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Abstract: In this article, quantum methods are used to study the optical properties of composite films
formed by AB-stacked bilayer graphene and chiral single-walled carbon nanotubes (SWCNT) (12, 6)
with a diameter of 1.2 nm. The analysis of optical properties is carried out on the basis of the results
of calculating the diagonal elements of complex optical conductivity tensor in the wavelength range
of 0.2–2 µm. Two cases of electromagnetic radiation polarization are considered: along the X axis
(along the graphene bilayer) and along the Y axis (along the nanotube axis). The calculations are
performed for three topological models (V1, V2, V3) of composite films, which differ in the width of
the graphene bilayer and in the value of the shift between graphene layers. It is found that in the case
of polarization along the X axis, the profile of the real part of optical conductivity in the region of
extremal and middle UV radiation is determined by SWCNT (12, 6), and in the region of near UV
and visible radiations, it is determined by bilayer graphene. In the case of polarization along the Y
axis, the profile of the real part of optical conductivity in the region of extremal, near UV, and visible
radiation is determined by SWCNT (12, 6), and in the region of the mid-UV range, it is determined by
bilayer graphene. Regularities in the change in the profile of the surface optical conductivity of bilayer
graphene-SWCNT (12,6) composite films under the action of stretching deformation along the Y axis
are revealed. For models V1 (width of the graphene nanoribbon is 0.5 nm, the shift between layers is
0.48 nm) and V2 (width of the graphene nanoribbon is 0.71 nm, the shift between layers is 0.27 nm),
the shift of the conductivity peaks in the region of extreme UV radiation along the wavelength to the
right is shown. For the model V3 (width of the graphene nanoribbon is 0.92 nm, the shift between
layers is 0.06 nm), the shift of the conductivity peaks to the right along the wavelength is observed
not only in the region of extreme UV radiation, but also in the region of visible radiation. It is
assumed that graphene-SWCNT (12,6) composite films with island topology are promising materials
for photodetectors in the UV-visible and near-IR ranges.

Keywords: optical conductivity; density-functional tight-binding method; hybrid carbon films;
bilayer graphene; single-walled carbon nanotubes; axial stretching; Kubo-Greenwood formula

1. Introduction

Composite nanostructures obtained by combining two-dimensional (2D) graphene
and one-dimensional (1D) carbon nanotubes (CNTs) have been widely discussed in sci-
entific publications over the past ten years [1–10]. Thanks to the capabilities of modern
synthesis technologies, graphene-CNT composite materials with different topologies have
been obtained in a real experiment [11]. There are three generally accepted topological
types of graphene-CNT composite structures: (1) composites with horizontally oriented
CNTs relative to the graphene sheet; (2) composites with vertically oriented CNTs relative to
the graphene sheet; (3) composites with CNTs wrapped in graphene sheets [12]. Graphene-
CNT composites of the first topological type are the most common objects of scientific
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research and applied development. For the synthesis of graphene-CNT composites, both
single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are used [10,11,13–15].
To create electronic devices, the choice of SWCNTs is preferable due to their higher spe-
cific surface area, lower defect density, and tuned electronic characteristics in accordance
with the chirality of nanotubes [16]. Synthesized ultrathin graphene-SWCNT compos-
ites, in which nanotubes and graphene are bonded by van der Waals forces [17,18] or
covalently [19–21], demonstrate an increase in mechanical, electrical, and optical properties
compared to individual carbon materials. The range of potential applications of graphene-
SWCNT composite structures is quite wide: they can be used as flexible and transparent
electrodes for batteries [22], diodes [23], transistors [24], sensors [25], as well as in vacuum
electronic devices [26]. The unique optoelectronic properties of graphene-SWCNT com-
posites make them promising materials for creating photodetecting devices and optical
sensors [14,27–29].

