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Abstract: We present an informational study of a spherically confined hydrogen atom, a hydrogenic
ion confined in a strongly coupled plasma, a spherically confined harmonic oscillator, and a particle
confined in a cage. For this, we have implemented a numerical procedure to obtain information
entropies of these confined quantum systems. The procedure is based on the variational formalism
that uses the finite element method (FEM) for the expansion of the wavefunction in terms of local base
functions. Such a study is carried out in order to analyze what happens in the rigorous confinement
regime. In particular, we have shown that the effects of the interaction potential is no longer important
for rigorous confinements and the studied systems start to behave just like an electron confined by
a impenetrable spherical cage. When possible, we compared our results with those published in
the literature.

Keywords: Shannon entropy; confined quantum systems; finite element method

1. Introduction

The study of confined quantum systems is a field that examines the spatial limitation
effects on the physical properties of the electrons, nuclei, atoms, or molecules. The literature
contains several theoretical and experimental works indicating that the spatial confinement
changes the physical and chemical properties of the systems [1–3]. For instance, when the
hydrogen atom is confined by impenetrable walls the energy spectrum is altered; moreover,
in confined environments some alkali metals present electronic configurations similar to
those of transition metals [4,5]. In recent years, with the increases in computational capac-
ity and the development of modern techniques, this question has received considerable
attention [6–10].

In the Schrödinger equation that describes the confined system, we can use a model
potential that has both nuclear and confinement potential properties [11]. The choice of the
potential model depends on the physical system of interest and of the characteristics of the
confinement [12–16]. For instance, we can use infinite potential barriers models [17,18] or
soft barriers models [19,20].

In particular, strong or rigorous confinement region includes interesting details such as:
(a) it has a highly concentrated probability density when compared to the weakly confined
regions; (b) the kinetic energy of electrons is large in contrast to their potential energy;
and (c) the influence of the confinement barrier becomes greater than the free system
potential [21–24]. The rigorous confinement region is established when the confinement
radius of the system goes to zero. Energy studies based on ionization energy have been
successfully undertaken in mapping this specific region [25–27].

In the atomic, molecular and chemical-physical context we define the informational
entropies (or Shannon entropy) on position, Sr; on momentum, Sp; spaces; and the en-
tropy sum, St, by adding Sr and Sp [28,29]. These informational quantities have been
utilized in the study of various confined quantum systems such as the confined hydrogen-
like atoms [30–35], the confined He-like atoms [36,37], plasma environments [38,39], and
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in many other systems [40–42]. Analysis of basis functions [29,43] and electronic cor-
relation [36,44,45], as well as physical and chemical phenomena [46–49] are also being
approached in the informational field.

Despite of the energy analysis, the information entropies have been used as a powerful
tool to study the regions where the effects of confinement are extreme. According to previ-
ous studies using entropic quantities, we have that the influence of the one-dimensional
harmonic [50] and Coulomb [29] potentials is practically nullified by the presence of strong
confinement. Moreover, in this specific region of the system (where the confinement radius
tends to zero) the effects of Coulomb correlation in confined helium-like atoms become
negligible [36].

The main goal of this work is to analyze how information entropy can contribute
to the understanding of the strong confinement regime. For this, we have determined
entropic quantities of interest for the spherically confined hydrogen atom, the hydrogenic
ion confined in a strongly coupled plasma, and the spherically confined harmonic oscillator
and compare them with the results of a particle confined in a cage.

This paper is organized as follows: in Section 2 we present the physical systems of
interest, the numerical procedures based on the variational formalism using the finite
element method, and beyond the informational formalism adopted; in Section 3 we dis-
cuss the results obtained; and, finally, in Section 4 we summarize the central aspects of
our investigation.

2. Theoretical Background

In this section, we present the concepts and methods applied in our research. In
Section 2.1, we discuss the physical systems and the variational formulation of the problem.
Moreover, in Section 2.2, we define the informational quantities of interest.

