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Abstract: The Leggett–Garg Inequality (LGI) constrains, under certain fundamental assumptions,
the correlations between measurements of a quantity Q at different times. Here, we analyze the LGI
and propose similar but somewhat more elaborate inequalities, employing a technique that utilizes
the mathematical properties of correlation matrices, which was recently proposed in the context of
nonlocal correlations. We also find that this technique can be applied to inequalities that combine
correlations between different times (as in LGI) and correlations between different locations (as in
Bell inequalities). All the proposed bounds include additional correlations compared to the original
ones and also lead to a particular form of complementarity. A possible experimental realization and
some applications are briefly discussed.

Keywords: Leggett–Garg Inequality; Bell–Leggett–Garg Inequality; quantum correlations; quantum
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1. Introduction

Leggett and Garg, in their seminal work [1], provided constraints on the correlations
between measurements of a single quantity at different times. They showed that given
the definition Cij ≡ 〈QiQj〉 for the correlation between two measurements of a quantity
Q at times ti and tj, the sum |C12 + C23 + C34 − C14| is bounded by 2 in any scenario
that maintains “macrorealism” and “non-invasive measurability” [2]. Such a scenario
represents the classical physics view of a macroscopic system, as a system that cannot be
in two or more states at the same time and in which it is possible to measure the state
with only an arbitrarily small perturbation of it. Determining whether the Leggett–Garg
Inequality (LGI) holds for a given system assists in distinguishing between systems that
obey this classical view and those that exhibit nonclassical behavior (in the particular sense
linked to macrorealism). If a system violates the LGI, it necessarily exhibits nonclassical
behavior. However, recent works have shown that the contrary is not always true, i.e., a
system can satisfy the LGI but still violate macrorealism [3,4]. The initial motivation for
the LGI was using this method to determine whether quantum coherence appears even
in macroscopic systems. Later works focused on experimentally finding LGI violations in
microscopic quantum systems using various measurement types such as ideal negative
measurements [5]. A recent work by Shenoy et al. [6] presented the applicability of LGI
in the area of quantum cryptography. They showed how the amount of the violation of
the LGI indicated that a hacking attempt was made during the quantum key distribution
protocol [7].

The LGI relates to the bounds on correlations of a single quantity measured typically
on the same system at different times by the same party, in a manner that mathematically
resembles the well-known Clauser–Horne–Shimony–Holt (CHSH) inequalities, providing
bounds on the correlations between quantities measured typically on a bipartite system
at two different locations by two different parties [8–10]. Similar to the “classical” LGI
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bound of 2, previous works have shown that under quantum assumptions, the same
correlations are bounded by 2

√
2 [11]. Here, we find more informative LGI bounds, tighter

than 2
√

2, by studying a more general definition for the correlations, which under certain
conditions coincides with the common LGI correlations for quantum systems [12]. We
apply a mathematical method that was recently proposed for finding richer bounds for the
CHSH and other novel inequalities [13–16].

We show that maximal violations of the classical LGI bound in the newly found
inequalities directly follow from the absence of correlations between an operator and
itself at certain times. On the practical level, our results may allow one to better design
quantum temporal correlations, but fundamentally, this highlights the necessity of certain
noncommutativity between the measured operator and the Hamiltonian (see [17] for the
broader consequences of noncommutativity and uncertainty).

In addition to their theoretical merits, we suggest that these tighter bounds may
be beneficial for applied purposes as well, e.g., for devising quantum key distribution
protocols (similar to [6]) or analyzing quantum metrological schemes (similar to [18]).

For completeness, we show in Appendix A that a different definition of the temporal
correlation leads to other bounds.

2. Materials and Methods

We define the generalized correlation function C(X, Y)—for any two Hermitian opera-
tors X and Y—as

C(X, Y) =
1
2 〈{X, Y}〉 − 〈X〉〈Y〉

∆X∆Y
, (1)

where {X, Y} denotes the anticommutator, and ∆X =
√
〈X2〉 − 〈X〉2, ∆Y =

√
〈Y2〉 − 〈Y〉2

are the standard deviations. From the Schrödinger–Robertson uncertainty relation [19,20],
it is easy to prove that this correlation is bounded between −1 and 1. If X and Y represent
projective quantum measurements of values±1 with an expected value of 0, this correlation
coincides with the symmetric correlation 1

2 〈{X, Y}〉, which Fritz proposed as a quantum
analog of the LGI correlation [12].

The motivation behind this generalized correlation definition is twofold: apart from the
aforementioned fact that in the case of projective measurements it generalizes the standard
symmetric correlation used for LGI, it is also widely used in quantum optics [21,22] and
can be therefore readily generalized to the case of continuous variables.

After constructing the correlations matrix, we employ semi-positive definiteness
conditions, similar to those in [13–16], to derive our Leggett–Garg-like inequalities.