For the efficient use of graphene-SWCNT composites in nano- and optoelectronic de-
vices, it is important to be able to tune their properties. This is facilitated by understanding
the regularities of physical processes at the atomic level, including an understanding of
how topological features affect the physical properties of graphene-SWCNT composites.
This possibility is provided by computer simulation methods. For example, they have been
used to reveal the mechanisms of thermal and electrical conduction in graphene–SWCNT
composites [30,31]. Using nonequilibrium molecular dynamics, it has been shown that
inelastic phonon scattering plays a significant role in the thermal boundary conductivity
of composite structures based on graphene nanoribbons and horizontally oriented SWC-
NTs [30]. Using the DFT and nonequilibrium Green’s function methods, it was found
that the electrical conductivity of a graphene-nanotube composite structure [31], with one
armchair and two zigzag SWCNTs, increases due to the appearance of additional electronic
states at the Fermi level caused by graphene flakes. The density-functional tight-binding
(DFTB) modeling of graphene-SWCNT (8,8) and graphene-SWCNT (16,0) composites re-
vealed the determining role of structural deformations in the appearance of noticeable
shifts in the Raman scattering frequencies of SWCNTs and graphene in the composite
structure [32]. Regularities in the transport properties of graphene-SWCNT structures were
revealed depending on the type of CNT conductivity [33], the distance between CNTs [34],
and the distance between graphene and CNTs [35], the width and shape of the graphene
nanoribbon edge [36]. Wei and Zhang investigated the geometric features and electronic
properties of hybrid structures formed by the (8,0) CNT and graphene, having different
topology defects. Having considered nine different variants of seamless (8,0) CNT-graphene
connection and having carried out the Mulliken population analysis for them, the authors
found that the lost amount of the charge on the atoms of the tube were higher than that of
graphene atoms. It was predicted that the Mulliken charge transfer occurs between atoms
at the junction between the graphene and nanotube, which means that there are weak ionic
bonds between these atoms in addition to strong covalent bonds [37].

At the same time, the influence of topology on the optical properties of graphene-
SWCNT composite structures remains poorly understood. In addition, in the articles
mentioned above, calculations were performed for topological models of graphene-SWCNT
composites with non-chiral SWCNTs, while most synthesized SWCNTs are chiral nanotubes
with a diameter of ~1.2 nm [38]. In this paper, we conduct a quantum study of the optical
properties of graphene-SWCNT composite films with island topology, which are affected
by axial tensile strain.

2. Materials and Methods

Calculations of the atomic configuration of the studied graphene-SWCNT (12,6) com-
posite structures were carried out within the framework of the self-consistent-charge-DFTB
method (SCC-DFTB), implemented in the DFTB+ 20.2 software package [39]. The SCC-
DFTB model uses the valence approximation, according to which the largest contribution
to the total energy is made by valence orbitals described in terms of the basis of Slater-type
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orbitals. The tight-binding approximation is incorporated into the DFT model using pertur-
bation theory. The distribution of the electron charge density over atoms and, accordingly,
the excess/insufficient charge on atoms, is determined from the analysis of populations
according to the Mulliken scheme [40].

The choice of the SCC-DFTB method for our studies is explained by the following
reasons. The DFTB quantum method was first presented as an effective tool for describ-
ing carbon systems in 1995. Using the example of carbon clusters, fullerene molecules,
hydrocarbon compounds, and solid-state modifications of carbon, the reliability of the
DFTB method in calculating the geometric and energy characteristics of carbon materials
was proved in comparison with experimental data and ab initio calculation data [41,42].
More recently, the accuracy of the DFTB method has been further improved by adding
SCC corrections to account for charge transfer due to interatomic interactions [43]. At
present, the SCC-DFTB method is widely used to study the structural features of graphene
and carbon nanotubes, as well as composite materials based on them. In particular, this
method was previously used to calculate the energy of defect formation in the graphene
atomic network [44], to predict the formation mechanism of connections between vertical
carbon nanotubes and graphene sheets [45], and to determine the topological and energy
conditions for obtaining nanotubes from two parallel graphene nanoribbons [46]. In recent
years, some scientific papers have been devoted to the SCC-DFTB study of the structural,
vibrational, electronic, and transport properties of graphene-nanotube junctions [32–34,37].
In 2022, Jung et al. conducted a DFT and DFTB study of the mechanical deformation and
fracture of pristine graphene. Comparison of the results of DFT and DFTB calculations un-
der various loading conditions showed good agreement in terms of deformation and strain
stress behaviors [47]. Previously, the authors of this article successfully applied the SCC-
DFTB method to study the atomic and electronic structure of various graphene-nanotube
hybrid structures [48–50].

