness of classification varies based on the extracted features [17]. For instance,
Phinyomark et al. [18] achieved an average classification rate of 82.57% using nine relevant
features from an EMG dataset of 52 hand gestures with a sampling rate of 200 Hz and
16 electrodes. Nunez-Montoya et al. [15] reached a classification rate of 74.78% using
20 relevant features from an EMG dataset of four hand gestures with a sampling rate
of 250 Hz and 12 electrodes (6 channels). Betthauser et al. [16] reached a classification
rate of 72.10% using five relevant features from an EMG dataset of four hand gestures
sensed with eight EMG sensors built in the Myo Armband at a sampling rate of 200 Hz.
Chung et al. [12] reached a classification rate of 85.08% using an autoencoder for automatic
feature extraction from an EMG dataset of five hand gestures with a Myo Armband. Wang
et al. [13] reached a classification rate of 83% using five relevant features with a sampling
rate of 1000 Hz and four electrodes (two channels) with their own EMG signal recording
system. A different approach for EMG data collection focuses on human hand gestures
that include the motion of all fingers to perform grasping positions. For instance, Yang
et al. [14] reached a classification rate of 93.7% using one feature from an EMG dataset of
eighteen hand gestures with a sampling rate of 100 Hz and 50 electrodes. Chen et al. [19]
reached a classification rate of 93.1% using 5 relevant gestures from an EMG dataset of
25 hand gestures with a sampling rate of 2000 Hz and two electrodes (two channels). The
field is evolving to encompass a broader range of hand gestures, including those relevant
to prosthetic control and human—computer interaction [20]. Despite these achievements,
traditional ML techniques, like those mentioned above, often face limitations in handling
high-dimensionality and time series relations, which are inherent in myoelectric signals.
Therefore, it may become useful to explore deeper architectures that can capture long-term
dependencies and patterns.

Deep learning (DL) is a subfield of ML that emphasizes deep-layered models inspired
by the brain structure (e.g., ANNSs) and has demonstrated its effectiveness in the biomedical
field for pattern recognition in images and time series bio-signals [21-24]. Transformer
networks are DL models that have emerged as innovative architecture in natural language
processing and computer vision [20]. Transformers are based on attention mechanisms
and have consistently demonstrated outstanding performance in machine translation tasks,
text generation, object recognition, and more [25,26]. Their ability to capture long-term
relationships and contextual patterns in time series signals has revolutionized sequential
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data processing and opened new opportunities in diverse research domains, for instance,
Human Activity Recognition (HAR) [27] and its applicability in recognizing specific hand
gesture actions based on EMG data. In the state of the art, Xiao et al. [28] implemented
a self-attention mechanism using a Two-stream Transformer Network (TTN) to model
temporal-spatial dependencies in multimodal HAR. Furthermore, there has been a growing
interest in the development of Transformer models for the time series of biomedical data,
such as electrocardiogram (ECG) signals [29-31] and EMG signals using Vision Transformer
(ViT) models [32,33].

In this paper, we introduce the multi-channel bio-signal transformer (MuCBiT), an
innovative approach to recognize and classify hand gestures sensed through EMG elec-
trodes placed on strategic areas of the arm’s surface, aiming to replicate the human hand
motions in an anthropomorphic robotic hand (ARH). A printable ARH is used to evaluate
the MuCBiT. Artificial tendons operate the printable ARH to mimic the contraction and
extension of human hand muscles. To evaluate the proposed bio-signal classification, we
utilize a collected database and compare its performance to prior research [15] and other
transformer models implemented in previous research articles. The database is split into
training, validation, and testing datasets. The MuCBiT model achieves 86.25% with the
validation dataset and 86.78% with the testing dataset.

2. Materials and Methods

Figure 1 shows an overview of the implemented system to control the ARH. The
EMG DAQ section involves sensing EMG data using a Cyton Board, which captures the
myoelectrical signals of the user through six channels placed on their forearm. These signals
are then transmitted to a server via serial communication using the Lab Streaming Layer
(LSL) application. LSL is compatible with Python and facilitates data processing. The signal
classification stage encodes the EMG signals into four hand gestures using the MuCBiT
model. Finally, the predicted result is sent to an ESP32 servo-controller board, which
controls the servo motors using multi-channel output. It applies a Single-Input Single-
Output (SISO) positional control approach to modulate the PWM signals and execute the
corresponding hand gesture in the ARH.

