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Abstract: Assessment of gait deficits relies on accurate gait segmentation based on the key gait events
of heel strike (HS) and toe-off (TO). Kinematics-based estimation of gait events has shown promise in
this regard, especially using the leg velocity signal and gyroscopic sensors. However, its validation
for the amputee population is not established in the literature. The goal of this study is to assess the
accuracy of lower-leg angular velocity signal in determining the TO and HS instants for the amputee
population. An open data set containing marker data of 10 subjects with unilateral transfemoral
amputation during treadmill walking was used. A rule-based dual-minima algorithm was developed
to detect the landmarks in the shank velocity signal indicating TO and HS events. The predictions
were compared against the force platform data for 2595 walking cycles from 239 walking trials. The
results showed considerable accuracy for the HS with a median error of −1 ms. The TO prediction
error was larger with the median ranging from 35–84 ms. The algorithm consistently predicted the
TO earlier than the actual event. Significant differences were found between the prediction accuracy
for the sound and prosthetic legs. The prediction accuracy was also affected by the subjects’ mobility
level (K-level) but was largely unaffected by gait speed. In conclusion, the leg velocity profile during
walking can predict the heel-strike and toe-off events for the transfemoral amputee population with
varying degrees of accuracy depending upon the leg side and the amputee’s functional ability level.

Keywords: prosthetic gait; gait segmentation; informatics

1. Introduction

Gait analysis is a valuable tool for assessing various pathologies. Deviations from
a healthy gait template often indicate underlying health conditions. For people with
amputations, an accurate gait assessment leads to the development of more efficient
prosthetic devices and better evaluation of clinical outcomes. That is why more and more
clinics are using technology-enabled gait analysis solutions as opposed to traditional visual
gait analysis.

A prerequisite to effective gait assessment is the estimation of key gait events of heel
strike (HS) and toe-off (TO), which represent the moment the foot is placed and removed
from the ground, respectively [1]. Traditionally, these are estimated using the force or
pressure data from specialized platforms in research laboratories. However, due to high
cost and space constraints, this method is not used widely in clinics. Instead, kinematics-
based solutions are becoming popular due to the possibility of body-worn inertial sensors.
These methods rely on leg or foot velocity/acceleration data and rule-based algorithms to
estimate gait events. Many authors have validated this approach for TO and HS detection
for healthy subjects [2–11] as well as for subjects with walking disorders [12–16]. However,
its validity for the amputee population is not well established in the literature.

The kinematic methods require an algorithm to identify observable features in the
velocity or acceleration data of body segments. Several rule-based algorithms have also
been developed for this purpose. A popular choice is to use the shank angular velocity for
TO and HS estimation corresponding to the minima in the sagittal-plane angular velocity
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signal [17]. Many researchers have exploited this signal over the years for diverse subject
populations and reported a reasonable degree of accuracy [2,3,7,14,18–22].

However, no study has focused on amputee subjects except [20] which included
data from a single subject. Since lower-body amputations lead to gait deviations and
compensatory movements, there is a need to evaluate this paradigm with a large data set of
persons with amputations. Hence, the goal of this study is to compare the accuracy of gait
event prediction using the shank angular velocity against force platform data. A secondary
objective is to observe if this accuracy is affected by parameters such as leg side (sound or
prosthetic), subjects’ walking ability, and walking speed. A published data set of amputee
subjects by Hood et al. [23] is employed for this purpose, containing optoelectronic and
force plate data for transfemoral amputees.

2. Materials and Methods

A data set consisting of marker and force plate data of 18 individuals with unilateral
transfemoral amputation was recently published [23]. It is the most comprehensive gait
data set available for prosthesis users which provides force platform data for all steps taken
during a trial. Moreover, the walking speed was controlled accurately on a treadmill, as
opposed to subjective instructions to walk ‘slow’ or ‘fast’.

