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Abstract: Medical device regulations are dynamic, as they need to cover an ever changing landscape.
In Europe this has led to a new set of regulations (both for Medical Devices and In Vitro Diagnostics),
which replaced the old rules. This study is interested in how the complexity of these medical
regulations changed over time and if additional time-based metrics can be associated with any of
the complexity metrics. Complexity is defined in terms of readability of the text and it is computed
using established linguistic measures, as well as Halstead complexity scores. It was shown that the
regulatory complexity of new EU medical device regulations was higher than their predecessors,
especially when Halstead complexity measures were considered. The complexity metrics obtained for
the new regulations were subsequently associated with the time it took to consider these regulations.
Only very weak Pearson’s correlation coefficients were found between the complexity scores and
the obtained response times for the new regulations. This could indicate that there are issues with
how complexity is perceived by those that need to apply these regulations. Taking the complexity of
regulations into account can greatly help with the development of more user friendly regulations. The
results from the data-driven methods that are applied in this research indicate that governments could
benefit from focusing on making regulations more accessible and utilitarian. This would improve
the stakeholder adherence and facilitate effective implementation. This work also highlighted the
need to develop more suitable methods to analyse regulatory text to further inform the wider
research community.

Keywords: data science; regulations; law; medical devices; regulatory data science; natural language
processing; linguistic analysis; optimisation

1. Introduction

The medical device industry has been home to some of the most revolutionary inno-
vations by mankind. The evolution in this field has been a cornerstone of the advances
in global health. The term medical device itself encompasses a vast array of products
that are used for diagnosing, treating and assisting patients. All aiming to improve the
quality of life of patients. There is a great demand for new medical devices due to the aging
population [1] and it is a growing global market, which was valued at $425.5 Billion in
2018 [2]. The United Kingdom alone was estimated in 2015 to have 4060 medical device
manufacturers [3] and globally there are many small and medium enterprises operating in
this domain. All these medical device companies have to engage with the medical device
regulations if they want to bring their ideas to market.

Medical Device Regulations

Regulations are primarily designed to protect the patients, with regulatory bodies
ensuring that medical devices are safe and that they perform as intended [4], but the regu-
lations are also in place to protect the manufacturers themselves [5]. In some circumstances,
patients may misuse devices or ignore instructions, injuring themselves in the process.
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Compliance with the regulations acts as a safety net for the manufacturers in the case of
a legal dispute. Manufacturers and designers can also use regulation to their advantage
and innovate more efficiently, as they can follow clearer guidelines which in turn saves
time and reduces some of the uncertainty regarding the process. Additionally, regulations
enforce that devices offer a clinical benefit, which prevents markets from being flooded
with devices that provide no gains for the user [6]. Finally, regulations are also intended to
enhance post-market surveillance to ensure that devices have good longevity and prevents
faulty devices from remaining in circulation [7].

While medical device regulations have been implemented for many years, much
like other legislation, they do vary between different countries and continents. A major
challenge faced by regulators is to ensure that the regulations remain relevant and fit for
purpose. This is made more difficult by the sheer rate of innovation, as well as the ever
changing needs within healthcare [8]. Consequently, regulations could become outdated
and thus compromise patient safety. A prime example of this is the emergence of medical
device software [9] and medical devices which have solely cosmetic purposes. These can
range from coloured contact lenses to instruments used in cosmetic surgery for liposuction
or tattoo removal. It was in fact a scandal related to leaky silicone breast implants from
French company Poly Implant Prothèse that highlighted the short-comings in the Medical
Device Directive which covered the regulations at that time [10]. Another well-documented
example of where regulations did not adequately prevented harm was the discovery of
blood poisoning in patients using metal-on-metal hip implants [11]. These kind of events
led to an overhaul of the regulatory system in 2017 in Europe. Two new EU legislations
were brought into force. Firstly the Medical Device Regulations (MDR) [12] replaced the
Medical Devices Directive and Active Implantable Medical Devices Directive (MDD) [13,14].
Whilst, the In Vitro Diagnostic Regulations (IVDR) [15] replaced the EU [16,17]. For these
new legislations, manufacturers had until May 2021 and May 2022 respectively to update
their technical documents in order to conform with the new requirements. This clearly
shows how manufacturers or suppliers of medical devices must continuously adhere to
new regulations by ensuring that the correct device classification is achieved, general
safety and performance requirements are met and conditions for clinical evidence are met.
Manufacturers are responsible for regulatory compliance and that the specific requirements
for importers, as well as distributors are respectively met where relevant [18].