2.1. System of Interest

The radial Schrödinger equation, using atomic units, is given by[
− 1

2r2
d
dr

r2 d
dr

+
l(l + 1)

2r2 + V(r)− Enl

]
ϕnl(r) = 0 , (1)

where ϕnl(r) is the radial wavefunction solution, Enl the energy of the stationary state,
and V(r) the potential model. The labels n and l refer to the main and angular quantum
numbers, respectively. The total wavefunction solution for a particular (n, l, m) quantum
numbers is given by

ψnlm(~r) = ϕnl(r) Ylm(Ω) , (2)

where Ylm(Ω) is the correspondent spherical harmonic and Ω is the solid angled.
Here, we consider four different model potentials of the type infinite spherical barrier

to confine an electron. For models that contain an atomic nucleus, it is located at the center
of the hard sphere. Our starting point is the potential that describes a particle (electron)
confined in a spherical cage, that is,

V1(r) =
{

0 , 0 < r < rc
∞ , r ≥ rc

, (3)

where rc is the confinement radius. For the r range of values between 0 < r < rc the particle
is free of potential and at the confinement frontier the value of the potential is infinite.

Following, we have the Coulomb potential model of confined hydrogenic-like atoms,

V2(r) =
{
− Z

r , 0 < r < rc
∞ , r ≥ rc

, (4)
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where Z is the nuclear charge. We also consider an electron under influence of the isotropic
harmonic potential, given by,

V3(r) =
{ 1

2 ω2r2 , 0 < r < rc
∞ , r ≥ rc

, (5)

where ω is the angular frequency.
Finally, we selected to study one electron in a plasmatic environment of the sphere

model. For strongly coupled plasma surrounding an ion having a single valence electron,
one can define a sphere of radius rc such that the plasma electrons with density γ is
sufficient to neutralize (Z− 1) of central positive charge:

rc =

[
Z− 1

4πγ/3

] 1
3

.

Under this condition the interaction potential energy of the electron with an ion is

V4(r) =

 − Z
r + (Z−1)

2rc

[
3−

(
r
rc

)2
]

and r < rc

∞ and r ≥ rc

. (6)

To solve the radial Schrödinger Equation (1) with the potentials (3), (4), (5), or (6) by
using the variational principle, for a given angular moment l, it corresponds to find the
results that agree with the extreme condition of the energy functional, δJl [χnl ] = 0, where
the function χnl(r) = rϕnl(r) must vanish at the origin and at the surface of a sphere of
radius r = rc due to confinement (boundary conditions).

In variational context, the radial wavefunctions and energy eigenvalues are found by
expanding the function χnl in terms of a finite basis set { f j}, that is,

χnl(r) =
p

∑
j=1

cj f j(r), (7)

where {cj} are the coefficients of the expansion. The efficiency of the numerical calculation
depends on the choice of the finite basis set. The variational solutions are obtained by
solving the generalized eigenvalue eigenvector problem

Hlc = EOc , (8)

where c is the vector of the expansion coefficients {cj}, being

{Hl}ij =
∫ rc

0
dr
{

1
2

d f ∗i (r)
dr

d f j(r)
dr

+ f ∗i (r)V
e f
l (r) f j(r)

}
(9)

and
{O}ij =

∫ rc

0
dr f ∗i (r) f j(r) , (10)

where the effective potential is written as Ve f
l (r) = V(r) + l(l + 1)/2r2.

The variational methodology that we use to solve the problem is the p-version of the
finite element method (p-FEM). In the radial case, the p-FEM consist of dividing the range
of integration [0, rc] into Ne elements, being the i-th element defined in the range of ri−1
up to ri with r0 = 0 and rNe = rc, and the radial wavefunction is expanded in local base
functions { f i

j } satisfying the following property:

f i
j (r) = 0 if r /∈ [ri−1, ri] , (11)
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where f i
j (r) is the j-th polynomial associated with i-th element and is its highest order

given by the parameter ki. Thus, considering the properties (11), the matrix representation
of any local operator assumes a block tridiagonal form and the spatial confinement on the
radial wavefunction can be imposed easily just removing the basis function f Ne

ki
(r) of the

expansion. For more details, see references [11,51,52].