The optical properties of graphene-SWCNT composite structures were studied within
the framework of the theory of linear response of an electron population to an applied
external electromagnetic field [51]. According to this approach, the complex dynamic
electrical conductivity is defined as the coefficient σ(ω) = σ1(ω) + iσ2(ω) between the
Fourier components of the perturbing external field Eω and the electric current density jω
of the frequency ω (jω = σ(ω) · Eω).

In order to calculate the elements of the complex optical conductivity tensor σαβ, we
used the Kubo-Greenwood formula [52], which can be written as:

σαβ(ω) =
2e2

im2
e Scell

1
N→

k

Nk

∑
k∈BZ

∑
m,n

P̂nm
α (

→
k )·P̂mn

β (
→
k )

En(
→
k )− Em(

→
k ) + ! + iη

×
fβ[En(

→
k )− µ]− fβ[Em(

→
k )− µ]

En(
→
k )− Em(

→
k )

(1)

where me and e are the free-electron mass and electron charge; h̄ is the reduced Planck
constant; Scell is the area of the supercell of graphene-SWCNT composite structure; N→

k
is

the number of k-points needed to sample the Brillouin zone (BZ); P̂nm
α and P̂mn

β are the
matrix elements corresponding to the α- and β-components of the momentum operator

vector; En(
→
k ) and Em(

→
k ) are the subband energy for valence band and conductivity band;

fβ(x) = 1/(1 + exp [β(x− µ)]) is the Fermi-Dirac function of the chemical potential µ and
the inverse of thermal energy β = 1/kBT. The spin degeneracy is already considered in the
above equations by factor 2, η is a phenomenological parameter characterizing electron

scattering processes. In order to calculate the elements of the impulse matrix P̂nm
α (

→
k ), we

used known substitution P(
→
k )→ (me/})∇→

k
Ĥ(
→
k ) , where Ĥ(

→
k ) is the Hamiltonian. A

detailed description for the calculation of the matrix elements of the momentum operator
is given in the work [53]. The Hamiltonian was constructed using the SCC-DFTB method.

The derivation of Equation (1) is based on a microscopic consideration of electron
transitions under the action of an electric field in the first order of time perturbation theory.
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The starting point for its derivation is the Liouville–von Neumann equation for the density
matrix. The independent electron approximation and the adiabatic inclusion (infinitely
slow) of a perturbing external electric field are used. A detailed description of the derivation
of the Kubo-Greenwood formula is detailed in [51,54].

3. Results and Discussion

This study is carried out for three topological models of graphene-SWCNT composite
films. They are composite structures formed by AB-staked bilayer graphene and horizon-
tally oriented chiral SWCNTs (12,6) with a diameter of ~1.2 nm. Bilayer graphene is located
above the nanotube in a supercell, forming the so-called “islands” of increased carbon
density in the composite structure, which correspond to the experimental data [4]. These
models were selected based on the results of our previous study [50]. It was shown that the
considered topological models are thermodynamically stable at room temperature [50]. The
thermodynamic stability was estimated from the binding energy Eb, which was separately
calculated as the difference between the energy of the graphene/SWCNT hybrid structure
and the energy of bilayer graphene and SWCNT (12,6). The calculated value of Eb were
negative for all considered atomic models; therefore, the resulting atomic configurations
of supercells are energetically favorable. Furthermore, these models have demonstrated
promising electronic and transport properties [50].

