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Abstract: Aim: The aim of this in vitro study is to present a debonding protocol developed to
remove a screw-retained, monolithic, zirconia restoration from its titanium-base abutment, and
to microscopically evaluate the abutment integrity at both the prosthetic and connection levels.
Materials and Methods: A total of 30 samples were tested. Each sample consisted of a monolithic
zirconia restoration bonded on a titanium link abutment. Five different shapes were designed and
fabricated. Randomly, one-third of the Ti-link abutments were subjected to an anodizing process.
Then, all the zirconia samples were bonded to the Ti-link abutments according to a pre-established
protocol. Forty-eight hours later, the samples were debonded according to the experimental protocol.
The outcomes were evaluated by a visual inspection with an optical microscope, scanning electron
microscopy (SEM), and chemical composition analysis. Results: Thirty samples were collected and
visually analyzed. Seven samples were randomly evaluated via scanning electron microscopy. In all
the examinations, no relevant changes were reported. Chemical composition analysis also relieved
no changes in the chemical structure of the titanium. Conclusions: The titanium-base abutments
do not alter the structure and properties of the material, not creating phase changes or the birth of
oxides such as to induce fragility. Further clinical studies with longer follow-up periods are needed
to confirm these preliminary results.

Keywords: dental implant-abutment design; titanium; analysis; dental prosthesis retention; zirconium oxide

1. Introduction

Precision at the implant–abutment interface is one of the most important aspects
influencing marginal bone remodeling and the risk of peri-implantitis [1]. Microgaps and
bacterial leakage play an important role in peri-implant inflammatory reactions and the
subsequent loss of supporting bone to restore the physiological biologic width [2]. Defini-
tive abutment placed at implant insertion and not being removed seems to be an effective
prosthetic approach to reduce the physiological marginal bone remodeling [3]. However,
in recent decades, screw-retained implant restorations have increased in popularity due
to their predictable retention, retrievability, and lack of potentially retained sub-gingival
cement. The last point has become very important due to the trend to place implants
subcrestally [4].
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Prosthetically driven implant placement is crucial for the long-term success of treat-
ment, allowing the implants to be installed in the most accurate mesio-distal and bucco-
lingual position and depth [5–10]. Some studies show no clinical differences when placing
implants 0.5 mm or 1.5 mm subcrestally; therefore, clinicians can choose as they prefer [11].
However, the depth of implant placement should be carefully planned to consider available
bone and soft tissue thickness, the type of the implant, and the type and shape of further
prosthetic reconstruction. Placing an implant in a subcrestal position may have a positive
impact, especially in the aesthetic area, where obtaining a harmonious emergence profile is
mandatory [9–11]. However, the vertical position mostly depends on the type of connection.
Implants with internal conical connection and platform switching at the implant–abutment
interface have been shown to maintain stable bone levels over a mean follow-up period of
two years when placed subcrestally [12,13].

Due to their aesthetics, high mechanical properties, and biocompatibility, Yttria stabilized
tetragonal zirconia ceramics have gained popularity as the preferred restorative material for
implant-supported single crowns in the aesthetic area, with survival rates ranging between
90% and 96% after observation periods of 5 and 10 years, respectively [14–16]. For these
reasons and more, implant companies market several prosthetic options to deliver screw-
retained implant-supported restorations. Within these, titanium-base abutments (TBAs)
or titanium-link abutments can be considered feasible treatment options for restoring
dental implants [17]. The final restoration is a hybrid cemented-screwed, aesthetic solution
composed of a metal-free restoration that is bonded outside of the patient’s mouth to an
original TBA [18]. The main benefits of this approach include its retrievability, highly
precise implant–abutment fit (guaranteed by the manufacturer), and the customization
of the emergence profile. Moreover, working on a fully or semi-digital workflow, hybrid
prosthetic solutions also potential reductions in production costs compared to the classical
workflow [19–22].

