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Abstract: In this work, we study the thermodynamics of a hybrid system based on the Da Providencia–
Schütte Hamiltonian. The model consists of bosons, i.e., photons in a cavity, interacting with an
ensemble of spins through a pseudo-Hermitian Hamiltonian. We compute the exact partition function
of the system, and from it, we derive the statistical properties of the system. Finally, we evaluate the
work that can be extracted from the system by performing an Otto cycle and discuss the advantages
of the proposed pseudo-Hermitian interaction.
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1. Introduction

Quantum thermodynamics [1,2] has emerged as a promising research field both from
a experimental [3–6] and from a theoretical perspective [7–14]. Statistical fluctuations in
single quantum systems satisfy new laws known as quantum fluctuation theorems. Some of
the fundamental questions have been addressed by Jarzynski and co-workers [7–10]. In [7],
an expression for the equilibrium free energy difference between two configurations of a
system, in terms of the work performed in parametrically switching from one configuration
to the other, is given. The work reported in [8] settles the statements of the second law
of thermodynamics through a generalization of the ones of Kelvin–Planck, Clausius, and
Carnot. The authors of [9] discuss the statistics of heat exchange between two classical
or quantum finite systems initially prepared at different temperatures. Many questions,
such as the role of entanglement and coherence, still remain open [15–19]. The answer to
these questions may lead to the development of quantum heat engines and refrigerators, as
well as simple descriptions of quantum many-body systems. Recently, the authors of [11]
present the First and Second Laws of Quantum Thermodynamics from a Microscopic
Definition of Entropy. In the same direction, the work presented in [12] addresses the
emergence of thermodynamic laws from quantum mechanics, from a viewpoint based on
the connection of quantum thermodynamics with the theory of open quantum systems.
In [13], the analysis of thermodynamic uncertainty principles has been conducted. The
authors of [17] have shown that the energetic contribution of the dynamics of coherence is
an essential topic to address for the consistency of the theory of quantum thermodynamics.
An increasing number of works are devoted to the design of quantum heat engines and
refrigerators. Among others, we can mention the heat machines whose working substance
performs an Otto cycle. Some examples have been presented in [16,17,20–23]. In [20], a
quantum Otto engine using two-interacting spins as its working medium is analyzed within
the framework of stochastic thermodynamics. The authors of [21] analyze the efficiency
of the quantum Otto cycle applied to a superconducting cavity. In [22], the statistic work
of a Fermi gas when a localized scattering potential is suddenly introduced in a Fermi
sea is analyzed. The authors of [23] investigate the particle–number dependence of some
features of the out-of-equilibrium dynamics of d-dimensional Fermi gases in the dilute
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regime. In [16], heat engines whose working substance are made of two coupled qubits
performing a generalized Otto cycle have been studied in connection with the properties of
coherence and entanglement.

Since the pioneering work of Bender [24,25] on Hamiltonians which obey Parity-Time
Reversal (PT)-symmetry, many works have been written, setting the basis of the dynamics
of non-Hermitian systems. The Hamiltonians which are invariant under PT-symmetry
belong to the class of pseudo-Hermitian Hamiltonians [26,27]. A Pseudo-Hermitian op-
erator is an operator which is similar to its adjoint. The spectrum of pseudo-Hermitian
Hamiltonians may contain complex conjugate pairs. In terms of the space of parameters of
the model, two dynamical phases can be distinguished. In one of the regions, the spectrum
is real (symmetry phase), and, in the other complex conjugate, pairs appear (phase with
broken symmetry). The border between both regions consists of Exceptional Points (EPs).
At these points, two or more eigenvalues and their corresponding eigenstates are coalescent.
Concerning the thermodynamics of this class of Hamiltonians, it has been proved that
the quantum Jarzynski equality [7] can be generalized to PT-symmetric quantum mechan-
ics with an unbroken phase [28]. The concept was extended to pseudo-Hermitian in the
symmetry phase in [29]. In a recent paper [30], some aspects of quantum thermodynam-
ics under the background of non-Hermitian quantum mechanics have been analyzed in
connection to a quantum harmonic oscillator.

In this work, we proposed to study the amount of work we can extract from an Otto
cycle when the working substance is a hybrid system composed of bosons and spins.
The system interacts through a Hamiltonian based on a generalization of Da Providencia–
Schütte Hamiltonian [31]. We have included an asymmetry parameter in the interaction to
account for the impurities that can be present in the system [32–34]. Thus, the interaction is
constructed as pseudo Hermitian. The study is focused on the influence of the asymmetry
parameter on the extracted work.