2. Background
2.1. Complexity of Regulations

There are clear arguments for more stringent regulations in terms of patient safety,
yet this form of legislation can only be effective if it is well understood and properly
implemented. The MDR and IVDR are 175 and 157 page-long documents. They take the
form of complex legal documents filled with lots of jargon. They can be difficult to navigate
with the aim of locating specific information and subsequently the information itself can
be hard to interpret once it has been found. Many medical devices, especially at the point
of conceptualisation, are designed and manufactured by small or medium companies.
The small nature of many companies means that their teams are often compact, with few
employees. This means that they can struggle to secure the resources necessary to have
sufficient legal competencies to navigate these regulations. Most of the innovators are aca-
demics or entrepreneurs with no or limited legal training or knowledge. Not understanding
the regulations can cause misclassification and innovators might incorrectly interpret the
regulations. This can have a compounding effect that leads to expensive redesign and/or
retesting of certain devices. Not only does this hamper and discourage innovation, but
companies could inadvertently develop faulty or inadequate devices. This raises concerns
about patient safety, whilst simultaneously presenting risks to the manufacturers who have
legal liabilities and also face significant losses of time and money. These outcomes are
undesirable for all stakeholders and so it is vital to facilitate proper understanding of the
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regulations by medical device companies and innovators. The complexity of the legal text
will have a direct effect on the ability of the reader to understand it.

2.2. Complexity of Text

The difficulty presented by a particular piece of text can be attributed to its linguistic
complexity which is a measure of the extent to which the type of language used makes
communication more or less complicated. Though the complexity of text is inherently
subjective, for research purposes and large scale projects, it is important to utilise objective
metrics to gain a better understanding of the problems innovators face.

Natural Language Processing (NLP) is a branch of computer science, combined with
linguistics and artificial intelligence to interpret, analyse and process human text and
speech across many languages. Recent progress in the management of unstructured data,
the type generated from conversations or human written text, has equipped machines to
understand language in a cognitive way which facilitates the identification of particular
nuances and features of language [19]. The automatic manipulation of natural language by
software is a field which has benefited from a data-driven approach.

The use of NLP methods enables the evaluation of text to return a quantitative score
for its complexity and is particularly useful for treating vast quantities of data efficiently.
These techniques range from numerical methods that focus on text length and sentence
structure, to readability metrics which estimate the number of years of education required
to easily read the text and finally, more evolved complexity methods that investigate the
types of words and language used in a text to determine the overall complexity. Each of
these methods are used in a range of fields, but not all are applicable to legal texts.

Intuitively, it can be assumed that the longer a piece of text is, the bigger of a challenge
it will present and therefore it will require more time to read and process. This line of
thinking generates numerical techniques which count the words, characters or syllables and
only focus on the overall length as a predictor of expected time taken. However, the most
common method for assessing text complexity originates from techniques focused around
the expected level of education required to read the text. Traditionally, text complexity has
been equated to its readability and this is what a series of methods from the 20th century
aim to measure.

2.2.1. Common Readability Metrics

The Dale–Chall Readability formula was initially developed in 1948 under the name
of “A Formula for Predicting Readability” [20], but has since been updated to reflect the
changes undergone by language use [21]. The formula is based around a list of common
words which are deemed “not difficult”; this list was initially 973 words long but has since
been expanded to 3000 words. The formula combines the average length of sentences, in
terms of the number of words, with the percentage of words which are not present on the
list (these are known as difficult words). The method returns a grade estimate ranging from
“Grade 4 and below” to “Grades 16 and above” which are equivalent to college graduates.
The theory behind the use of familiar words as a metric, as opposed to letter or syllable
count, is that tests have shown that readers typically find it easier to read, process and
recall a passage if it is made up of familiar words [22,23]. However, this method has been
criticised for failing to account for more complex structural relations within a text [24].