Subjects were divided into two groups based on their comfortable walking speed and
reliance on the handrails. They were categorized as either K-level 2 or K-level 3 on the
Medicare functional classification level (MFCL) [24]. If a subject required the assistance of
handrails for any speed above 0.8 m/s or their maximum walking speed was 0.8 m/s, they
were assigned to the K2 group. This group of subjects walked at five different speeds of [0.4,
0.5, 0.6, 0.7, 0.8 m/s]. Likewise, if subjects could walk at speeds of up to 1.2 m/s without
using handrails, they were assigned to the K3 group, and they walked at the speeds of [0.6,
0.8, 1.0, 1.2, 1.4 m/s]. More details on the protocol and data acquisition are available in [23].

The original study contained an equal number of subjects in both groups. However,
for this study, subjects using the handrails during walking were excluded to avoid the
effect of secondary support on the gait pattern. This resulted in having ten subjects for
further analysis (including three K-level 2 and seven K-level 3 subjects). These subjects are
listed in Table 1.

Table 1. List of subjects for whom the walking data is used in this study. Complete details on
amputation can be found in [23].

Subject Age Amputation Side K-Level Number of Trials in the Analysis

K-level 2 subjects

TF05 72 Left K2 25
TF09 65 Left K2 25
TF12 ** 59 Left K2 23

K-level 3 subjects

TF01 * 26 Right K3 21
TF07 ** 49 Left K3 22
TF08 42 Right K3 25
TF11 ** 51 Right K3 23
TF16 36 Left K3 25
TF17 38 Left K3 25
TF19 30 Left K3 25

Total trials 239
* One trial discarded from the original study, ** Two trials discarded from the original study.

The data set reported four to five walking trials per speed resulting in a total of
246 walking trials for the ten subjects. However, after careful observation of the force
platform and marker profiles, some trials were discarded due to either incomplete or
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erroneous data. This resulted in a total of 239 trials for the final analysis. A trial typically
consisted of 12 to 14 walking cycles.

2.1. Estimation of Leg Velocity Signal from Marker Data

The raw data consisted of three-dimensional trajectories of 61 cutaneous reflective
markers. The data contained the .c3d files for the marker trajectories which were extracted
using an open-source motion analyzer software MOKKA (Motion Kinematic and Kinetic
Analyzer [25]). For each trial, the data were exported into a .csv file and read in Matlab for
the calculation of lower-leg angular velocities from the coordinates of tibia markers. Two
tibia markers on each leg (Figure 1) were used to estimate leg orientation using the method
presented in [26]. The method uses two markers in line with the bone axis to calculate the
orientation of the segment, which is further differentiated with respect to time to obtain the
angular velocity.

Figure 1. (a): Placement of tibia markers for leg orientation and velocity calculation; (b) A typical
shank velocity signal with raw (grey) and filtered (black) data; (c) Enlarged view of one gait cycle
from the velocity signal. The algorithm starts with the detection of the largest positive peaks in the
signal (marked as MS) which define the intervals for gait events. TO is identified as the last negative
peak (or minima) just before the MS (circle) while HS is defined as the negative peak just after the
MS (square).

The raw marker data were collected at 200 Hz and are subject to a lot of noise due to
soft tissue artifacts. To reduce the noise in the resulting angular velocity signal, a low-pass
filter was designed and implemented. For this purpose, the frequency spectrum and the
Nyquist frequency of the signal for all subjects were analyzed. A cut-off frequency of
4 Hz was chosen, which resulted in negligible loss of data and time shift of the signal. An
example of the filtering is shown in Figure 1 (right panel) for a trial at 1.2 m·s−1.

2.2. Algorithm

The determination of TO and HS events in the velocity signal is based on the dual-
minima approach similar to the one presented by [22]. It starts with the detection of all the
positive peaks of the signal. These positive peaks are associated with the midswing (MS)
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(c.f. Figure 1). Each positive peak is accompanied by two negative peaks (or minima) on
either side, which indicate the reversal of leg velocity direction. The negative peak (NP)
preceding the MS is identified as the toe-off event, while the NP after the MS is marked as
heel strike.