Signal Clasification
ARH control

EMGDAQ 11111

11111
TTrTT

E Microcontroller
MuCBIT Model

Server

Figure 1. Overview of the proposed system.

2.1. Anthropomorphic Robotic Hand

The printable ARH used in this work was our design based on the work of [15], where
a mechanical system driven by servo motors was used. Our design was inspired by the
muscles’ flexion and extension system responsible for the finger movements of the human
hand. The human anatomy is shown in Figure 2. The movements of the index, middle,
ring, and little fingers are controlled by both the muscles in the upper and lower regions
of the forearm. The thumb is controlled by smaller muscle groups in different arm areas
because of its unique dexterity. Our design imitates this complex coordination of muscles,
allowing the robotic hand to replicate human-like movements more accurately.
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Figure 2. Main muscles that drive human fingers.

A rope system was implemented to control the fingers of the anthropomorphic robotic
hand (ARH), motivated by the biomechanics of flexing and tensing the muscles of human
arms [34]. Also, to reduce the number of required actuators, we considered the relations
between fingers when they move, as noted in [35]. These interfinger relations can be
appreciated in Table 1.

“u

Table 1. Relation between the movements of the fingers (“-” symbolizes independence and “x”

symbolizes dependence).
Index Middle Ring Little
Index X X - -
Middle X X X -
Ring - - X X
Little - - X X

Rows are the target finger motions; columns are the relations between the motions.

The ARH will feature a 3D-printed membrane using TPU, which provides flexibility
and emulates natural forces in hand motion, such as friction. The proposed design can be
seen in Figure 3.

2.2. Database

The database used for this research was obtained from previous experiments [15]. It
includes data gathered from ten participants, evenly divided between genders, ranging
in age from 18 to 50 years. Data acquisition was facilitated using a Python script, which
recorded the streaming EMG signal from the six channels transmitted by the Open-BCI’s
Cyton board at a sampling rate of 250 Hz. Each of the four hand gestures was repeated
20 times by all participants, with a two-second interval between each repetition, as illus-
trated in Figure 4. The presentation order of these hand gestures was randomized within
each loop for user performance. Finally, the acquired data from the experiments was stored
in *.csv format for further analysis.



Prosthesis 2023, 5

1291

Figure 3. Three-dimensional design of ARH: (a) assembled design; (b) internal structure of ARH,
where A represents servomotors in black, B represents pulleys in the blue.
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Figure 4. EMG data acquisition protocol.

We selected these four specific hand gestures due to the activation of the muscles we
analyzed in this study, as shown in Figure 2. Each gesture was chosen because it involves
an ordered and synchronized motion of each finger. Also, some of these hand motions were
used in other studies [12-15,19,33]. This approach enabled us to conduct a comprehensive
examination of the muscle activation patterns associated with various finger movements,
enhancing the overall scope of our study.

Processing Data

The collected EMG time series signals were not filtered to preserve the nature of the
data. The data were organized into a time-dependent tensor to strengthen our MuCBiT
model to capture the relevant information. Figure 5 shows the set of EMG signals of the
six channels as a function of time. A specific time frame was taken as an example, which
allowed us to visualize how the EMG signals varied over time in different channels.

This tensor representation of the data allowed us to capture the temporal and spatial
information of the EMG signals, which is essential to analyze and classify hand gestures.

The variability in motion speed among the participants resulted in variations in the
lengths of collected motions. Therefore, we performed data filling to standardize the data
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length to 512 myoelectric data points recorded in each movement. This standardized the
length of the time sequence and ensured consistency for data analysis and processing.

6-channel EMG signal graph.
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Figure 5. Graph channels vs. time of an executed movement.

2.3. Mio-Transformer Network

The proposed MuCBiT is based on a ViT. The ViT is a variation of the original Trans-
former utilized to perform computer vision tasks [30,33,36,37]. The ViT network architec-
ture comprises an encoder to extract relations between the time series signals and a decoder
to produce an output based on the relations and features extracted in the encoder. The
proposed transformer-based architecture for multi-channel biological signal analysis is
depicted in Figure 6. The MuCBIiT uses the key transformer component, the Multi-Head
Self-Attention (MHSA) mechanism from the encoder. This advanced encoding mechanism
allows for relations or dependencies to be found between the time series signals and the
multi-channel.

2.3.1. Embedding Patches

The embedding patches split the data into patches, and then projected them into a high-
dimensional space through an embedding layer. Classification tokens (CLS tokens) were
added at the beginning of the input sequence, and they were embedded with positional
information before being passed through the transformer [38,39].