The supercell of each model included fragments of bilayer graphene in the form of
zigzag nanoribbons. The width of the graphene nanoribbon was 0.5 nm (two hexagons) for
model V1, 0.71 nm (three hexagons) for model V2, and 0.92 nm (four hexagons) for model
V3. The graphene layers were shifted relative to each other in the direction of the armchair
edge (along the Y axis): the shift value was 0.48 nm for model V1, 0.27 nm for model
V2, and 0.06 nm for model V3. Translation vectors of supercells of topological models:
Lx = 1.71 nm and Ly = 1.13 nm for model V1; Lx = 1.70 nm and Ly = 1.11 nm for model V2,
Lx = 1.72 nm; and Ly = 1.13 nm for model V3. Equilibrium configurations of supercells
of the models V1, V2, and V3 are shown in Figure 1. This figure also shows expanded
fragments of each of the topological models obtained by multiple translation of supercells
in the direction of the X and Y axes.
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Figure 1. Supercells (left) and extended fragments (right) of composite films formed by bilayer
graphene and SWCNTs (12,6): (a) model V1; (b) model V2; (c) model V3. The blue box represents the
periodic box.

As noted in the introduction, our main task was to study the optical properties of
bilayer graphene-SWCNT (12,6) composite films with an island topology. The analysis of
optical properties was carried out on the basis of the results of calculating the complex
optical surface conductivity tensor σ in the wavelength range of 0.02–2 µm, i.e., in the
UV-, visible, and near-IR ranges. Since the object under study is a composite bilayer
graphene-SWCNT structure, it was interesting to establish what contribution each of
the carbon materials separately makes to the formation of the spectral profile of optical
conductivity. Figures 2–4 show the profiles of the real part of the diagonal elements of
the optical surface conductivity tensor for the considered topological models V1, V2, and
V3, respectively. They are the graphs of the real part of the complex conductivity σ that
were chosen for display, since it determines the optical transitions and absorption of the
energy of electromagnetic radiation. Two cases of electromagnetic radiation polarization
are considered: along the X axis (along the graphene bilayer) and along the Y axis (along
the nanotube axis). The presented graphs demonstrate that, depending on the direction of
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polarization of electromagnetic radiation, bilayer graphene and SWCNTs (12,6) exhibit their
optical properties in different ways in the bilayer graphene-SWCNT (12,6) composite film.
At the same time, attention is drawn to the similarity in the behavior of the characteristics
Re σxx and Re σyy between models V1 and V2. For these models, the following regularities
in the formation of the optical conductivity profile can be noted. In the case of polarization
of the electromagnetic radiation along the X axis, the Re σxx profile in the region of extreme
and middle UV radiation is due to the contribution of SWCNTs (12,6), and in the region
of near UV and visible radiation, it is due to the contribution of bilayer graphene. In
the region of near IR radiation, the influence of both graphene (in the wavelength range
0.8–1.1 µm) and SWCNT (12,6) (in the wavelength range of 1.1–1.6 µm) is manifested.
In the case of radiation polarization along the Y axis, the profile Re σyy in the region of
extreme and near UV radiation, as well as visible radiation, is due to the contribution
of SWCNT (12,6); in the region of the mid-UV range, it is due to bilayer graphene. In
the region of near IR radiation, the characteristic peak at a wavelength of 0.82 µm is
due to the contribution of SWCNTs (12,6), and within the interval 0.9–2 µm, it is due to
the contribution of graphene. Thus, it can be said that bilayer graphene and SWCNTs
(12,6) change places within the UV and visible ranges during the formation of the optical
conductivity profile of the bilayer graphene-SWCNT (12,6) composite, depending on the
polarization of electromagnetic radiation.