Unlike the previous implementations [2,3,14,17], our algorithm runs on the complete
walking trial at once, while automatically deducing the peak threshold value. The thresh-
old is calculated by taking the absolute mean of the complete velocity data in the trial,
eliminating the need for any manual adjustment for different speeds or subjects. Moreover,
the algorithm does not use any restraining time windows where the events must occur,
reducing its computational cost. The algorithm is implemented in Matlab.

2.3. Statistical Analysis

For each walking cycle, the timings for the TO and HS events obtained by this al-
gorithm are compared against the force platform-based timings provided in the data set.
The errors (eTO, eHS) are calculated by taking the difference between the corresponding
predicted and actual events.

Error (eHS/eTO) = tactual − tpredicted, (1)

where the actual events refer to the ones marked using the force platform. The error is
positive when the predicted event precedes the actual event and vice versa.

Shapiro–Wilk test and visual inspection of histograms indicated that the error distri-
bution was not normal. Hence, a 5-number summary statistic (involving the median, lower
and upper quartiles, minimum and maximum values) was selected for further descriptive
analysis. Nonparametric statistical tests of significance were performed (at p = 0.05 level)
for group differences.

Descriptive statistics of mean error (ME) and mean absolute error (MAE) were also
computed to compare the results of this study with the literature which frequently reports
these averages.

3. Results

TO and HS events for a total of 2595 walking cycles from 239 trials were compared.
Results are summarized in Figure 2. The median heel strike error (eHS) was −1 ms with an
interquartile range (IQR) of 31 ms. The box extended both above and below the median,
indicating the predictions to be early or late than the actual event. On the other hand, the
median toe-off error (eTO), as well as the IQR, were larger (43 ms and 51 ms respectively).
The error is positive in all the cases indicating consistent early detection by the algorithm for
TO. The mean absolute values shown at the bottom of the plot indicate that the magnitude
of eHS was half of that of eTO, indicating a better HS estimation.

The accompanying violin plots (in grey) show the distribution of error values for
both events. Interestingly, the distribution is bimodal in nature for the eTO with two local
maxima. This indicates a dichotomy of results into two groups.

3.1. Difference by the Leg Side

To observe the differences in prediction error between legs (sound vs. prosthetic),
separate error values are plotted for each leg in Figure 3. A Wilcoxon signed-rank test was
also performed to reveal any significant differences.

For the heel strike, the median error remained closer for both legs (1 ms and −8 ms for
sound vs. prosthetic side). However, the error showed larger dispersion on the prosthetic
side with an IQR of 53 ms. For the TO event, there was clearly a large difference in the
median error value between the two legs. The median error on the sound side was 84 ms
versus 35 ms on the prosthetic side. This explains the bimodal distribution of error observed
in Figure 2.

Statistically significant differences were found between the two sides for both TO and
HS events (p < 0.001) .
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Figure 2. Heel strike (left) and Toe-off (right) error plots for all 2595 walking cycles. Boxplots (black)
are superimposed with violin plots (in grey) indicating error distribution. Key statistics are also
indicated below each plot. The box indicates the lower and upper quartiles with the central line
showing the median. The top and bottom lines of the box represent, respectively, the medians for the
upper and lower halves of the data and the whiskers represent the highest and lowest values of the
distribution, excluding outliers. Outliers are also presented as circles.

Figure 3. Separate boxplots and error distribution for sound and prosthetic legs. Median and
interquartile ranges are presented at the bottom in each case. Significant differences were found
between errors on the sound and prosthetic sides.

3.2. Effect of K-Level and Walking Speed

Finally, in order to observe the effect of subjects’ functional classification level and
walking speed on the prediction error, separate boxplots were produced for both subject
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groups at different walking speeds (Figure 4). Plots for trials from K2 subjects are shown on
the left, while trials from K3 subjects are on the right. Walking speed is varied on the x-axis.