Unlike in other transformer models oriented towards natural language processing (NLP),
the CLS token does not represent any actual word in the sequence. It acts as a reference point
for the classification task, assimilating the acquired features related to the class.

EMG signals are an ordered sequence of data; keeping this order is critical to correctly
interpret the sequence and recognize patterns in the EMG signals of the subject [16].
Sinusoidal and cosine functions at different frequencies were employed as the positional
embedding (PE), according to Equation (1),
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Figure 6. Architecture of the MuCBiT model.

Py = sm(m&%)
PE 1)

pos
Pipr1 = COS(w)

where pos is the position of an object in the input sequence, and 4 is the embedding output
dimension [40]. This approach helps to capture the temporal relationships within the
data, making the model more sensitive to the temporal ordering of the EMG signals and
enhancing its prediction accuracy.

2.3.2. Transformer Encoder

Our proposed encoder architecture is derived from the standard structure [40], us-
ing a normalization layer that precedes each MHSA layer and feedforward layer. This
architecture ensures that the data are normalized before any subsequent operations.

Figure 7 shows the architecture of our MHSA. The MHSA module integrates a dropout
mechanism applied to the attention vector post-softmax. This enhances the model’s robust-
ness and its ability to generalize from the training data. The dropout is set to zero with
some attention weights during training to prevent the model from being over-reliant on
any single attention position on any individual attention position. Thus, its ability to adapt
to new (i.e., unseen) data strengthens.

The computation of the attention function is explained in Equation (2) [38]:

Attention(Q, K, V) = softmax ( QK™ > ()
Vix

where dg represents the dimensionality of key values. V, K, and Q are the value, key, and
query, respectively, according to the original transformer model [40].
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Figure 7. (a) Scaled dot-product attention. (b) Multi-head attention layer architecture.

The multi-layer perceptron is a set of feedforward layers in line. The feedforward
layers use the Gaussian Error Linear Units (GELU) activation function [41]. The GELU
captures complex patterns within the EMG data more effectively. This section produces
classification labels based on the high-level representations generated by the encoder,
thereby enabling the system to make informed decisions about motion classification.

Furthermore, an extra dropout regularization is employed within the feedforward
layer to mitigate overfitting and enhance the ability to generalize the model.

This regularization strategy prevents the model from becoming overly dependent on
individual neurons and ensures a balance between bias and variance.

2.3.3. Model Configuration

The configuration of the MuCBiT model is defined by a set of key parameters that
control various aspects of its architecture and behavior in training. The key parameters
include the following:

e seq_len: This parameter defines the length of the input sequence to the model, which,
in this case, is set to 512 sample points. This means that the model processes sequences
of 512 data points at a time.

e  channels: The number of input channels refers to the six channels used to sense the
EMG signal data.

e  patch_size: This parameter controls the sizes of the patches used in the model, which
are set to 4, 8, 16, and 32.

e num_classes: The number of distinct classes the model is designed to classify is set to
4, which depends on the number of different hand gestures you want to identify in
the EMG signals.

e dim: The dimension of the embedding space into which the input sequences are
transformed. The embedding space was trained with 1024 and 2048 dimensions.

e  depth: The depth of the transformer network, i.e., the number of transformer layers in
the model. The model was tested with 6, 8, and 10 transformer layers.
heads: The number of multi-head attention layers, set to 8, 12, and 16 layers in this case.
dim_head: The dimension of each MHSA of the transformer layers. In this case, each
head has a dimension of 32 or 64.
mlp_dim: The dimension of the MLP layer, which was set to 1024 and 2048.
dropout: The dropout rate applied to the transformer encoder layers was set to 0.05.
emb_dropout: The dropout rate applied to the embedded patch was set to 0.05.
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2.4. Training Details

The database consisted of 800 samples of the four hand gestures. We performed a
training and validation split with an 8:2 ratio (i.e., 640 samples for training and 160 for
validation). Additionally, a testing dataset of 400 samples was generated using EMG signals
from four women and one man.

During the training process, different hyperparameter settings were configured and
evaluated; the number of epochs was initially set to 100 and increased to 120, and batch
sizes of 5, 10, and 30 were tested. Learning rates of 1 X 107° and 1 x 10~* were used
alongside an AdamW optimizer, which is a variant of the conventional Adam optimizer
with weight decay rates of 0.01 and 1 x 1074

2.5. Framework

In this study, EMG data are acquired without undergoing any data preprocessing,
allowing the EMG data acquisition (DAQ) device to directly transmit the sensed data to a
local workstation for gesture recognition.