2.2. Shannon Informational Entropy

The Shannon information entropy in the atomic, molecular, and chemical physics con-
text can be defined in terms of quantum-mechanical wavefunction. Therefore, information
entropies on position, Sr, and momentum, Sp, spaces, in atomic units, are recognized as [29]

Sr = −
∫

d~r |ψnlm(~r)|2 ln
[
|ψnlm(~r)|2

]
(12)

and
Sp = −

∫
d~p |ψ̃nlm(~p)|

2 ln
[
|ψ̃nlm(~p)|

2
]

, (13)

where ψnlm(~r) and ψ̃nlm(~p) are the total position and momentum space wavefunction,
respectively. Detailed discussions of the dimensionality of expressions (12) and (13) can be
found in Refs. [29,53].

Using the variable separation method the wavefunctions can be written as

ψnlm(~r) = ϕnl(r) Ylm(Ω) and ψ̃nlm(~p) = ϕ̃nl(p) Ylm(Ω) , (14)

where Ylm are the spherical harmonics and Ω is the solid angled. Furthermore, the relation-
ship between ϕ̃nl(p) and ϕnl(r) is given by [54]

ϕ̃nl(p) =
∫ rc

0
r2 jl(pr)ϕnl(r)dr , (15)

being jl the spherical Bessel function. Employing the expressions (14) in Equations (12) and (13)
we separate the Sr and Sp entropies into two parts, that is [55],

Sr = Sϕ + SΩ (16)

and
Sp = Sϕ̃ + SΩ . (17)

The radial parts Sϕ and Sϕ̃ that depends on the potential function are

Sϕ = −
∫ rc

0
dr r2|ϕnl(r)|2 ln

[
|ϕnl(r)|2

]
, (18)

and
Sϕ̃ = −

∫ ∞

0
dp p2|ϕ̃nl(p)|2 ln

[
|ϕ̃nl(p)|2

]
. (19)

The angular contribution known as angular entropy (common for Sr and Sp) is
given by

SΩ = −
∫

Ω
dΩ |Ylm(Ω)|2 ln

[
|Ylm(Ω)|2

]
. (20)

The SΩ quantity is independent of the potential and has a closed form determined by

SΩ = − log
(
(2l + 1)(l −m)!

4π(l + m)!

)
−
(
(2l + 1)(l −m)!

2(l + m)!

) ∫ 1

−1
[Pm

l (t)]2ln[Pm
l (t)]2dt , (21)

where Pm
l is the Legendre function.

The St quantity is obtained from entropy sum of Sr + Sp. From the entropy sum we
can still derive the following entropy uncertainty relation:
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St = Sr + Sp

= −
∫ rc

0

∫ ∞

0
dr dp r2 p2 |ϕnl(r)|2 |ϕ̃nl(p)|2 ln

(
|ϕnl(r)|2 |ϕ̃nl(p)|2

)
+ 2 SΩ (22)

≥ 3 (1 + ln π) .

This entropy uncertainty relationship is also known as the BBM inequality relation [56],
which it is a common theorem for any quantum system. From expression (23) we can obtain
Kennard’s uncertainty relationship as discussed in Ref. [56].

3. Results and Discussions

This section presents the data obtained respective analysis of Shannon entropies, in
atomic units, for a particle confined in a spherical cage (Equation (3)), the confined hydrogen
atom (Equation (4) with Z = 1), spherically confined harmonic oscillator (Equation (5)
with ω = 1), and hydrogenic ion confined in a strongly coupled plasma (Equation (6)
with Z = 2). For this, we have implemented the procedure based on the theory presented
previously using the computer language Fortran. Unless stated otherwise, all curves were
fitted with cubic spline interpolation utilizing the free application SciDAVis. Particularly,
for the hydrogen atom, our computational implementation obtained values equivalent to
accurate results existing in the literature [33].

The difference, ∆Sr, between the values of position space entropy of each of the three
systems and that of the particle confined in a cage, calculated by Equation (16), as function
of confinement radius, rc, on a logarithmic scale, are shown in Figure 1a–c, for the confined
hydrogen atom, the confined ion in a strongly coupled plasma, and the spherically confined
harmonic oscillator, respectively. We plot all states with principal quantum numbers
1 ≤ n ≤ 5 and 0 ≤ l ≤ 4. The first observation is that for the three systems the quantities
∆Sr tend to zero when the confinement radius decreases, indicating that in a rigorous
confinement regime the position entropy of the systems tends to behave like that of a
particle confined in a cage. The second observation is that, in general, the more excited
the state, the faster ∆Sr moves towards zero. This is in agreement with our intuition that
since the more excited states are less influenced by the interaction potential, they tend more
quickly towards the behavior of a particle in a spherical cage.