The patterns of the Re σxx and Re σyy profiles of the model V3 differ from those of the
models V1 and V2. These differences are especially noticeable when the electromagnetic
radiation is polarized along the X axis (along bilayer graphene). In this case, the influence
of bilayer graphene is more noticeable in the UV range, and the Re σxx profile completely
repeats the law of change of Re σxx for SWCNT (12,6) in the ranges of visible and IR
radiation. Multiple optical conductivity peaks in the visible range on the Re σxx graphs of
models V1 and V2 are absent in the case of model V3. When radiation is polarized along
the Y axis, the Re σyy graphs of all three models of graphene-SWCNT (12,6) composite
films have a certain similarity in the region of near UV, visible, and near IR radiation.
The difference of the model V3 in this case only lies in the appearance of an additional
conductivity peak in the extremal UV region at a wavelength of 0.08 µm, due to the
influence of graphene. The reasons for the above differences in the optical conductivity
profiles lie in the topological features of the models V1, V2, and V3. Let us consider them
using the extended fragments of atomic structure of graphene-SWCNT (12,6) composite
films shown in Figure 1. The atomic structure of extended fragments of composite films of
models V1 and V2 consists of many rows of graphene nanoribbons oriented at an angle
with respect to the SWCNT (12,6) surface. The atomic structure of an extended fragment
of model V3 is not represented by a set of graphene nanoribbons, but by two graphene
sheets with linear dimensions that differ little from each other. That is, when the width of
the bilayer graphene nanoribbon was four hexagons, the translated fragments of supercells
approached along the Y axis at a distance sufficient to form covalent bonds with each other.
The nanotube (12,6) in the composition of models V1, V2, and V3 is the same; therefore,
when the electromagnetic radiation is polarized along the Y axis, there is a similarity in
the graphs of Re σyy between all models Therefore, the orientation of the graphene bilayer
relative to the SWCNT (12,6) surface is the key factor in determining the spectral profile of
the optical surface conductivity of composite films.
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The regularities established by us for the influence of AB-stacked bilayer graphene
and SWCNTs (12,6) on the formation of the optical properties of bilayer graphene-SWCNTs
(12,6) composite films are indirectly confirmed by the results of other authors. The decisive
contribution of AB-stacked bilayer graphene to the optical conductivity of the bilayer
graphene-SWCNT (12,6) composite films in the region of near UV radiation is confirmed by
the calculation results of Wang et al. [55]. Using the Kubo formula to estimate the optical
conductivity, the authors showed that the AB-stacked bilayer graphene has a conductivity
peak at the same wavelength (~0.34 µm) as the AB-stacked bilayer graphene in bilayer
graphene-SWCNT (12,6) composite film. The decisive role of chiral SWCNTs (12,6) in the
formation of the spectral profile of the optical conductivity of bilayer graphene-SWCNT
(12,6) composite films in the region of mid-UV radiation is confirmed by the experimental
data of Mitin et al. [56]. According to the results of [56], SWCNTs with a diameter in the
range of 0.9–3 µm have a conductivity peak in the region of mid-UV radiation. In addition,
the peak of the optical conductivity of SWCNTs (12,6) (~7–9 conduction quantum) in the bi-
layer graphene-SWCNT (12,6) composite films when electromagnetic radiation is polarized
along the axis of the nanotubes is close to the experimentally measured value of the optical
conductivity of SWCNTs with a diameter of 1.2 nm (~7–8 conduction quantum) [57].

The next stage of the study was the identification of regularities in the change in the
profile of the optical surface conductivity of bilayer graphene-SWCNT (12,6) composite
films under the action of tensile deformation. It was important to evaluate how the
deformation affects the location of the optical conductivity peaks. Stretching along the X
axis was modeled; i.e., along the zigzag edge of the bilayer graphene nanoribbon in the
supercell. This variant of application of the tensile force is due to two reasons: (1) the
graphene bilayer has the shape of a nanoribbon as part of a supercell; (2) nanotube (12,6)
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and bilayer graphene interact through van der Waals forces. During the simulation, the
translation vector length Lx of the supercells of the models V1, V2, and V3 was increased by
1% at each deformation step. Then, the atomic structure of supercells was reoptimized in
order to find a new energy-stable configuration. Based on the results of the simulations, it
was found that the behavior of supercells of models V2 and V3 was similar in the course of
stretching: the initially curvilinear graphene bilayer straightens under the action of a load.
The graphene layers in the supercell of model V1 also showed a tendency to straighten
out as they were stretched. However, when stretched by 9%, the planar configuration of
the graphene layers is replaced by a wave-like one; the bilayer graphene-SWCNT (12,6)
composite structure passes into a new phase state. The described patterns of behavior
of supercells of models V1, V2, and V3 can be traced from Figure 5. For each model, the
strength limits of the atomic network are established: the breaking of covalent bonds for
models V1 and V2 occurs when stretched by 15%; for model V3, the breaking of covalent
bonds occurs when stretched by 12%.