3. Results

Here, we present four theorems and corresponding proofs entailing analytical bounds for
the correlations between measurements of a quantum system at different times. Theorems 1–3
discuss elaborate Leggett–Greg-like inequalities describing constraints on generalized cor-
relations of measurements at four consecutive measurement times. The measurement of a
quantity Q at time ti is described by the Hermitian operator Qi. Theorem 1 is significant
mainly because it provides a tighter bound than 2

√
2, which is the known bound under

typical quantum assumptions. Theorem 2 resembles the TLM inequality, which is a signif-
icant bound that was derived independently by Tsirelson, Landau, and Masanes [23–25].
The structure of the TLM inequality is characterized by the fact it that bounds products of
correlations and not merely their sums as in other inequalities. Theorem 3 demonstrates a
complementarity relation between all pairs of correlations of the four measurements.

Theorem 4 relates to a combination of the CHSH and LGI [26,27], where the con-
straints are on generalized correlations between quantities measured at two different times
t1 and t2 by two parties, Alice and Bob, each in a different location. The two consecu-
tive measurements of Alice (Bob) are represented by the Hermitian operators A1 and A2
(B1 and B2).
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Theorem 1. Elaborate Leggett–Garg-like inequality.
Given four consecutive measurements, we define the generalized LGI parameter as

L = |C(Q1, Q2) + C(Q2, Q3) + C(Q3, Q4)− C(Q1, Q4)|. (2)

The following holds

L ≤ 2

√
1 +

√
1−max {C(Q1, Q3)2, C(Q2, Q4)2}. (3)

Proof of Theorem 1. Let C be the following correlation matrix

C =

C(Q2i, Q2i) C(Q2i, Q1) C(Q2i, Q3)
C(Q2i, Q1) C(Q1, Q1) C(Q1, Q3)
C(Q2i, Q3) C(Q1, Q3) C(Q3, Q3)

, (4)

where i = 1, 2. C is a positive semi-definite matrix, i.e., C � 0 (see [14,15] for more
details regarding the construction and properties of such matrices). Therefore, by the Schur
complement condition for positive semi-definiteness,(

1 C(Q1, Q3)
C(Q1, Q3) 1

)
�
(

C(Q2i, Q1)
C(Q2i, Q3)

)(
C(Q2i, Q1) C(Q2i, Q3)

)
. (5)

Let vT
j = ((−1)j, 1). Multiplying by vT

j from the left and vj from the right, the above
inequality implies

2[1 + (−1)jC(Q1, Q3)] ≥ [C(Q2i, Q3) + (−1)jC(Q2i, Q1)]
2. (6)

For j = i− 1,

[C(Q2, Q1) + C(Q2, Q3)]
2 ≤ 2[1 + C(Q1, Q3)]

[C(Q4, Q3)− C(Q4, Q1)]
2 ≤ 2[1− C(Q1, Q3)].

(7)

Since C(Qi, Qj) = C(Qj, Qi) for any i and j, then

|C(Q1, Q2) + C(Q2, Q3)| ≤
√

2[1 + C(Q1, Q3)]

|C(Q3, Q4)− C(Q1, Q4)| ≤
√

2[1− C(Q1, Q3)].
(8)

Using the triangle inequality on the two expressions in the left hand side of Equation (8),
we derive the following

L ≤ 2

√
1 +

√
1− C(Q1, Q3)2. (9)

By repeating the analytical derivation above for the following correlation matrix

C̃ =

C(Q2i−1, Q2i−1) C(Q2i−1, Q4) C(Q2i−1, Q2)
C(Q2i−1, Q4) C(Q4, Q4) C(Q4, Q2)
C(Q2i−1, Q2) C(Q4, Q2) C(Q2, Q2)

, (10)

the multiplications by vT
j and vj give rise to:

2[1 + (−1)jC(Q4, Q2)] ≥ [C(Q2i−1, Q2) + (−1)jC(Q2i−1, Q4)]
2. (11)

From Equation (11), for the cases i = j = 1 and i = j = 2, the following inequality is
derived using the triangle inequality

L ≤ 2

√
1 +

√
1− C(Q2, Q4)2. (12)
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Finally, Theorem 1 follows from Equations (9) and (12). Thus, we prove that given our
assumptions, the generalized LGI parameter has a bound, which is tighter than 2

√
2,

and 2
√

2 can be reached only if the correlations C(Q1, Q3) and C(Q2, Q4) are equal to 0.
This result generalizes the known bound of 2

√
2 for the LGI with projective measurements

of values ±1 [11].

Theorem 2. Leggett–Garg-like inequality in the TLM form.
Given four consecutive measurements,

|C(Q2, Q1)C(Q2, Q3)− C(Q4, Q1)C(Q4, Q3)| ≤√
(1− C(Q2, Q1)2)(1− C(Q2, Q3)2) +

√
(1− C(Q4, Q1)2)(1− C(Q4, Q3)2).