To create hybrid prosthetic solutions, monolithic zirconia or porcelain fused to zirconia
(PFZ) restorations are computer-aided designed (CAD) and computer-aided manufactured
(CAM) a with a semi-digital or fully digital approach [22]. Finally, the zirconia restora-
tions are bonded chairside on TBAs, resulting in the hybrid cemented/screw-retained
restorations. This approach reduces any inflammatory process due to cement remnants
in the peri-implant tissue, maintaining its retrievability. Bonding can also be performed
in a dental laboratory under controlled conditions; nevertheless, in case major ceramic
corrections are needed (color, contact points, occlusion), the TBA must be debonded from
the ceramic restoration before it is placed in the dental ceramic oven at 370 ◦C for five
minutes. Moreover, when a zirconia restoration is debonded, the resin cement remains
adhered to it, and this must be removed before the restoration can be re-cemented. In the
literature, there are several papers concerning bonding protocols and retentive force [23–25].
However, at the time of writing this manuscript, and to the authors’ knowledge, there
are no manuscripts reporting debonding procedures and their impact on the surface of
titanium abutments.

The aim of this in vitro study is to present a debonding protocol developed to remove
a screw-retained, monolithic zirconia restoration from its TBA and to microscopically eval-
uate the abutment integrity at both the prosthetic and implant–abutment connection level.

2. Materials and Methods

A total of 30 samples were considered for this in vitro research. No similar study
was found in the literature. For this reason, a priori sample size analysis was not per-
formed. Each sample consisted of a monolithic zirconia restoration (MZR) bonded on a
TBA (Ti-link Abutment, Osstem Implant, Seoul, South Korea). All the MZRs were designed
(computer-aided design, CAD) and manufactured (computer-aided manufacturing, CAM)
in one dental laboratory in Italy using a standardized protocol as recommended by the
manufacturer (ST ML, UpCera Shenzhen Dental Technology Co. LTD., Nobil-Metal, Asti,
Italy). The percent composition of the used zirconia was ZrO2 + HfO2 + Y2O3 > 98%;



Prosthesis 2022, 4 502

Er2O3 < 1.0%; Fe2O3 < 0.3%; Pr2O3 < 0.2%; other oxides < 0.5%. Five different shapes were
designed and fabricated, representing the possible extreme clinical variables (Table 1 and
Figure 1). The main physical data are reported in Table 2.
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Figure 1. Computer-aided design (CAD) of computer-aided manufacturing (CAM) MZRs used as samples.

Table 1. Main characteristics of MZRs used in samples.

Test Sample Characteristics

A green Standard anatomical center mass with 1 mm of gingival height
B yellow Standard anatomical center mass with 2 mm of gingival height
C fucsia Slightly shifted anatomical center mass with 3 mm of gingival height

D red Standard anatomical center mass with 5 mm of gingival height
E blu Shifted anatomical center mass with 2.5 mm of gingival height

Table 2. Main physical data of the used zirconia.

Physical Property Data

Thermal expansion coefficients (CTE) 10.5 ± 1.0 × 10−6 K−1 (25–500 ◦C)
Density after sintering 6.08 ± 0.01 g/cm3

Bending strength (three-point bending test) >1200 Mpa
Sintering temperature

(recommended temperature)
1450–1580 ◦C

(1530 ◦C)
Translucency 43%

Randomly, one-third (10 ut of 30) of the TBAs were subjected to an anodizing process
in an anodizing bath heated at 20 ◦C with a solution of 10 g of trisodium phosphate (TPS)
in 500 milliliters (mL) of distilled water under a current density of 5 mA × cm−2 due to a
stabilized anodizing potential of 65 V (titanium anodizer, Artiglio S.n.c., Parma, Italy). The
anodizing process resulted in the formation of a gold-colored oxide layer with a thickness
of about 120 µm in 30 s. Subsequently, all the zirconia samples were bonded to the TBSs
according to a well-known protocol (Table 3), as follows.

Table 3. Bonding procedures.

MZR TBA

Sandblasting with aluminum dioxide 50 µm Steam cleaning
Ultrasonic bath at low frequency for 10 min with distilled water Drying with air

Drying with air Primer *
Primer *

* Clearfil Ceramic Primer Plus, Kuraray Noritake, Milan, Italy.

Teflon tape was used to seal the screw hole. Then, the MZRs were bonded to the
TBA using PANAVIA SA resin cement (SA Cement Universal, Kuraray Noritake). An
oxygen-inhibiting gel (Oxyguard II gel, Kuraray Noritake, Milan, Italy) was used to enable
complete curing. Initially, a quick cure of 5 s was performed (Valo, Ultradent, Salt Lake City,
UT, USA). After excess cement removal, the samples were put in a dental laboratory curing
light and polymerized for 5 min. Finally, the samples were cleaned and polished (Figure 2).
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Forty-eight hours later, the samples were debonded according to the experimental protocol
reported in Table 4 and as previously published [23].
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Table 4. Debonding procedures: ceramic oven settings.