Figure 6 shows the Re σxx graphs of the supercells of the topological models V1, V2,
and V3 under stretching by various percentages. The above-mentioned changes in the
atomic structure of supercells during axial stretching are also reflected in the behavior
of the optical conductivity of models V1, V2, and V3. In particular, the transition to a
new phase state of the supercell of model V1 upon stretching by 9% leads to the complete
disappearance of high-intensity conduction peaks within the visible radiation range and at
the very beginning of the near-IR radiation range. Before the onset of the phase transition,
only the intensity of the conduction peaks in the UV, visible, and near-IR radiation ranges
changed by 1–8% under stretching. For the model V2, the height of the conductivity peaks
changes with increasing stretching, and it increases at small strains and decreases at large
strains in all considered wavelength ranges. For the model V3, the height of the peaks
in the UV range only decreases, while in the near IR range it increases with increasing
deformation. For models V1 and V2, one can also note the shift of the conductivity peaks
in the region of extreme UV radiation along the wavelength to the right. For the model V3,
the shift of the conductivity peaks to the right along the wavelength is observed not only in
the region of extreme UV radiation, but also in the region of visible radiation.

The regularities of changes in the optical conductivity of bilayer graphene-SWCNT
(12,6) composite films established by us under uniaxial stretching were compared with
the results of calculations of the optical conductivity of monolayer graphene under uni-
axial stretching [58]. The comparison showed that both in our study and in the study of
Pereira et al., performed within the framework of the Kubo-Greenwood formalism, the
optical conductivity remains roughly constant in wavelength for the visible and IR radiation
ranges, but its magnitude depends on the value of the deformation. In addition, similarity
is also observed in the behavior of optical conductivity in the UV range between the bilayer
graphene-SWCNT (12,6) composite films and monolayer graphene: with increasing stretch,
the conductivity peaks shift along the wavelength to the right.

In general, analyzing the dependencies of Re σxx in Figure 6, it can be concluded that
the model V2 is the least sensitive to axial stretching. This model also demonstrates the
highest tensile strength among the considered models. It can be assumed that, along with
the orientation of the graphene bilayer with respect to the SWCNT surface, important
topological parameters in determining the optical conductivity of graphene-SWCNT (12,6)
composite films with island topology are the width of the graphene nanoribbon and the
shift of the graphene layers in the composition supercells.
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4. Conclusions

Thus, a predictive study of the optical properties of graphene-SWCNT composite
films with an island-type topology, including in the presence of axial tensile deformation,
was carried out in the article. For three topological models of composite 2D structures
formed by bilayer graphene and SWCNTs (12,6), regularities in the formation of the optical
surface conductivity profile in the UV, visible, and near-IR ranges were revealed. Quantum
calculations shows that bilayer graphene and SWCNTs (12,6) change roles within the UV
and visible ranges during the formation of the optical surface conductivity profile of the
graphene-SWCNT (12,6) composite, depending on the polarization of electromagnetic
radiation. Regularities in the change in the real part of the optical surface conductivity
profile of each model under axial stretching are revealed. For model V1 with a bilayer
graphene nanoribbon width of two hexagons, there is a complete disappearance of high-
intensity conduction peaks within the visible range and the near-IR range when stretched
by 9%. This is due to the transition of the composite structure to a new phase state, in which
graphene nanoribbons take on a wave-like shape. For models V2 and V3, as the stretching
increases, the height of the conductivity peaks changes in all considered wavelength ranges,
as well as their shift on the wavelength scale to the right. The least sensitive to axial
stretching is the model V2, with a bilayer graphene nanoribbon width of three hexagons in
the supercell. It can be assumed that graphene-SWCNT (12,6) composite films with island
topology are promising materials for photodetectors in the UV-visible and near-IR ranges.
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