The Flesch-Kincaid Reading Ease formula follows a similar concept of determining the
age of students who should be able to easily read a text [25]. This is achieved by attributing
a score of 0–100 to the text; the higher the score, the easier the text. These scores are then
associated with grades; scores above 90 indicate that the text is very easy and should be
easily read by an average 5th grade student. The Flesch-Kincaid formula has become the
chosen readability metric of many US Government Agencies such as the US Department of
Defense. Also developed in 1948, the formula uses the ratios of words per sentence and
syllables per word to calculate the score [26].
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Another metric that assesses the U.S. grade level required to read sections of text
is the Automated Readability Index (ARI) [27]. The index was designed in 1967 for real
time readability on typewriters used by the military [28]. The origins of the formula dates
back to the writing of manuals in the U.S. Navy, as the manuals used previously were
written in a style which was above the reading capabilities of most of the staff. The ARI
was validated as being more reliable and better suited to the technical nature of the text
than other formulae such as Flesch-Kincaid [29]. Similarly, the ARI considers the words
per sentence ratio, but it also includes the number of characters per word. This outputs
a score that corresponds to the grade level required, but it exceeds the actual number of
grades and reaches 14 (with this score corresponding to being above the level of a college
student, for example a professor).

The Coleman–Liau index is the youngest of these formulae and was developed in
1975 to assess the readability of textbooks used in U.S. public schools [30]. Its creators
deemed that counting syllables was too time-consuming and lacked accuracy. Therefore
the Coleman–Liau Index uses the average number of letters per hundred words and also
the number of sentences per hundred words [31]. This does have the drawback that it
means that for shorter texts, these figures need to be extrapolated and thus may not be as
representative. Once again, the numerical output is the estimated grade level required to
read the text.

Whilst the Dale–Chal considers the familiarity of words, the other methods almost
exclusively inspect the text as a collection of characters without considering the meaning of
each word. Sentiment analysis is an area of machine learning which has seen exponentially
more use in recent years. It aims to identify and extract subjective information from text
which allows it to determine whether there is a positive, neutral or negative sentiment [32].
This process of perception is unconscious cognition within humans but until very recently
was impossible for machines to achieve. Sentiment analysis techniques are incredibly pow-
erful and are now being leveraged in fields such as market research, customer interactions
and the analysis of social media activity [33]. Its entire premise is using computational
linguistics to extract subjective meaning and information from text. In the regulatory
context, all text is written in an objective manner to clearly outline regulations that must
be adhered to and so sentiment analysis is redundant. Similarly, work done on phonetic
analysis cannot be applied to this area either as it assesses speech rather than written text.

With this in mind, when exploring methods from other fields, it is important to
consider the type of language that is used. Consequently, attention should be focused
on similarly technical fields. The field of financial regulation was found to offer a wealth
of previous work. This is largely due to an overhaul of financial regulation following
the financial crisis of 2008. This increasingly stringent regulation has drawn attention,
with a number of research papers investigating the change in complexity such as those by
Gai et al. [34], Colliard & Georg [35] and Spatt [36]. Parallels can be drawn between this
situation and the change in medical device regulation, therefore, the techniques should be
transferable to a certain extent.

Historically, it was widely accepted in the field of financial research that the Gunning
Fog Index was most suitable to measure the readability of documents and it was therefore
almost universally used. First published in 1952 [37], the Gunning Fog Index is a metric
that generates a grade level from 0 to 20 to indicate the level of education required to
read the text, much like the other readability methods described earlier [38]. The formula
combines the total number of words, number of sentences and also the number of complex
words. Complex words are considered to be those consisting of three or more syllables,
excluding common suffixes such as -es, -ed, or -ing. This list also excludes proper nouns,
familiar jargon or compound words. A number of studies use the Gunning Fog Index,
showing its popularity [39,40].

Despite being widely adopted, the method is not perfectly suited to for example
financial text and this was highlighted by Loughran and Mcdonald [41]. At one point the
Securities and Exchange Commission (SEC) considered using the Gunning Fog Index to
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gauge filings’ compliance with the SEC’s plain English initiatives, however, it was argued
that it is ill-suited to analysing financial text, which inherently contains many longer words,
despite these being well understood by analysts. Instead it was proposed that a focus on
financial terminology and vocabulary that appears in a glossary and master dictionary
is more pertinent to assess the readability. Though its efficacy may be questioned in a
financial context, the Gunning Fog Index could be an interesting method to apply with the
regulatory medical data field.