The work is organized as follows: In Section 2, we describe the model and the methods
we have employed. We review the fundamentals of pseudo-Hermicity and its application
to our model. In Section 3, we analyze the statistical properties of the system and the
efficiency of the Otto cycle, both as a heat machine and as a refrigerator. Conclusions are
drawn in Section 4.

2. Materials and Methods

The model of Da Providencia and Shütte [31] has been intensively studied in different
physical contexts. In particular, it is adequate to describe systems that exhibit condensate
phases [35–38]. In a recent experiment, [39], the generation of pairs of photons in a cavity
and electrons has been reported. The Hamiltonian model [31] can be written as

HDP =
1
2

ω f S0 + ωbb†b + g(S+b† + S−b), (1)

where b and b† are the annihilation and the creation boson operators associated with a
harmonic oscillator of energy ωb, respectively. The operators {S+, S−, S0} obey a su(2)
algebra, and they are used to model a two-level system of NS spins, ω f being the separation
in the energy of the levels. The coupling constant is denoted by g.

The Hamiltonian HDP is invariant with respect to the operator L̂ = b†b− S0. The
model exhibits two different phases. In the normal phase, the minimum value of energy is
an eigenstate of L̂ with eigenvalue zero, while, in the deformed phase, the ground state
corresponds to an eigenstate of L̂ with eigenvalue non-zero that is a condensate. When the
ground state corresponds to an eigenstate of L̂ with positive eigenvalue L, the ground state
is a boson condensate, while, with L < 0, we have a condensate of spins [31].
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The boson–fermion representation of the model and its behavior at finite temperature
have been discussed in [40,41]. In this work, we shall analyze the properties of a modified
pseudo-Hermitian Hamiltonian

H =
1
2

ω f S2
0 + ωbb†b + g(S+b† + αS−b), (2)

where α is a real parameter which we have introduced as an asymmetry in the interaction
between the spins and the bosons. It accounts for the impurities of the system. Similar
proposals can be found in [32–34]. The proposed Hamiltonian preserves the invariance
under L̂.

As a consequence of the pseudo-Hermicity of the Hamiltonian H, it exists an operator
τ positive defined such that H† τ = τ−1 H. The operator τ serves as a metric operator, and
we can define a vector space Φ with a new inner product 〈.|.〉τ .

Let us denote by {|φ̃n〉} the set of eigenstates of H, H | φ̃n〉 = Ẽn | φ̃n〉, and {|ψm〉}
those of H†, H† | ψm〉 = Em | ψm〉. It can be shown that {|φ̃n〉, |ψm〉} forms a complete
bi-orthogonal set

〈ψm | φ̃n〉 = δnm, En = Ẽ∗n. (3)

The operator τ can be constructed as

τ = ∑
m
|ψm〉〈ψm|, τ−1 = ∑

m
|φ̃m〉〈φ̃m|, (4)

so that |ψn〉 = τ|φ̃n〉, and |φ̃n〉 = τ−1|ψn〉, being

1 = ∑
ν

|φ̃n〉〈ψn|. (5)

The new inner product is given by

〈.|.〉τ : Φ×Φ→ C, 〈φ̃ν|φ̃ν′〉U = 〈φ̃νU|φ̃ν′〉. (6)

Another characteristic of the pseudo-Hermicity of the Hamiltonian H of Equation (2)
is that the corresponding spectrum is formed either by real or by complex conjugate pairs of
eigenvalues. In the model parameter space, the real spectrum corresponds to the symmetry
phase while the complex pair conjugate spectrum corresponds to the phase of broken
symmetry. The limiting points of these two dynamical phases are called Exceptional Points
(EPs). At these points, two or more eigenvalues and their corresponding eigenstates are
coalescent. For the Hamiltonian of Equation (2), the EP takes place for α < 0. From the
mathematical point of view, for α > 0, the spectrum of H is real and, for some value of
α < 0, complex pair conjugate eigenvalues are present.