Settings and Procedures

After disinfection, remove the screw and place the restoration into the ceramic tray.
Pre-heating (initial temperature) to 300 ◦C.

Closing the oven for 2 min.
Stabilization for 5 min at 300 ◦C with the chamber closed.

Temperature increasing 30 ◦C per minute up to 370 ◦C.
Stabilization for 5 min at 370 ◦C.

Cooling for 2 min at 300 ◦C.
Opening the ceramic oven for 2 min.

Stabilization before handling for 10 min.

The TBAs were removed from the zirconia restorations using a customized tool
inserted inside the abutment screw access hole (Figures 3 and 4).
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Finally, all the TBAs were cleaned according to an established protocol (Table 5),
inspected with the optical microscope, and analyzed via SEM.
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Figure 4. Titanium-base abutments immediately after the debonding procedure.

The SEM analyses were performed in two centers, one public centre in Warsaw
(Warsaw University of Technology, Warsaw, Mazovia, Poland) and another private centre
in Villafranca d’Asti, Italy (R&D Nobil Metal SpA). All the collected data were analyzed at
the Department of Medicine, Surgery, and Pharmacy, University of Sassari, Italy.

Table 5. Cleaning procedure after debonding: treatment of the MZRs and the TBAs.

MZR TBA

Ultrasonic bath at low frequency for 1 min
(distilled water).

Ultrasonic bath at low frequency for 15 min
(distilled water).

Sandblasting with aluminum dioxide at 50 microns. Ultrasonic bath at low frequency for 10 min with a
liquid detergent (Pi-Ku-Plast Clear, Bredent).

Manual cleaning.

Outcomes

All the MZRs and TBAs were subject to a visual inspection with an optical microscope
with different magnifications (up to 40× magnification value, Leica MS5 stereomicroscope,
Leica, Milan, Italy) to evaluate the response of the zirconia to the applied debonding
protocol, such as fracture and/or microscopic crack.

Randomly, 2 out of 10 anodized TBAs and one new titanium TBA (used as control)
were examined via scanning electron microscopy (SEM) using a Zeiss EVO 10 SEM (R&D
Nobil Metal SpA, Italy) operated at 20 kV to evaluate any kind of microscopic difference
from the test sample.

Randomly, 5 out of 20 non-anodized TBAs (test) and one new TBA (used as control)
were examined via scanning electron microscopy (SEM) using a Hitachi SU70 SEM operated
at 30 kV to evaluate any kind of microscopic difference from the test sample.

Chemical composition analysis of all the analyzed samples (test and control TBAs)
was performed by an EDS probe (Bruker—XFlash Detector, R&D Nobil Metal SpA, Italy)
integrated into the Zeiss EVO 10 SEM (R&D Nobil Metal SpA, Italy).

3. Results

After the debonding procedure, all the MZRs and TBAs were visually inspected with
a stereomicroscope. All the samples were debonded according to the aforementioned
protocol. Then, all the MZRs were found to be free of complications, such as fractures
or crack lines, independently of the shapes. Figure 5 shows a general view of the two
TBAs—on the left side, the part is in an initial condition, and the right side shows the
TBAs after the described procedures. The color difference between these two can be easily
spotted. The initial condition maintains the typical outlook of the titanium, while the
second became yellow. This is an expected outcome, as, during the heat exposure at 370 ◦C,
an oxide layer is created on the titanium surface.
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directly to the SEM inspection. More details can be found in the SEM images presented in 
Figure 6a–d. A conical part of the TBAs is compared in Figure 6a,b. As can be noticed, the 
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Figure 5. Control (left) and test (right) TBAs.