3. Results
3.1. Parameters Tuning

The proposed model offers various configuration parameters that affect the classifica-
tion accuracy. To identify the optimal settings for our model, we conducted a two-stage
optimization process. In the first stage, we evaluated the correlation of each parameter
with the accuracy of the model while keeping a fixed learning rate of 1 x 10~* and a weight
decay of 1 x 10~ for 100 epochs. Subsequently, in the second stage, we performed a grid
search, considering variations in the number of epochs, learning rates, and weight decay
based on the best parameters identified in the first stage. This iterative approach allowed
us to refine the configuration of the model for the best outcome.

Table 2 summarizes our experimentation results from the first stage, showing the
top 10 configurations while considering accuracy as the evaluation metric. The highest
prediction accuracy of 85% was obtained with a batch of 10, a patch size of 4, a projection
dimension of 1024 in the data sequence, a depth of 10 transformer layers, 16 attention heads
with 64 neurons each, and an MPL dimension of 1024.

Table 2. Table of the top 10 configurations based on accuracy with the validation dataset.

Patch Dim MLP

Batch Size Dim Depth Heads Head Dim Accuracy
10 4 1024 6 8 32 2048 70.00
10 8 1024 6 8 32 1024 72.50
10 16 2048 8 12 32 2048 73.75

5 4 1024 6 8 32 1024 75.00
30 16 1024 8 12 64 2048 76.87
10 8 1024 10 16 32 1024 79.00

5 4 1024 10 16 32 2048 80.00
30 4 1024 10 16 64 1024 80.55

5 4 1024 6 8 32 1024 81.87
10 4 1024 10 16 64 1024 85.00

Once the MuCBiT configuration was set, different configurations of hyperparameters,
such as the learning rate, weight decay, and training epochs, were fine-tuned to enhance the
classification accuracy. Table 3 shows that the model reached a classification performance
of 86.25% using a learning rate of 1 x 107>, a weight decay of 0.01, and 120 epochs.
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Table 3. Hyperparameter tuning results.

N° Epochs Weight Decay Learning Rate Validation Accuracy
100 1x107* 1x107* 85.00%
100 1x10~% 1x1075 83.12%
100 0.01 1x107* 81.87%
100 0.01 1x10°° 80.62%
120 1x10~% 1x10~% 83.75%
120 1x10~4 1x10°° 81.25%
120 0.01 1x10°* 84.00%
120 0.01 1x107° 86.25%

3.2. MuCBIT Classification Results

Figure 8 displays the confusion matrix obtained following the 5-fold cross-validation
process. In this matrix, the columns represent the predicted hand gestures, while the
rows contain the ground truths. On the main diagonal, a minimum precision of 73.17% is
observed, corresponding to gesture 3. It is followed by gesture 1, with a score of 78.38%.
This indicates that the Transformer model confuses these two hand gestures. In contrast,
gestures 2 and 4 show scores of 95.56% and 100%, respectively.

Confusion matrix
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Figure 8. Confusion matrix of 4 hand gestures in percentage (%).

In Table 4, the validation accuracy of the baseline models and previous implemen-
tations is presented. The baseline models include machine learning algorithms such as
KNN, polynomial, and MLP Classifier as well as DL architecture such as ED-TCN and ViT
models. The previous implementation includes the works of De Godoy et al. [32] and Mon-
tazerin et al. [33], where hand gesture classification is performed using a transformer-based
algorithm. As shown in Table 4, the proposed MuCBiT performs slightly better in terms of
the classification accuracy. Despite not being a direct comparison with previous work due
to the use of different hand gestures, Table 4 shows the usefulness of the proposed MuCBiT.
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Table 4. Validation accuracy of baseline ML and DL-based models and the proposed MuCBiT.

Model Validation Accuracy N° Hand Gestures
KNN 72.28% 4
Polynomial 80.98% 4
MLPC 84.78% 4
MuCBiT 86.25% 4
ED-TCN 72.10% 7
ViT-HGR ! 84.62% 66
TMC-ViT 2 89.60% 17

1 Vision Transformer-based hand gesture recognition [33]. 2 Temporal multi-channel vision transformers [32].

3.3. Classification Results: Testing Dataset

Table 5 shows the results of the model evaluated on the testing dataset. This process
led us to determine the adaptability of the model to new users. Our model attained an
accuracy rate of 86.78%, a precision rate of 87.50%, a recall rate of 86.78%, an F1 Score of
86.52%, and an Area Under Curve Receiver Operating Characteristic (AUCROC) of 95.98%.