Whilst text containing intricate ways of describing concepts and elaborate language
may once have been highly regarded and considered well written, there is now an ever
growing desire for simplicity and effective communication in all fields. A prominent
example of this is the Plain English Movement and other campaigns to limit the use of
superfluous language and make technical text more accessible for everyone [42]. In some
cases, these campaigns have published guidelines for individuals to refer to when drafting
text to ensure that it is made as rudimentary as possible. Moreover, this drive for simple
language extends further to regulatory agencies such as the SEC who provide very specific
guidance in recommending that managers employ plain English attributes, by avoiding
writing constructs like passive voice, weak or hidden verbs, superfluous words, legal and
financial jargon, numerous defined terms, abstract words, unnecessary details, lengthy
sentences, and unreadable design and layout in their financial disclosures [43]. The notion
that the absence of such constructs makes text less complex (in a variety of fields that
include medical, legal and military), is supported by many language experts [44]. It is with
these considerations in mind that S.B. Bonsall IV et al. introduced a new readability metric
by the name of the Bog Index [45]. The Bog Index aims to implement the concepts discussed
above and one of its features is the way in which complexity is determined. The word
complexity is derived from the principle of familiarity which is based on a proprietary list
of over 200,000 words. This is in contrast to other techniques which assume that words are
complex if they are multi-syllabic or contain many characters. Note that this is the primary
criticism of the Gunning Fog Index from many language experts. The fundamentals of the
Bog Index evaluate complexity using the trade off between Bog and Pep characteristics. Bog
characteristics, as the name describes, bog the user down in unnecessary complexity such
as jargon. Conversely, Pep identifies writing attributes that facilitate the understanding of
texts by readers. The lower the Bog score, the easier the text is to read. 0–20 is considered
excellent, most business and government writing scores 60–100 but some legal texts score
over 1000 [46].

Colliard and Georg [35] also aimed to quantify the complexity of financial regulation
by methods other than the mere length. In their work they attempted to achieve this by
treating the regulation as an algorithm, using concepts from computer science literature to
consider the rules for how an input leads to an output (the regulatory decision). The concept
of operators and operands is the core feature of this analogy. This approach to complexity
was pioneered by Maurice Howard Halstead [47]. The principle is that by segmenting a
computer programme into its constituent parts, the relationships between these entities
can be used to measure the algorithmic complexity. The two classes are known as the
operators and operands and this logic is applied to financial regulation by [35]. Several
techniques translate financial information such as balance sheets into pseudo-code to
implement the algorithms developed. These methods will not be considered here due to
the discrepancies in the format of the regulations. Instead, focus will be placed on methods
designed for treating text. Words can be classified according to their function as either
operands or operators, using the classification system proposed by Colliard and Georg.
The focus is then to translate the algorithmic complexity from code to text-based analysis.
The operators are words such as “and” or “excluding” which serve as logical connectors
within an algorithm or, in this case, a sentence. “Operands” on the other hand are variables
and parameters represented by values (e.g., “seven years” and “10 days”), concepts (e.g.,
“maturity” and “expiry”) or entities (e.g., “manufacturers” and “council”). Words used
for grammatical reasons (e.g., “by”, “on”, “the”) can be ignored as they don’t correspond
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to either operators or operands. Instead they are classed as function words which serve
to ensure coherence of the text. The concept of unique operators and operands refers to
words from those categories that have not been previously used in the text up to that
point. A series of formulae relating the quantities of operators, operands, unique operators
and unique operands were first developed by Halstead, but have since been tailored and
added to by other papers including research by David Flater [48]. A combination of these
equations can be used to assess the complexity of the regulatory text.