The grand partition function at a temperature T can be obtained from the density
matrix ρ = e−β(H−µN), with β = (kBT)−1 and µ being the chemical potential as

Z = Trρ = ∑
n
〈φ̃n|ρ|φ̃n〉τ = ∑

n
〈φ̃n|τρ|φ̃n〉 = ∑

n
〈ψn|ρ|φ̃n〉τ . (7)

It has been proved in [29] that, when the eigenvalues of the Hamiltonian appear as complex
conjugate pairs, Z takes real values.

From Z , we can derive the thermodynamics of the system, i.e., we can compute the
entropy, S, the free energy, F, the internal energy, U, and the specific heat, C, as usual:

F = − 1
β

ln(Z) + µ〈N〉, U = −∂ lnZ
∂β

+ µ〈N〉,

S = − ∂F
∂T

∣∣∣∣
V,µ

, C =
∂U
∂T

∣∣∣∣
V,µ

, (8)
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We fix µ by imposing that 〈N〉 be equal to the number of spins, NS, of the system.
Let us briefly review the derivation of the exact grand partition function for the

Hamiltonian of Equation (2). For further details, the reader is kindly referred to [41].
We assume that the model space for the spins consists of two levels, each with degen-

eration 2Ω. Thus, in the grand canonical ensemble, the number of spins, NS, varies from
0 to 4Ω. The normalized state of l-bosons shall be denoted by | l〉.

We shall give the basis of the physical space in terms of the set the vectors

{| ε1k1, ε2k2, . . . , εnkn > ⊗ | l >}, (9)

εi is the index corresponding to levels, k represents substates, and i reads for the partition
with i particles and n is the particle number of the configuration. Thus, εi ∈ {1, 2}, ki ∈
{1, . . . , 2Ω + 1}, i ∈ {1, 2, . . . , n}, n ∈ {1, 2, . . . , 4Ω} and l ∈ {0, . . . , ∞}. The dimension of
the spin subspace 24Ω, while the bosonic subspace has an infinite dimension.

We aimed to decompose the spin subspace into invariant and irreducible subspaces.
The distribution of a given number of particles on two degenerate levels can be represented
by numbers ν1 and ν2, i.e., ν1 is the number of sublevels which are occupied by particles in
both the lower and the upper levels, ν2 is the number of sublevels which are unoccupied in
the lower and upper levels. The distribution of the particles on the 2τ sublevels determines
the quasispin S of the state, with 2τ = 2Ω− ν1− ν2. The number of particles in this configu-
ration is n = 2(τ + ν1). We shall call Γk1,k2,...,k2(τ+ν1)

the subspace of states with ν1 occupied-

and ν2 unoccupied-sublevels. The dimension is 22τ . They are (2Ω)!/((2τ)!ν1!ν2!) different
subspaces Γk1,k2,...,k2(τ+ν1)

. Each of these subspaces can be decomposed into irreducible ones
with multiplicities

gτ
k =

(2τ)!
k!(2τ − k)!

− (2τ)!
(k− 1)!(2τ − k + 1)!

.

The exact grand partition function can be written

Z(β) = ∑
τν1ν2

2Ω!
(2τ)!ν1!ν2! ∑

k
gτ

k ∑
L,m

exp
[
−β(Eτ−k

L,m − 2µ(τ + ν1))
]
. (10)

In writing Z(β), we have used the fact that the Hamiltonian of Equation (2) commutes
with the operator L̂. Thus, its eigenvalues can be given in terms of the eigenvalue L of L̂.

3. Results and Discussion

In this section, we shall present results for a system modeled by the Hamiltonian of
Equation (2).

As reported in [31], for α = 1, the spectrum depends on the values of the dimensionless

constant xDP = g
√

Ω/(ω f ωb). For values of xDP ≤ 1, the ground state is an eigenstate

of L̂ with eigenvalue L = 0, while for values of xDP > 1 the minimum value of the
energy of the spectrum of HDP corresponds to a state with L 6= 0. The corresponding
dimensionless constant for the pseudo-Hermitian Hamiltonian H of Equation (2) can be

set as x = g
√

Ω α/(ω f ωb). The same trend is true for the pseudo Hermitian Hamiltonian
H of Equation (2) in terms of x. That is, the minimum value of the energy in the normal
phase (x < 1) is achieved at the value L = 0, while in the deformed phase L 6= 0. For α < 0,
complex pair conjugate eigenvalues are present in the spectrum, and EPs occur for values
α < 0.

For simplicity, we shall take the Boltzmann constant as kB = 1, and we shall measure
the energy in units of √ω f ωb. We shall fix the number of spins to NS = 4, Ω = 2, and
ω f = ωb = 1.