As no damages were found under stereomicroscopic analysis, the samples proceeded
directly to the SEM inspection. More details can be found in the SEM images presented
in Figure 6a–d. A conical part of the TBAs is compared in Figure 6a,b. As can be noticed,
the contrast on the part after the thermal exposure is visibly less prominent, which may
be related to a lower conductivity of the specimen or the presence of a very thin layer,
which can hinder the escape of secondary electrons during observations. Both features
can be linked to the presence of an oxide layer established during the thermal exposure of
TBA. Higher magnification of the TBA in its initial condition reveals the patterns from the
manufacturing process—the machining. The cementing and removal of the zirconia did
not change those patterns, as seen in Figure 6d, but some slight changes on the surface can
be noticed. Similar results were found for the anodized TBAs compared with the control
and the new titanium-base abutment (Figure 7).
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The chemical composition analysis (Energy-Dispersive X-ray Spectroscopy [EDS]
graph) showed no differences between the test and control groups (Figure 8).
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4. Discussion

This in vitro study was developed to microscopically evaluate the effect of a debonding
protocol applied to remove a screw-retained, monolithic zirconia restoration from its TBA.
To the best of the authors’ knowledge, at the time of writing this paper, there are no
comparable studies. Therefore, it is impossible to compare the present research results with
other studies.

One of the most important features of an implant-supported restoration is its re-
trievability, which could be necessary for implant complications. The monolithic ceramic
restorations fulfill the need for suitable aesthetic reconstructions and reduce the risk of
porcelain chipping. However, some complications, such as screw loosening, may still be
observed [26–28]. In addition, interproximal contact could be lost at the implant sites,
increasing the risk for periodontal disease [29]. The TBAs were introduced to overcome
the risk of abutment fracture of one-piece zirconia restorations, allowing for a hybrid
(cemented- and screw-retained), a strong link between the implants and the monolithic
zirconia restorations, and finally providing a favorable, long-term, aesthetic outcome and
patient satisfaction. Monolithic zirconia restorations bonded on TBAs can be easily re-
trieved by the patient’s mouth; nevertheless, a strict protocol, such as the one presented in
this research, must be applied.

In the present study, the analyzed samples were brought to a maximum temperature
of 370 ◦C following standardized parameters avoiding the so-called “stress relief phase”.
This prevents structural changes usually obtained by titanium with a higher temperature.
In the present study, stereographic microscope and SEM observations show the formation
of oxides due to surface color changes to yellow (see Figure 6). From a material point of
view, the process of debonding did not change the properties as well as the dimensions of
the TBAs. The implant connection is free of any changes. Furthermore, the part where the
crown was cemented had some minor but irrelevant changes.

Titanium oxide formation at high temperatures is a well-known fact, and it has been
found to be influenced by the annealing temperature. Oxidation occurs due to the high
reactivity of titanium with oxygen in the air, even at room temperature. The surface
morphology and structural and electrical properties of TiO2 films are influenced by the
annealing temperature [30]. It was observed that when the annealing temperature increases
up to 900 ◦C, the TiO2 crystallite size is increased [30]. Nevertheless, at about 300◦ C,
TiO2 films crystallize in the anatase phase with poor crystallinity. In the same study,
the calculated values of the crystallite size were less than 30 nm [30]. This means the
connection part should be up to 30 nanometers bigger than the control TBA. Nevertheless,
this is a transformative process that should not influence the overall dimension of the
TBAs. Moreover, according to the literature, this might be clinically irrelevant [31,32]. It
has been demonstrated that discrepancies greater than 10 µm result in microleakage and
micromovements that allow for bacterial infiltration and mechanical outcomes, such as
screw-loosening [18,30]. A sign of oxidation is discoloration due to a fragile layer enriched
with oxygen near the surface (Alpha Case), which could be detrimental to the mechanical
properties of the samples [33,34].

The main limitation of the present research is the in vitro nature of the study. Moreover,
although 30 samples were fabricated and visually analyzed, only 7 out of 30 samples were
randomly evaluated with SEM. However, all five randomly chosen samples showed the
same results, thereby not justifying additional tests. In addition, the failure modes have
not been registered, and no algorithm evaluation was conducted for statistical analysis.
For these reasons, the data must be interpreted with caution. Nevertheless, the benefits
of this research may be applied in several fields of implant dentistry, including prosthetic
rehabilitation on implants [35–38].

Although no mechanical or clinical tests were performed, the main clinical considera-
tions are that the TBAs could be reused in the same patient after debonding in those cases
where the published protocol was applied. Nevertheless, the authors believe that the TBAs
should be bonded chairside after clinical try-on, to avoid the need for debonding.
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5. Conclusions

In light of what was observed from the SEM analysis, the treatment carried out on
titanium-base abutments seemed not to alter the structure and properties of the material
nor create phase changes or the birth of oxides to induce fragility. According to these
results, titanium-base abutments may be reused after debonding. Further clinical studies
with longer follow-up times are needed to confirm these preliminary results.
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