2.2.2. Complexity and Response Time

Time driven methods can provide a further insight into the complexity of the regula-
tions in addition to metrics that are obtained directly from the available text. Text length
is often positively associated with overall complexity and therefore response time. This
theory also translates to question length, with longer questions requiring more cognitive
resources and therefore being more likely to interfere with the mapping process. This sug-
gests that question length is likely to be positively associated with the prevalence of both
comprehension and mapping difficulties. However, if a question is long because the author
has taken care to explain its intent fully, then comprehension will actually improve [49].
The medical device regulations can be posed as a set of questions [50], which allows for
further exploration of this metric. One can then even incorporate a suggested minimum
of 3 s that is considered needed to perform cognitive tasks and formulate responses to
questions [51]. Applying this to the context of questions can provide a sense of expected
response times once the reading time and answer selection time is accounted for.

Time-based data for medical regulations can be obtained from a rule-based classifier
that is available online [52]. The questions have been ordered using a rule-based decision
tree which leads the user through the nodes within the tree, ensuring that users only
encounter questions that will aid the classification of their device, based on their previous
responses. The technical text is made more accessible through the use of glossaries and
examples to contextualise the information. The terms contained within the glossary are
those which are defined individually in the definitions sections of the MDR and IVDR
regulations. To accurately represent the classification guidelines, phrases of each question
posed in the digital tool retain wording from the regulations, which provides a clear
mapping back to the regulatory content published by the EU. Each user’s interaction with
the tool is recorded, which creates a unique database (that will be referred to as OGGD in
this paper). Due to the importance of speed and simplicity in the classification process, the
time taken to respond to each rule in the decision tree is used as a metric for the regulatory
burden that each question places on the user.

2.2.3. Research Aims

The first aim of this paper is to explore how the complexity of the medical device
regulations has changed when the MDD/IVDD was replaced with the new MDR/IVDR.
The aforementioned complexity metrics can be applied to objectively assess this and
determine to what extend regulations within the EU might have increased in complexity.
Secondly, an association between the time it takes to consider parts of the regulation and
the complexity of these parts will be investigated. This would provide an idea on how the
complexity of regulations maps onto the user experience. It also provides an additional
metric with time itself acting as an surrugate for complexity.

3. Materials and Methods
3.1. Linguistic Complexity of Regulatory Documentation

A descriptive analysis will be performed on the available textual data. This will
include the total number of pages, letters, words and syllables. In addition, the average
word length will be determined for each relevant document.

Subsequently, a set of readability metric scores will be computed consisting of the
Dale–Chall Readability score, Automated Readability Index (ARI), Coleman Liau Index,
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Gunning Fog, Flesch Kincade Grade and Bog Index. The formulae for these can be found
in the Table 1. In the case of this paper, the output from each formula will be retained in its
raw form for analysis as it is the variation of scores between questions that is of interest
rather than the variation of estimates across individual techniques.

Table 1. Readability metrics. WC = Word Count, DWC = Difficult or Complex Word Count,
SC = Sentence Count, SyC = Syllable Count, CC = Character Count.

Complexity Method Equation

Dale–Chall Readability
Formula [21] 0.1579 × (

DWC
WC

× 100) + 0.0496 × (
WC
SC

) (1)

Flesch Kincaid Grade Level [25] 0.39 × (
WC
SC

) + 11.8 × (
SyC
WC

)− 15.59 (2)

Automated Readability Index
Formula [28] 4.71 × (

CC
WC

) + 0.5 × (
WC
SC

)− 21.43 (3)

Coleman Liau Index Formula
(adapted from [31]) 5.89 × (

CC
WC

)− 0.3 × (
SC
WC

)− 15.8 (4)

Gunning Fog Formula [31] 0.4 × [(
WC
SC

+ 100 × (
DWC
WC

)] (5)

The Bog Index will also be determined, including contrasts Bog and Pep features
which ultimately determine the Bog score for the text [45]. The StyleWriter software [46] is
used to process the text in order to obtain Bog metrics.