Particularly, it can be seen that the behavior of the entropy difference of the hydrogen
confined and the ion-sphere are very similar. By zooming the graph in the region of small
radii (Figure 1a,b), it is visible that the 1s state is less influenced by confinement when
compared to the others states. In turn, by zooming in on the graph (Figure 1c), it can be
seen that the values of the position space entropy difference of the harmonic oscillator tend
to zero for larger values of rc than the others systems.

It is also remarkable that some regions of rc have states with positive entropy differ-
ences. This is counterintuitive since the position Shannon entropy indicates the delocaliza-
tion of density. Considering that one of the systems has an attractive potential, our intuition
is that the density of this system would always be less spread out than that of the particle in
a cage. The states that present ∆Sr > 0 are 2s, 3s, 4s, 5s, 3p, 4p, 5p, and 5d, for the confined
hydrogen and the ion-sphere; and, in the case of the harmonic oscillator, the states 4d and
5 f are added.

In Figure 2a–c are shown the difference, ∆Sp, between the values of momentum space
entropy of each of the three systems and that of the particle confined in a spherical cage,
calculated from Equation (17), as function of rc on a logarithmic scale, for the confined
hydrogen atom, the confined ion in a strongly coupled plasma and the spherically confined
harmonic oscillator, respectively. We have displayed in Figure all states with principal
quantum numbers 1 ≤ n ≤ 5 and 0 ≤ l ≤ 4. We observe similar behavior to that of
position space entropy when the confinement radius tends to zero, decreasing its amplitude
gradually to zero. This confirms that the interaction potential is no longer important
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for rigorous confinements and the system starts to behave like an electron confined in a
spherical cage.
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Figure 1. Values of ∆Sr in different quantum states as a function of rc on a logarithmic scale for the
(a) hydrogen confined, (b) ion-sphere, and (c) confined harmonic oscillator.

In the case of moment space entropy, the comparison between states and systems
is quite similar to the one made for position space entropy. The sign change behavior
of the entropy difference in some regions of rc is also noticed for the hydrogen confined
and the ion-sphere systems. In particular, the entropy difference of some states seems to
oscillate more prominently when compared to the position space ones. The states that
present ∆Sp < 0 are 2s, 3s, 4s, 5s, 4p, and 5p and 5d, for the confined hydrogen and the
ion-sphere, respectively; and, in the case of the harmonic oscillator, there are no regions
with sign change.
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Figure 2. Values of ∆Sp in different quantum states as a function of rc on a logarithmic scale for the
(a) hydrogen confined, (b) ion-sphere, and (c) confined harmonic oscillator.

Now, we analyze the difference, ∆St, between the values of entropy sum of each of
the three systems and that of the particle confined in a cage, calculated by Equation (23),
as function of confinement radius, rc. Specifically, ∆St for states with 1 ≤ n ≤ 5 and
0 ≤ l ≤ 4 are shown in Figure 3a–c for the confined hydrogen atom, the confined ion in
a strongly coupled plasma and the spherically confined harmonic oscillator, respectively.
Again we observe that all ∆St, for the three systems, tend to zero when the confinement
radius decreases. This indicates that in a rigorous confinement regime the entropy sum
tends to behave like that of a particle confined in a spherical cage.

However, a different behavior of ∆St can be noticed when compared with ∆Sr and
∆Sp for intermediate and large values of rc. In the entropy sum case, the values of ∆St
converge asymptotically to constant values. For the ∆Sr and ∆Sp quantities, the values
increase (positively or negatively) due to the behavior of Sr and Sp for an electron confined
in a spherical cage (see discussion at the end of this section).
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Figure 3. Values of ∆St in different quantum states as a function of rc on a logarithmic scale for the
(a) hydrogen confined, (b) ion-sphere, and (c) confined harmonic oscillator.

Note that a particular state of a given system with ∆St > 0 (∆St < 0) has a larger
(smaller) entropy sum than the same state for a particle confined in a cage for a given
radius of confinement. That is, several states of the three systems under study have a
lower entropy sum when free (rc >> 1) than when subjected to strong confinement. For
intermediate values of rc we can observe oscillations in ∆St, confirming that confinement
affects the position and momentum spaces differently.