As pointed out before, for values of α < 0, EPs are present. As an example, in Figure 1,
we plot the eigenvalues of H of Equation (2) as a function of α for x = 1 for two different
values of L.
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In Figures 2 and 3, we show the behavior of the entropy and the internal energy,
respectively. The curves correspond to different values of the dimensionless coupling
constant x. In Figure 2, from left to right, the values of x take the values 0.5, 1, 1.5, 2, 2.5, 3,
respectively. The same for Figure 3, but from the up to the down curve. Panels (a),
(b), (c), and (d), stand for values of the asymmetry parameter α = 1, 1.5, 0.5 and 0.1,
respectively. The curves of both entropy and internal energy are continuous as a function
of the temperature but displayed a pronounced change in the slope at low temperatures,
this is the signature of a second-order phase transition as a function of the temperature.
This transition occurs to greater values of T as α increases.

In Figures 4 and 5, we have displayed the behavior of the temperature and the internal
energy, as a function of the dimensionless parameter x, at constant values of the entropy.
The entropy S takes the values 2 to 8, in steps of one, in increasing order from the down
curve to the up curve. As in the previous figures, panels (a), (b), (c), and (d), stand for
values of the asymmetry parameter α = 1, 1.5, 0.5, and 0.1, respectively. As can be inferred
from Figure 4, the temperature remains almost constant along the adiabatic up to values of
x = 1. The same is true for the internal energy displayed in Figure 5. As α tends to zero,
both temperature and entropy remain constant along the adiabatic.

In Figures 6 and 7, we show the behavior of the entropy and the internal energy,
respectively. The curves correspond to different values of the dimensionless coupling
constant x. In Figures 6 and 7, from the up to the down curve, the values of x take the
values 0.5, 1, 1.5, and 2, respectively. Panels (a), (b), (c), and (d) stand for values of the
asymmetry parameter α = −1.25, − 1.0, − 0.75, and −0.362, respectively. As seen in
Figure 1, at the value α = −0.362, the system shows a EP for x = 1. Though the partition
function is real [8,29], the behavior of entropy and the internal energy, for large values of x,
may show anomalies at low temperatures. This is because we are working with an effective
interaction that takes into account the effect of the environment, and not with the whole
system [42–44].

Figure 1. The behavior of the eigenvalues of H of Equation (2) are displayed as a function of α. The
diagonalization was performed for a system with Ns = 4, Ω = 2 and x = 1. Panels (a,b) correspond
to values of L = 2, and (c,d) to values of L = 100. We plot the real part of the eigenvalues in (a,c), and
the imaginary part in (b,d).
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Figure 2. The behavior of the entropy is displayed as a function of the temperature. The curves
correspond to different values of the a-dimensional coupling constant x. From left to right, the values
of x take the values 0.5, 1, 1.5, 2, 2.5, and 3, respectively. (a–d) stand for values of the asymmetry
parameter α = 1, 1.5, 0.5, and 0.1, respectively.

Figure 3. The results that we have obtained for the internal energy as a function of the temperature
are presented in this figure. The curves correspond to different values of the dimensionless coupling
constant x, from the up to the down curve x takes the values 0.5, 1, 1.5, 2, 2.5, 3 respectively. (a–d)
stand for values of the asymmetry parameter α = 1, 1.5, 0.5, and 0.1, respectively.



Quantum Rep. 2022, 4 595

Figure 4. This figure shows the behavior of the temperature, as a function of the dimensionless
parameter x, at constant values of the entropy. The entropy S takes the values 2 to 8, in steps of one,
in increasing order from the down curve to the up curve. As in the previous figures, (a–d) stand for
values of the asymmetry parameter α = 1, 1.5, 0.5, and 0.1, respectively.

Figure 5. The behavior of the internal energy as a function of the dimensionless parameter x, at
constant values of the entropy, is presented. The entropy S takes the values 2 to 8, in steps of one, in
increasing order from the down curve to the up curve. As in the previous figures, (a–d) stand for
values of the asymmetry parameter α = 1, 1.5, 0.5 and 0.1, respectively.

The different thermodynamical quantities are depicted for negative values of the
asymmetry parameter α in Figures 6–13.
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Figure 6. The behavior of the entropy is displayed as a function of the temperature. The curves
correspond to different values of the dimensionless coupling constant x. From left to right, the values
of x take the values 0.5, 1, 1.5, and 2, respectively. (a–d) stand for values of the asymmetry parameter
α = −1.25, − 1.0, − 0.75, and −0.362, respectively.