Bog Index Formula = Sentence Bog + Word Bog − Pep (6)

Sentence Bog =
( average sentence length)2

long sentence limit
(7)

Word Bog =
(style problems + heavy words + abbreviations + specialist words)× 250

number o f words
(8)

Pep =
(names + interest words + conversational)× 25

number o f words
+ sentence variety (9)

For the Halstead-based methods, the first step was to classify words as either operators
or operands. However, inferring the class of the elements of medical device regulations is
novel and there is no preceding literature which can be used as a benchmark. Online scien-
tific glossaries were used alongside the financial classification lists published by [35] and
some case-by-case discretion to compile two distinct dictionary lists of words. Combined,
these contained over 100,000 words, primarily medical in nature, which were utilised
to assign classes. Words that were not contained within either the list of operators or
that of operands were assigned to the “other words” category. These contained primarily
function words that are included to make the text readable and coherent. The count of
unique operators n1, total operators N1, unique operands n2 and total operands N2 formed
the basis of the different approaches to quantifying complexity in the text (defined as
“programme” for this approach). The metrics for complexity begin in a similar vein to the
numerical techniques by associating psychological complexity to the length of the parts of
the algorithm. Programme length, vocabulary size and programme volume, which actually
measures the length of the binary encoding of the programme in software, all fall into
this category. The remaining methods are in form of the ratio of total operators to total
operand and the two programme level constructs, which take into consideration the most
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efficient expression of the programme by considering unique words. The equations for
these methods are outlined below.

Programme Length, N = N1 + N2 (10)

Vocabulary Size, n = n1 + n2 (11)

Programme Level, L =
(N1 + N2)

(2 + n2)
(12)

Surrogate Programme Level, L̂ =
(n1 × N2)

(2 × n2)
(13)

Classi f ication Ratio, C =
N1

N2
(14)

Programme Volume, V = N log2 n (15)

3.2. Data

Complexity of the text was determined for the European Union regulatory documen-
tation that consisted of the new Medical Device Regulations (MDR) [12]/the In Vitro Diag-
nostic Regulations (IVDR) [15] and the older Medical Devices Directive (MDD) [13,14]/In
Vitro Diagnostics Directive (IVDD) [16,17].

The time data was obtained from a online tool that mapped the MDR and IVDR on
to a rule-based classifier [52]. Complexity of the text was determined for each node of the
classifier. These nodes consisted of questions that cover specific parts of the regulations.
The response time reflected the time it took to consider the relevant regulatory text and
answer the question accordingly. This response data was generated using timestamps from
users’ interactions with the online regulatory text [52]. Upon submitting a response to
a question on the corresponding web page, the user is then brought to a new web page
corresponding to the next question to be answered according to the rule-based decision
tree nodes. This submission generates an entry into a database which records the question
number, the number of questions answered up to that point in the session, the answer
submitted, the user’s unique identification (ID) and the session ID. The time of answer
submission is recorded as a timestamp and it is the difference between the timestamps for
two successive questions that is used to calculate the time spent answering a particular
question. In total the data set contains information for 903 unique user sessions, covering
112 questions. Data anonymization was performed, so there was no identifiable information
about the users that generated the data.

3.3. Data Processing and Analysis

All readability metrics of the text were divided by taking the median of the full data
set for a particular metric in order to aid the visual comparison. The same processing took
place for both the data obtained from the legal documentation, as well as the online tool.

All outliers for the time data, in the form of response times less than 0.1 s in length
and those greater than an hour, were removed. A total of 17,903 response data points were
remaining. These were generated from 903 unique user session IDs, with a mean number
of questions per session of 19.8. They covered responses to 112 nodes from the online tool.
The time data had skewed distribution and thus the median was used for the analysis of
the response times which were calculated for each node in the classifier. The readability
metrics are computed for each of the 112 questions that are included in the online tool and
represent the text in both the IVDR and MDR.

Pearson’s Correlation Coefficients were computed between response times and the
aforementioned complexity metrics. Data processing and analysis were done using Python
(3.8.0, Python Software Foundation, Wilmington, DE, USA).
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4. Results
4.1. Linguistic Complexity of Regulatory Documentation

The overall count of the MDR/IVDR compared to the MDD/IVDD has increased
according to every metric, with some increase in the average word length as well (Figure 1).

Figure 1. Descriptive complexity scores for the MDR, MDD, IVDR and IVDD. The word length
represents the average word length.

The outcomes of the readability scores applied to the overall documents are shown in
Figure 2.

Figure 2. Readability scores for the MDR, MDD, IVDR and IVDD. Outcomes consist of the Dale–Chall
Readability score, Automated Readability Index (ARI), Coleman Liau Index, Gunning Fog, Flesch
Kincade Grade and Bog Index.