As a whole, the K2 group results had greater dispersion compared to K3 groups
indicated by larger IQR values at all speeds. Moreover, the error distribution was highly
skewed for K2 subjects, as indicated by asymmetrical boxplots. On the other hand, walking
speed had a significant effect on the TO prediction error on the sound side only for K3
subjects (p < 0.05, Friedman test). Other variables did not exhibit any significant correlation
with walking speed.

Figure 4. Toe-off (top panel) and Heel-strike (bottom) median error values separated by subject
groups (K-level 2 on left and K-level 3 on right) and leg side. Speed is varied on the x-axis for each
group (0.4 to 0.8 m/s for K2 subjects, 0.6 to 1.4 m/s for K3 subjects). Statistically significant difference
was found for TO prediction error on the sound side for K3 group (Friedman test, p < 0.05, indicated
by an arrow).

4. Discussion and Conclusions

This is one of the most comprehensive studies for any population which compares
kinematics-based TO and HS prediction against the force platform data. The results provide
an insight into the degree of credence of velocity-based gait event prediction. At the same
time, the results can be exploited by researchers for event prediction in the absence of
force platforms.

A key finding from this study is the consistent early prediction of the toe-off event
for both legs. This means that the actual toe-off takes place after the first negative peak or
minima of the velocity signal and points towards an inherent limitation of this algorithm. In
physiological terms, it indicates that the leg has already started to accelerate forward before
the foot leaves the ground. Some authors have proposed the point of zero-crossing (the
point where the signal crosses from negative to positive) as TO event (e.g., [27]). However,
observation of our velocity signals for numerous trials does not support this view. We
postulate that the actual TO event occurs after the negative peak (NP), but before the
zero-crossing (ZC) of the velocity signal, hence yielding a narrow NP-ZC zone. Future
studies should focus on this zone for accurate prediction of TO events.
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On the other hand, the HS prediction stretched both positive and negative values,
indicating early and late prediction, respectively. The error magnitude was however smaller
indicating that the actual heel strike occurs in a small window around the second negative
peak. The result of this study can be used to define a search window around the negative
peaks of the leg velocity graph as shown in Figure 5. For the HS, the window stretches about
50 ms in both directions of the first negative peak. Similarly, for the TO, the actual event
window stretches up to 100ms after the second negative peak. Future research should focus
on these windows while improving the prediction accuracy of kinematics-based methods,
possibly by including information from other signals such as foot and/or leg accelerations.

Figure 5. Typical shank velocity graph supplemented with the windows likely to contain the HS and
TO events for a gait cycle based on the results of this study.

4.1. Leg and Group Effects

Group comparisons indicated that the eTO prediction accuracy was better on the
prosthetic side (Figure 3) and further correlated negatively with walking speed (Figure 4)
on the sound side. On the other hand, the eHS variability was larger for K-level 2 subject
group, which warrants precaution when using the kinematics method for subjects classified
as ’limited community ambulators’ on the functional classification system.

4.2. Application to IMU-Based Velocity Estimation

Inertial measurement units (IMUs) are frequently mounted on the shank segment for
gait analysis [14,19,22]. While this study used a marker-based shank velocity for event
prediction, the results are apply to IMU studies as long as the accuracy of data is ensured.
Several studies have validated the IMU-based position and velocity estimation against the
marker-based estimation [28–30]. In particular, the study from [29] reported measurement
errors of less than 1% in the shank angular velocity from Xsens MVN and Vicon motion
capture systems. Similarly, Zhang and colleagues [31] reported high fidelity in terms of
joint kinematics in the sagittal plane. These studies indicate that IMU technology can
reliably detect limb kinematics, leading to the translation of the findings of this study to
IMU-based systems.

Nevertheless, while the technological errors in data obtained from IMUs may be small,
factors such as poor attachment or slipping of the sensor on the skin may still lead to errors.
Similarly, variations in anatomical frames between the IMU and motion capture systems
may lead to errors in determining joint kinematics [31]. These factors must be considered
while extending these results to the IMU-based kinematic data.