(13)

Proof of Theorem 2. Equation (5) implies(
1− C(Q2i, Q1)

2 C(Q1, Q3)− C(Q2i, Q1)C(Q2i, Q3)
C(Q1, Q3)− C(Q2i, Q3)C(Q2i, Q1) 1− C(Q2i, Q3)

2

)
� 0. (14)

The determinant of the above matrix is nonnegative, and thus,

|C(Q1, Q3)− C(Q2i, Q1)C(Q2i, Q3)| ≤
√
(1− C(Q2i, Q1)2)(1− C(Q2i, Q3)2). (15)

For the cases i = 1 and i = 2, we obtain the following inequalities, respectively,

|C(Q1, Q3)− C(Q2, Q1)C(Q2, Q3)| ≤
√
(1− C(Q2, Q1)2)(1− C(Q2, Q3)2)

|C(Q1, Q3)− C(Q4, Q1)C(Q4, Q3)| ≤
√
(1− C(Q4, Q1)2)(1− C(Q4, Q3)2).

(16)

Finally, Theorem 2 is derived from the triangle inequality and Equation (16). The re-
sulting inequality presents the TLM criterion for correlations between measurements at
different times.

Theorem 3. Leggett–Garg-like inequality in the form of a complementarity relation.
Given four consecutive measurements,(

L
2
√

2

)2
+

(
C(Q1, Q3)

2
√

2

)2

+

(
C(Q2, Q4)

2
√

2

)2

≤ 1. (17)

Proof of Theorem 3. From Equation (9),

L2 ≤ 4
(

1 +
√

1− C(Q1, Q3)2
)

. (18)

Since
√

1− a ≤ 1− a/2 for a ∈ [0, 1], then

L2 + 2C(Q1, Q3)
2 ≤ 8, (19)

and similarly we can derive from Equation (12),

L2 + 2C(Q2, Q4)
2 ≤ 8. (20)

Theorem 3 is derived after summing Equations (19) and (20). This inequality demonstrates a
complementarity relation between all six correlations of pairs from the four measurements.
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Theorem 4. Elaborate Bell–Leggett–Garg-like inequality.
For two consecutive measurements A1 and A2 of Alice and two consecutive measurements B1

and B2 of Bob, we define the generalized Bell–Leggett–Garg inequality parameter as

BLG = |C(A1, A2) + C(A1, B2) + C(B1, B2)− C(B1, A2)|. (21)

The following holds

BLG ≤ 2

√
1 +

√
1−max {C(A1, B1)2, C(A2, B2)2}. (22)

Proof of Theorem 4. Let CX be the following correlation matrix

CX =

 C(X, X) C(X, A2) C(X, B2)
C(X, A2) C(A2, A2) C(A2, B2)
C(X, B2) C(A2, B2) C(B2, B2)

, (23)

for X ∈ {A1, B1}. Following the analysis in the proof of Theorem 1, i.e., using the
Schur complement condition for positive semi-definiteness and after multiplying by
vT

j = ((−1)j, 1) and vj, we obtain

|C(X, B2) + (−1)jC(X, A2)| ≤
√

2[1 + (−1)jC(A2, B2)]. (24)

For the two cases, (X = A1 & j = 0) and (X = B1 & j = 1), we obtain the following
inequalities, respectively,

|C(A1, B2) + C(A1, A2)| ≤
√

2[1 + C(A2, B2)]

|C(B1, B2)− C(B1, A2)| ≤
√

2[1− C(A2, B2)].
(25)

From the triangle inequality,

BLG ≤ 2

√
1 +

√
1− C(A2, B2)2. (26)

Similarly, by replacing the variables A2 and B2 by A1 and B1, respectively,

BLG ≤ 2

√
1 +

√
1− C(A1, B1)2. (27)

Finally, Theorem 4 is derived from Equations (26) and (27).

An Example of a System That Upholds Our New Bounds

Here, we demonstrate Theorems 1–3 for a specific spin model [2,28], which is defined
by the following Hamiltonian and observable

H =
h̄ω

2
σx =

h̄ω

2

(
0 1
1 0

)
Q = σz =

(
1 0
0 −1

)
.