The Halstead-based complexity analysis is shown in Figure 3. All the metrics increased
when new regulations (MDR/IVDR) were compared to the previous legislation.
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Figure 3. Halstead-based metric scores for the MDR, MDD, IVDR and IVDD. The following metrics
are used: Total operators (N1), unique operators count (n1), total operands (N2) and unique operands
count (n2). Other metrics consist of the length, vocabulary size, classification ratio (N1/N2), level,
surrogate level and volume of the “programme”.

4.2. Response Time and Linguistic Complexity

Having removed the outliers, in the form of response times less than 0.1 s in length
and those greater than an hour, there were 17,903 response times remaining. The majority
(96.7%) of question/node response times were within a minute, with the median being 7 s
for the overall dataset. Figure 4 shows a box and whisker plot for all of the nodes.

Figure 4. Box and whisker plot for the response times (vertical axis) of individual nodes (horizontal
axis). Any data point which is greater than 1.5 times the interquartile range away from either the
upper or lower quartile is denoted an outlier and marked by a circle. The data is displayed on a log
axis for response time.

Figure 5 shows the median response time for each question plotted as a bar graph
which is overlaid by the normalised values for three numerical complexity methods: Word
length, letter count and word count. The variation in mean word length is smaller than the
differences in overall question text length.
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Figure 5. Normalised numerical complexity metrics and response times (vertical axis) of individual
nodes (horizontal axis). The mean word length and median response times are shown. The central
tendency metrics are selected based on the distribution of the data.

The readability scores for all 112 questions is shown in Figure 6. The histograms are
overlaid on top of one another and there is a range of spread between the distribution
of scores.

Figure 6. Frequency distributions for the readability metrics across all 112 nodes/questions of the
digital tool.

The correlation coefficients for each of the readability methods are tabulated in
Table 2. The Dale–Chall has the lowest absolute Pearson’s correlation coefficient, whilst the
strongest association is found between the word count and response time.
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Table 2. Pearson’s correlation coefficients for readability metrics and response times.

Complexity Metric Pearson’s Correlation Coefficient (p-Value)

Letter Count 0.204 (0.015)

Word Count 0.214 (0.011)

Syllable Count 0.202 (0.016)

Syllables per Word −0.087 (0.180)

Letters per Word −0.019 (0.421)

Dale–Chall 0.003 (0.488)

ARI 0.158 (0.048)

Coleman Liau 0.055 (0.283)

Gunning Fog 0.133 (0.081)

Flesch Grade 0.149 (0.059)

Bog Index 0.153 (0.054)

Four Halstead-based complexity metrics for each question are plotted with the re-
sponse times overlaid upon it as a bar graph (see Figure 7).

Figure 7. Normalised Halstead-based complexity metrics and response times (vertical axis) of
individual nodes (horizontal axis).

The Pearson’s correlation coefficients for Halstead-based complexity metrics are
shown in Table 3. The lowest correlation coefficient was found for operand count and
the highest was for the classification ratio. However, there was only a difference of 0.035
between these coefficients.
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Table 3. Pearson’s correlation coefficients (p-values) for Halstead-based complexity metrics and the
response times.

Complexity Metrics Pearson’s Correlation Coefficient (p-Value)

Operator Count 0.200 (0.017)

Operand Count 0.193 (0.021)

Programme Length 0.200 (0.020)

Vocabulary Size 0.201 (0.020)

Classification Ratio 0.228 (0.008)

Level 0.209 (0.013)

Surrogate Level 0.214 (0.011)

Programme Volume 0.197 (0.019)

5. Discussion

In general, the majority of the complexity scores indicate that complexity increased
with the implementation of the new legislation. The most important contributor to this
seems to be the vast increase in length of the documents. This has undoubtedly made the
regulations more difficult to negotiate for users.

5.1. Linguistic Complexity of Regulatory Documentation

The most complex words found in the regulations are in the form of technical medical
references. While these words may be hard to understand, they are not particularly long.
This is different to what is found for words in a non-scientific context where word length
is indicative of complexity [53]. The findings of this study suggest that the conventional
readability metrics may need to be further improved for use within a regulatory context
and it echos the limitations summarised by Redish [54]. The techniques that were applied
are actually used in many fields as the default measures of complexity. However, they are
likely to fall short in similar ways as seen in this paper.