Figure 7. The results that we have obtained for the internal energy as a function of the temperature
are presented in this Figure. The curves correspond to different values of the dimensionless coupling
constant x, from the up to the down curve x takes the values 0.5, 1, 1.5, and 2, respectively. (a–d),
stand for values of the asymmetry parameterα = −1.25, − 1.0, − 0.75, and −0.362, respectively.
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Figure 8. This figure shows the behavior of the temperature, as a function of the dimensionless
parameter x, at constant values of the entropy. The entropy S takes the values 2 to 8, in steps of one,
in increasing order from the down curve to the up curve. As in the previous figures, (a–d) stand for
values of the asymmetry parameter α = −1.25, − 1.0, − 0.75, and −0.362, respectively.

Figure 9. The behavior of the internal energy as a function of the dimensionless parameter x, at
constant values of the entropy, is presented. The entropy S takes the values 2 to 8, in steps of one, in
increasing order from the down curve to the up curve. As in the previous figures, (a–d) stand for
values of the asymmetry parameter α = −1.25, −1.0, −0.75, and −0.362, respectively.
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Figure 10. The mean value of L̂ as a function of the temperature are displayed. The curves correspond
to different values of the dimensionless coupling constant x, from the up to the down curve x takes
the values 0.5, 1, 1.5, and 2, respectively. (a–d) stand for values of the asymmetry parameter
α = −1.25, − 1.0, − 0.75, and −0.362, respectively.

Figure 11. We displayed the general Otto cycle we have considered.
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Figure 12. The maximum efficiency for the Otto cycle that works among two adiabatic curves, s1 < s2,
is displayed in Figure for α = 0.1, 0.5, 1, and 1.5.

Figure 13. The maximum efficiency as a refrigerator of the Otto cycle that works among two adiabatic
curves, s1 < s2, is displayed in the figure for the asymmetry parameter α = 0.1, 0.5, 1, and 1.5.
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In Figures 8 and 9, we have displayed the behavior of the temperature and the internal
energy, as a function of the dimensionless parameter x, at constant values of the entropy.
The entropy S takes the values 2 to 8, in steps of one, in increasing order from the down
curve to the up curve. As in the previous figures, panels (a), (b), (c), and (d), stand for
values of the asymmetry parameter α = −1.25, − 1.0, − 0.75, and −0.362, respectively.
The curves of the temperature and the internal energy show a softer variation with the
coupling constants as compared with the corresponding results (Figures 4 and 5) for α > 0.

The mean value of L̂ as a function of the temperature is depicted in Figure 10. The
curves correspond to different values of the dimensionless coupling constant x. From the
up to the down curve, x takes the values 0.5, 1, 1.5, and 2, respectively. Panels (a), (b),
(c), and (d) stand for values of the asymmetry parameter α = −1.25, − 1.0, − 0.75, and
−0.362, respectively. As can be observed from the figure, for the larger values of |α| at low
temperatures, L takes negative values (condensate of spins). The mean value of L̂ increases
with T.

From the previous results, it can be inferred that, in the computation of the partition
function and of the thermodynamical properties derived from it, the effect of the presence
of EPs is not significant. At a given α, the partition function is the trace of the density matrix
over all the possible configurations of the system. For the present model, for large values of
L, the EPs concentrate near values of α tending to zero. However, as seen from Figure 10,
the mean values of L̂ are not larger than 10, even at high temperatures. The presence of
the EPs should be relevant to other physical quantities, i.e., the survival probability in the
study of the thermal evolution of an adequate initial state.

To complete the analysis of the system, we shall study the work that can be extracted
from the hybrid system after an Otto cycle is performed. In Figure 11, we have drawn an
Otto cycle. We performed work on the system from A→ B along the adiabatic s2, heat is
released from B→ C, the system performs work from C → D along the adiabatic s1, and
heat is absorbed from D → A to return to the initial state. The coefficient of efficiency is
defined as usual as the ratio of the absolute value of the net work conducted by the system
to the heat absorbed (in our convention, the work conducted on the system is positive,
and the one the system performs is negative, the same for the heat absorbed and the heat
released), which is

e =
QBC + QDA

QDA
, (11)

where we have taken into account the fact that the internal energy is conserved after
performing a cycle, ∆U = QBC + QDA + WAB + WDA = 0.