Table 5. Performance results of the MuCBiT with the testing dataset.

Accuracy Precision Recall F1 Score AUCROC
0.8678 0.8750 0.8678 0.8652 0.9598

The values on the cell are in the range between 0 and 1.

4. Discussion

Our experiment’s findings indicate a negative correlation between the increment of the
batch and patch sizes and the accuracy achieved. Conversely, an increment in the number
of Transformer and attention layers exhibited a positive correlation with the accuracy of
our proposed model, suggesting that these parameters played crucial roles in capturing the
complex patterns present in the myoelectric signals.

The F1 Score provides a harmonic means of precision and recall. The MuCBiT obtained
an F1 Score of 86.52%, underlining the successful balance between precision and sensitivity.
Moreover, the AUROC of 95.98% shows the capability of the model to distinguish between
the four classes of hand gestures.

The architecture of the MuCBiT effectively extracts and identifies the features of EMG
signals, capturing and mapping the contextual dependencies and long-term relationships
that are inherent in EMG signals. Table 4 shows that all of the Transformer-based models
outperformed the baseline classifiers based on ML and basic DL architectures such as MLP
Classifier and ED-TCN. Regarding the previous implementation, our MuCBiT slightly
outperformed the work by Montazerin et al. [33]. De Godoy et al. [32] and Montazerin
et al. [33] used convolutional layers for local feature extraction and discerned relevant
patterns within the signals. In contrast, the MuCBiT employs a patch-based decomposition
of the signals, followed by their subsequent projection into a high-dimensional space.
Additionally, our proposed approach provides accurate and robust hand gesture prediction
capabilities, making it a promising tool for recognizing and classifying EMG signals based
on EMG signals.

In contrast to our prior experiments published in [15], three preliminary filters were
applied in extra preprocessing steps. The filters are a notch filter at 60 Hz, a fifth-order
Butterworth high-pass filter, and low-pass filters between 10 and 100 Hz. The current study
does not employ filters. This unfiltered learning enables and forces the model to search deeper
into the raw and pure features of the signal, potentially enhancing the robustness and accuracy
of gesture recognition. Finally, the result obtained using our MuCBiT model outperformed
the MLP utilized in our previous work [15], which scored an accuracy of 84.78%.
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Limitations and Future Directions

The implementation of pre-trained Transformer-based models such as Bidirectional
Encoder Representations from Transformers (BERTs) [42], GPT (with the left-to-right de-
coder) [43], BART [44], and T5 [45], alongside the MuCBiT model, holds the potential to
revolutionize the analysis of EMG signals. These transformer-based models were designed
to predict sequences from preceding sequences [46]. Then, a fusion with our MuCBiT
might allow for a deeper understanding of the complex dynamics of EMG data. The
fusion of these models, each equipped with unique attention mechanisms, coupled with
MuCBiT’s domain-specific insights tailored for gesture detection, holds the potential to
deliver promising outcomes, enhancing both accuracy and robustness.

The MuCBiT model stands out for its exceptional versatility within bio-signal analysis.
It has emerged as a robust, generalized model in this field, primarily due to its capacity to
maintain stability when confronted with novel input data such as the testing dataset. Its
ability to address variability in bio-signal data makes it a promising contender for broader
applications. Considering the pivotal aspects of domain diversity and model adaptability,
we aim to explore the potential extension of the efficacy of our model into the realm of
pattern recognition within different bio-signals, such as ECG or EEG.

The principal limitation of our proposed model lies in the size of the dataset. A more
extensive and diverse dataset with a wide range of hand gestures from users without
and with disabilities will ensure an extensive evaluation of the model’s robustness. Then,
further enhancements will be explored by training the MuCBiT model with a larger dataset.

5. Conclusions

In this work, we present a new design of a transformer-based deep learning model
called MuCBiT, which successfully classifies raw EMG signals between four classes of hand
gestures with a precision of 86.25% with the validation dataset and an accuracy rate of
86.78% with the testing dataset. This percentage of successful recognition and classification
demonstrates the feasibility of using the model to identify EMG signals from new users
accurately. Furthermore, since completely raw EMG signals are directly input into the
MuCBiT, we can conclude that our proposed model is able to learn from the innate nature
of the EMG bio-signals.

Integrating the transformer-based model into the control system of the ARH showcases
the potential for advanced prosthetics and human-robot interaction.
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