(28)

The time evolution of Q is

Qt =

(
cos(ωt) −i sin(ωt)
i sin(ωt) − cos(ωt)

)
; (29)
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therefore, according to Equation (1), the generalized correlation between two measurements
of Q at times t and s is

C(Qt, Qs) = cos (ω(t− s)). (30)

To demonstrate Theorem 1, for any four consecutive measurement times, we define
D1 as the difference between our bound (the right hand side of Equation (3)) and the LGI
parameter (Equation (2)). Thus, in our system,

D1 = 2

√
1 +

√
1−max {cos2 (ω(t1 − t3)), cos2 (ω(t4 − t2))}

− | cos (ω(t1 − t2)) + cos (ω(t2 − t3)) + cos (ω(t3 − t4))− cos (ω(t1 − t4))|.
(31)

Similarly, to demonstrate Theorem 2, we define D2 as the difference between the right hand
side and the left hand side of Equation (13); thus,

D2 = | sin(ω(t2 − t1)) sin(ω(t2 − t3))|+ | sin(ω(t4 − t1)) sin(ω(t4 − t3))|
− | cos(ω(t2 − t1)) cos(ω(t2 − t3))− cos(ω(t4 − t1)) cos(ω(t4 − t3))|.

(32)

It can be shown numerically that D1, D2 ≥ 0 for any t1, t2, t3, and t4 (see Figure 1a,b for a
certain range of parameters). An example of a measurement time series in which the bound
in Theorem 1 and the LGI parameter are both equal to 2

√
2 is t1 = 0, t2 = π/4, t3 = π/2,

and t4 = 3π/4.
In Figure 1c, we demonstrate Theorem 3 by showing that the left hand side of Equa-

tion (17) is indeed smaller or equal to 1. To do so, we display all possible data points using
the axes L/2

√
2, C(Q1, Q3)/2

√
2, and C(Q2, Q4)/2

√
2, and we note that they all reside

within the unit sphere.

(a) Theorem 1 for our example. (b) Theorem 2 for our example.

(c) Theorem 3 for our example.

Figure 1. Demonstration of Theorems 1–3 for our spin model. (a,b), the values of D1 and D2,
respectively, both of which have a minimal value of 0, indicating Equations (3) and (13) are upheld.
(c) The indigo area represents all data points, while the grey area represents the bounds of half of the
unit sphere. All indigo points are within the gray area, indicating Equation (17) is upheld.
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4. Discussion

In this manuscript, we studied generalizations of the LGI. We utilized a framework
based on the quantum correlation matrix [13–15], which yielded a more detailed version of
the LGI by incorporating additional correlations compared to the standard case. The results
emphasize the major role of the positive-semidefinite correlation matrix in quantum me-
chanics not only in “spatial” scenarios but also in “temporal” ones. They also demonstrate
a type of complementarity—in order for certain correlations to achieve their maximal
values (left hand side of Equation (3)) others must vanish (those at the right hand side of
Equation (3)).

We suggest that apart from its foundational and theoretical merits, the proposed
bound may help in designing temporal correlations as well as the dynamics giving rise
to them. They may also have practical implications in the area of quantum cryptography,
as a possible generalization to existing encryption protocols that are based on LGI [6] or in
the field of quantum metrology, possibly assisting approaches such as [18] or in LGI-based
quantum computation assessment [29,30]. In addition, since there are known connections
between correlation matrices and both classical [31] and quantum [32] Fisher information,
the bounds derived in this manuscript can provide analogous bounds on elements of the
Fisher information matrix.

Finally, the work presented in this manuscript provides concrete and measurable
predictions; therefore, it can be verified in direct experiments. The system we provide as an
example in the Section 3 is equivalent to the system, which was experimentally measured
in [33], and the experimental results there are consistent with our bounds. In Appendix A,
we propose an additional definition for the correlations and derive appropriate LGI-like
bounds, which were not directly measured in previous experiments but can be either
calculated or measured, e.g., via weak measurements [34].
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Appendix A

In this section, we discuss two subjects—another correlation definition and the signifi-
cance of the underlying assumptions.

In principle, one can generalize the above results to the case of non-Hermitian quantum
mechanics [35]. By defining the correlation C(Qi, Qj) as the following complex correlation
coefficient [14,15],

C(Qi, Qj) =
〈QiQ†

j 〉 − 〈Qi〉〈Qj〉†

∆Qi ∆Qj

, (A1)

and the complex-valued LGI parameter as

L = |C(Q1, Q2) + C(Q2, Q3) + C(Q3, Q4)− C(Q1, Q4)|, (A2)

we obtain
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L ≤ 2

√
1 +

√
1−max {<2[C(Q1, Q3)],<2[C(Q4, Q2)]}(

L
2
√

2

)2
+

(
<[C(Q1, Q3)]

2
√

2

)2

+

(
<[C(Q4, Q2)]

2
√

2

)2

≤ 1,
(A3)

if C(Q2, Q3) = C(Q3, Q2) or [C(Q1, Q2) = C(Q2, Q1) & C(Q3, Q4) = C(Q4, Q3)]. The
proofs of these bounds are similar to the proofs of Theorems 1 and 3.

As mentioned in the Section 3, the analysis of this manuscript yields a tighter LGI
bound under the assumption of projective measurements with values ±1. We note that
under different assumptions, the LGI parameter can reach the algebraic bound of 4 [36].
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