If the cycle is completed in the reverse direction, the system behaves as a refrigerator,
with the efficiency given by

er =
QDA

QBC + QDA
. (12)

In Figure 12, it is shown that the maximum value of the efficiency of the Otto cycle that
works among two adiabatic curves, s1 < s2 for α = 0.1, 0.5, 1, and 1.5. The maximum values
for the coefficient of efficiency are obtained by increasing the asymmetry parameter α.

The efficiency as a refrigerator of the inverse Otto cycle is presented in Figure 13, for
values of α = 0.1, 0.5, 1.0, and 1.5, respectively. The maximum values for the coefficient of
efficiency are obtained by decreasing the asymmetry parameter α.

The parameter α regulates the asymmetry between the pair creation and the pair
destruction of a boson and a spin. For values of α > 1, the interaction favors the destruction
of pairs, and the system is efficient in working as a heat machine. On the other hand, for
values of α < 1, the interaction favors the production of pairs, and the system is efficient in
working as a refrigerator.
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For the sake of completeness, in Figure 14, we present results for the maximum
efficiency of the Otto cycle that works among two adiabatic curves, s1 < s2, for negative
asymmetry parameter α = − 0.362 and α = 1.25.

Figure 14. The maximum efficiency e, Equation (11) and er, of Equation (12), of the Otto cycle that
works among two adiabatic curves, s1 < s2, is displayed in this figure for the asymmetry parameter
α = −0.362 and α = −1.25.

As α → 0, the net work conducted on the system approaches zero, |∆W| → 0, the
same is true for the balance between the heat extracted and absorbed, |∆Q| → 0. Thus, as
α→ 0, the efficiency as a heat machine is zero, but the efficiency as refrigerators becomes
considerably large. This mechanism may serve as a way for cooling a hybrid system as the
one of [39].

4. Conclusions

In this work, we have modified the model of Da Providencia and Schüte [31] by
introducing an asymmetry factor in the interaction among the bosons and the spins. This
asymmetry serves to take into account the imperfections of the environment, similar
approaches have been used [32–34]. We have computed the exact partition function
and from it the general thermodynamical properties of the hybrid system. The system
undergoes a second-order phase transition as a function of the temperature, for different
values of α. We have studied both the symmetry, α > 0, and the broken symmetry
dynamical phase, α < 0.

We have presented results concerning the thermodynamical properties of the system
in its broken symmetry phase. We observed that the presence of EPs does not have a signif-
icant effect on the partition function because, at a fixed α, all the possible configurations
contribute to the trace of the temperature-dependent density matrix. Nevertheless, the
presence of EPs may be relevant in analyzing other physical aspects of the problem, i.e., the
temperature evolution of a particular initial state. At large values of the coupling constant
and |α|, though the partition function takes real values, anomalies in the thermodynamical
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quantities can appear since we are working with an effective interaction which takes into
account the effects of the environment, we are not working with the whole system [42–44].

For positive values of α, as the asymmetry parameter is increased, the critical tempera-
ture, for different values of the dimensionless coupling constant x, takes higher values. At
constant entropy, both the internal energy and the temperature remain almost unchanged
for values of x ≤ 1. We performed an Otto cycle with this hybrid system as the working
substance. The maximum values of the coefficient of efficiency are achieved by increasing
α; on the contrary, the maximum values for the efficiency of the system working as a re-
frigerator are obtained by decreasing the values of α. As pointed out before, the parameter
α regulates the asymmetry between the pair creation and the pair destruction of a boson
and a spin of the proposed interaction. For values of α > 1, the interaction favors the
destruction of pairs, and the system is efficient in working as a heat machine. On the other
hand, for values of α < 1, the interaction favors the production of pairs, and the system
is efficient in working as a refrigerator. The introduction of an asymmetry factor, in the
case α < 1, allows for obtaining a very large efficiency of the system as a refrigerator. As
α → 0, the net work completed on the system approaches zero, and the same is true for
the balance between the heat extracted and absorbed. Thus, as α→ 0, the efficiency as a
heat machine is zero, but the efficiency as refrigerators becomes considerably large. This
mechanism may serve as a way for cooling a hybrid system.

Work is in progress concerning the temperature-dependent evolution of a given initial
state in the vicinity of EPs.
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