4.3. Application to Prosthesis Control Applications

While the consistent early TO prediction could lead to errors in clinical gait analysis,
it could be a beneficial feature for the control of prosthetic devices. In prosthetic control,
early detection is better than late. Most microprocessor-based prostheses need to adjust
the knee joint’s damping or locking during both phases of walking. Assuming that the
algorithm could be implemented in real-time, the negative peak in the signal could indicate
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an imminent toe-removal in the next 50–100 ms window (c.f. Figure 5), allowing the control
system to initiate the control action on the prosthetic limb at this point. Similarly, for the
HS event, an early point of reference could be the zero-crossing of the signal just before the
corresponding negative peak, while the negative peak itself could serve as the confirmation
of the heel-strike event.

4.4. Comparison with Studies in the Literature

As mentioned in the beginning, there are barely any published studies with the
amputee population, which makes a direct comparison of results difficult. Nevertheless, a
comparison of the results of this study with the available literature is presented in Table 2.
Almost all studies have reported early TO prediction with this algorithm, albeit with
smaller magnitudes than our results. Catalfamo et al. [2] reported early TO prediction for
all steps with a mean error of 50–73 ms for healthy and children suffering from cerebral
palsy. Trojaniello et al. [14] reported mean absolute TO errors in the range of 16 to 22 ms for
elderly and gait-impaired subjects. These smaller magnitudes further reinforce our premise
that the actual TO event occurs in the NP-ZC zone mentioned earlier for all populations.

Table 2. A comparison with the error magnitudes found in this study and the available relevant
literature, ME: Mean Error, MAE: Mean Absolute Error.

Study
Subject

Population and
Task

Prediction
Method HS Error (ms) TO Error (ms)

This study
Amputee, N = 10,
Level treadmill

walking

Leg kinematics,
Dual-minima of
shank velocity

ME: −9.3, MAE:
29

ME: 57.7, MAE:
58.6

Maqbool et al.,
2015 [20]

Amputee, N = 1,
Ramp ascent and

descent

Leg kinematics,
Dual minima ME: −37 to 13 ME: −17 to 122

Storm et al., 2016
[3]

Healthy, N = 10,
Overground

Minima of shank
velocity for HS.
Acceleration-

based for
TO

MAE: 7 to 14 MAE: 16 to 51

Zahradka et al.,
2020 [19]

Healthy and
Gait-impaired,
N = 17, Level

treadmill
walking

Minima of shank
velocity for TO.

Zero-crossing for
HS

ME: −10.45 ME: −56.20

Trojaniello et al.,
2014 [14]

Healthy and
Gait-impaired,

N = 40,
Overground

Minima of shank
velocity for HS.
Acceleration-

based for
TO

ME: 0 to −22,
MAE 10 to 22

ME: 0 to −16,
MAE: 16 to 22

Lee & Park, 2011
[22]

Healthy, N = 5,
Overground

Leg kinematics,
Dual-minima ME: −17 to −21 ME: 3 to 15

Catalfamo et al.,
2010 [2]

Healthy and CP,
N = 7,

Overground and
ramp

Leg kinematics,
Dual minima

ME: −8 to −21,
MAE: 15 to 24

ME: 50 to 73,
MAE: 50 to 73

Similarly, for HS prediction, the error values are smaller than for TO prediction as in
this study. For instance, Zahradka et al. [19] reported a mean error of −10.45 ms for a group
of healthy and gait-impaired subjects, which is very close to our results. Storm et al. [3]
reported absolute mean error for indoor and outdoor walking in healthy adults in the
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range of 11–14 ms. The study by Catalfamo et al. [2] reported a mean HS error of −8 ms,
an absolute mean of 15 ms for level-ground walking. All in all, the findings of this study
match well the literature and indicate a higher level of confidence for the HS prediction
than for the TO prediction.

As a whole, the results of this study support the use of shank angular velocity signal
for gait segmentation in amputees, albeit with limited accuracy for the toe-off event. These
results could be translated into clinical practice using IMU-based leg velocity data, as well
as into gait research for marker-based event estimation in the absence of force platforms.
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