The Dale–Chall method, based on a set list of common words, did not yield a strong
association with response time. This is understandable as the list of words was not designed
with either scientific or technical objectives in mind and thus it would be constrained for
this task. Perhaps a similar list, which had been tailored for for regulations could perform
better. The Gunning Fog method also looks at a ratio of complex words and raises similar
concerns as also seen in technical financial fields [45]. The Coleman Liau Index was
designed to average metrics over 100 words, but several regulatory segments that need
to be considered consisted of regulatory “questions” that were considerably shorter than
this. Several approaches also heavily relied on the average word length, which might not
capture complexity well in regulations. The ARI is the only method that was designed with
technical content in mind, which should make it more suitable. However, it does not fully
cover the regulatory context. Finally, there is the Bog Index which is far more recent and
uses a more developed method to assess the complexity. This method gives importance to
style and Pep, which is the way in which the language can serve the interest of the reader.
Neither of these are considerations for writing regulation. Consequently, it was hard to
differentiate between many of the regulatory text in this regard, which is reflected in the
histograms of Bog Index scores. It should be noted that more sophisticated metrics need to
be developed to capture the regulatory complexity more accurately. These metrics provide
an initial assessment, but are limited in terms of measuring the nuances that are present
within the regulatory text. Despite these limitations the metrics due seems to indicate a
similar trend in terms of the complexity increase seen in the new regulations.
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5.2. Response Time

The box plot with the individual nodes demonstrates how the spread of samples for
each question varied (see Figure 4). These differences would be amplified without applying
a log scale for the response time. Certain nodes have very tightly packed response times
while others see a vast spread of times. This could be explained by the nature of each
question. Some questions could be perceived as easy (or difficult) by most users and thus
their response times will be very similar. However, other questions which are particularly
technical or specific to a certain field may polarise the user cohort with some users having
significant difficulties, which can explain the variation in ranges for response times. It is
hard to account for this and perform robust corrections on the data. Yet, increasing the size
of the data set could cover a more representative set of users.

The current data set consisted of over 17,000 unique response times. However, a
larger data set can help further increase the external validity of the research findings.
Furthermore, no in-depth information was gathered with regards to the response times
that were generated, due to the fact that data was anonymised. Future studies can aim
to collect information on the expertise of the user, device type considered and confidence
of answering a particular question. This could create a better model, which can help to
explain the response times that were observed.

5.3. Response Time and Linguistic Complexity

Only a (very) weak relationship was found between the response times and the
complexity of the questions. This could be due to the lack of variation in the complexity
measures. However, there are other factors that can also influence the strength of the
association. Information was missing with regards to the specific intent of the device
considered for the questions, the user’s knowledge on regulations and a reliance on the
outcome of the classifier. Therefore, the strength of these associations should not be
considered to generalise easily. Response time data under more controlled settings can
yield important additional information that can be used to build a more robust model to
determine if there is not a stronger link between complexity and time. It should also be
noted that the time spend on the questions might not be fully representative of the overall
time spend on considering it. These are limitations that can be addressed in future studies.

5.4. Considerations

The techniques presented here offer a starting point to better understand the com-
plexity of regulations. As shown there is no clear association between the time spent on a
regulatory question and the associated complexity. However, it should be noted time only
focuses the (instant) answer of the classification questions and therefore just captures the
first steps in the regulatory process. More work can be done to objectively study the time
consideration across the full application of the regulatory text. Using more data-driven
methods can greatly increase our understanding of the regulations and allows to generate
better questions that can help improve future regulations [9].

The complexity of a legal text can form a barrier to innovators. Understanding the
complexity can therefore be essential in optimising the pathway for new devices. The
increased complexity found in this study highlights the importance of improving education
and guidance. Previous research already showed that more can be done to provide further
support in terms of education [55] and this should be considered by stakeholders as
complexity of regulations increases. Regulations that are currently being created can
benefit from considering these aspects during the development process. These preliminary
findings from this paper propose that the complexity of regulations should be reduced,
with a focus on making them more accessible and utilitarian. This would improve the
stakeholder adherence and facilitate effective implementation, which in the long term will
improve patient welfare.
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