The strong or rigorous confinement regime can be defined when the influence of
the confining potential becomes greater than the free atomic system potential to spe-
cific configurations (or rc values). Based on the entropy sum, St, of the ground state
Nascimento et al. [36] defined three regions for confined atomic systems. The intermediate
region is formed by rc values that limit the half well depth in the ground state St versus rc
curve. The half well depth is given by

σ =
St(rc → ∞)− St(rmin

c )

2
, (23)
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where St values are calculated in rc tending to infinity and in rmin
c (rc value where St assumes

a minimal value). The strong and weak confinement correspond to the regions where are
dominant the confinement (rc → 0) or Coulombian (rc → ∞) potentials, respectively. In
Table 1, we determine the three regions from each of the three examined systems.

Table 1. Confinement regions for the hydrogen confined (HC), ion-sphere (IS), and confined harmonic
oscillator (HO).

σ Strong Intermediate Weak

HC 0.040 rc < 1.17 1.17 ≤ rc ≤ 4.51 rc > 4.51
IS 0.035 rc < 0.56 0.56 ≤ rc ≤ 2.36 rc > 2.36

HO 0.000 rc < 2.00 † – –
† Obtained from Figure 4.

ΔS
r

-1.5

-1

-0.5

0

rc(a.u.)
0 0.5 1 1.5 2

HC
IS
HO

Figure 4. Values of ∆Sr in ground state as a function of rc for the hydrogen confined (HC), ion-sphere
(IS), and confined harmonic oscillator (HO). The vertical lines delimit the region of strong confinement
for each system.

Note in Table 1 that the strong confinement region is smaller in the ion-sphere model
than in the confined hydrogen atom. This indicates that, with respect to the confinement
radius, the interaction potential of a hydrogen ion in a strongly coupled plasma surrounding
is less influenced than the Coulomb potential of hydrogen atom. On the other hand, in
the case of the harmonic oscillator, we verified that it was not possible to establish the
three confinement regions by Equation (23), since there is no well in the ground state curve
of St versus rc. Indeed, as seen in Figure 3c, the influence of the confinement potential
is greater even for larger confinement radii. To overcome this difficulty, we propose an
additional criterion to deal with the harmonic oscillator case. To propose it, we consider
Figure 4 where we show the values of ∆Sr in the ground state as a function of rc for the
three systems. In such a figure we notice that ∆Sr ≈ −0.17 in the confinement radius that
defines the beginning of the strong confinement region for the hydrogenoid models. Thus,
we propose the value of rc when ∆Sr = −0.17 to define the strong confinement region of the
harmonic oscillator, written in Table 1. Establishing a criterion using Sr can be particularly
advantageous in situations where it is difficult to calculate Sp.

Furthermore, in Figure 5a–d are shown the entropy sum, St, of the four systems as
function of rc on a logarithmic scale in the weak and intermediate regions (1 ≤ rc ≤ 100).
We plot all states with principal quantum numbers 1 ≤ n ≤ 4 and 0 ≤ l ≤ 3. Thus, it
becomes clear from the figures for approximately which confinement radius, rc, a given
state of a specific system is in its lowest entropy sum configuration. Specifically, the 1s
state is always the lowest entropy sum for all systems studied. On the other hand, some
states have the lowest entropy sum for intermediate values of rc, while others have a lower
entropy for the free configuration or in the strong confinement region. Moreover, we see
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that for the confined hydrogen atom and the ion confined in a strongly coupled plasma
the states with angular momentum quantum number s (except the 1s state) are the most
affected by confinement, while for the harmonic oscillator the 3s and 4s states, although
affected, decrease their entropy sum.
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Figure 5. Values of St in different quantum states as a function of rc on a logarithmic scale in the
weak and intermediate regions for the (a) hydrogen confined, (b) ion-sphere, (c) confined harmonic
oscillator, and (d) particle confined in a cage.

We now investigate only the particle confined in a spherical cage. In Figure 6, are
displayed the entropies Sr and Sp as a function as a function of rc on a logarithmic scale.
We plot all states with principal quantum numbers 1 ≤ n ≤ 3 and 0 ≤ l ≤ 2. Note that
the values of Sr are quite close for different quantum states. The same behavior was also
observed by Nascimento et al. in [53] for the problem of one-dimensional infinite potential
well. They have qualitatively explained such behavior by analyzing the probability densities
in the position and momentum spaces. According to their explanation, the probability
densities in the position are spread by same range of r values leading to equal values
of Sr for all levels while in the momentum space the probability densities are spread for
increasing ranges of p values leading to increase in Sp with the level increment.
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Figure 6. Values of Sr and Sp in different quantum states as a function of rc on a logarithmic scale for
the particle confined in a cage.

Moreover, Figure 6 also shows that entropies are linear on the monolog axes. In fact,
the coefficient of determination gives R2 = 1, demonstrating that the linear model fits
perfectly to the sample of points. For the 1s state, for example, the linear regression fit
of dataset gives Sr = 3.0 log(rc) + 0.7 and Sp = −3.0 log(rc) + 5.9; and for 2p state gives
Sr = 3.0 log(rc) + 0.5 and Sp = −3.0 log(rc) + 6.5. As expected, the slopes of the straight
lines Sr and Sp have opposite values so that in the sum St = Sr + Sp the term with the
log(rc) will be canceled, showing that the entropy sum is constant, as it can be seen in
Figure 5d. Note that the entropy curves for states 1s and 2p form two parallel lines (same
slope) and that the Sr lines are much closer to each other (nearby y-intercepts) than the
Sp lines.

Since it has been shown, in the strong confinement regime, that the three systems
previously studied begin to behave like a particle confined in a spherical cage, then this
also means that in this regime the entropies of these systems start to have a linear behavior
as a function of log(rc). Such behavior is evidenced by Figure 7, where we plot the graph
of the values of entropy Sr in the ground state as a function of rc on the logarithmic scale
for the four systems in question. We can see in Figure 7 that the changes in behaviors for
the linear trend of the confined particle happen almost abruptly near the regions of strong
confinement defined in Table 1.
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Figure 7. Values of Sr in ground state as a function of rc on logarithmic scale for the hydrogen
confined (HC), ion-sphere (IS), confined harmonic oscillator (HO), and particle confined (eC).
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4. Conclusions

In this work, we presented a comparative study between some confined systems
using Shannon’s informational entropies as tools to analyze how the effects of confinement
impact in these systems. For that, we implemented a computational code in Fortran based
on the finite element method to solve the radial part of the Schorödinger equation. In
particular, we determined the position and momentum space entropies and the entropy
sum for different states of the following systems: a particle confined in a spherical cage, the
spherically confined hydrogen atom, the hydrogenic ion confined in a strongly coupled
plasma, and the spherically confined harmonic oscillator.

Our main observation was that the difference between values of entropies for all states
of each of the three systems and that of the particle confined in a spherical cage tend to
zero when the confinement radius decreases. This confirms that the interaction potential
is no longer important for rigorous confinements and the system starts to behave just
like an confined electron . Furthermore, we observed that the behavior of these entropies
differences for the hydrogen confined and the ion-sphere are very similar, while for the
harmonic oscillator they tend to zero faster. A counterintuitive behavior also noticed for
the hydrogen confined and the ion-sphere systems was the sign change of the entropy
difference on position and momentum spaces in some regions of confinement radius
indicating that the density of these systems is more spread out than that of the particle in
a cage.

We also determined in this work the three confinement regions of three of the examined
systems using a procedure based on entropy sum proposed by Nascimento et al. [36]; and
an additional criterion, using the entropy of space, was required to define the strong
confinement region of the harmonic oscillator. Lastly, we only investigate the particle
confined in a spherical cage. Besides the quite close values of entropy in the position space
for different quantum states, we observed that entropies are linear on monolog axis. This
means that in strong confinement regime the entropies of the other systems start to behave
as a logarithmic function of the confinement radius.

As a final conclusion, with the employment of a very accurate numerical procedure,
we have shown significant results on the behavior of strongly confined quantum systems
and demonstrated the feasibility of using Shannon’s informational entropies as a tool to
analyze such behavior. As a perspective, we intend to extend the method to calculate
Shannon’s informational entropy for excited states of two-electron atoms and artificial
atoms in the presence of external fields.
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