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Abstract: We report the topological properties, in terms of the Berry phase, of the 2D noninteracting
system with electron–hole band inversion, described by the two-band generalized analogue of the
low-energy Bernevig–Hughes–Zhang Hamiltonian, yielding the W-shaped energy bands in the form
of two intersecting cones with the gap along the closed continuous loop. We identify the range of
parameters where the Berry phase attains qualitatively different values: (a) the integer multiplier of
2π, (b) the integer multiplier of π, and (c) the nontrivial value between the latter two, which depends
on the system parameters. The system thus exhibits the anomalous quantum Hall effect associated
with the nontrivial geometric phase, which is presumably tunable through the choice of parameters
at hand.

Keywords: Berry phase; geometric phase; anomalous quantum Hall effect; Chern number; topological
insulators; Chern insulators; Bernevig–Hughes–Zhang Hamiltonian; conical intersections

1. Introduction

The Berry phase [1] was introduced at least conceptually for the first time most likely
in the 1950s in D. Bohm’s Quantum Theory [2], Ch. 20, Sec. 1 in equation 8, as the geometric
phase accumulated in the wave function during the cyclic adiabatic change of parameters in
the Hamiltonian; today, it still grasps the focus of interest of the modern physics, particularly
in the fields of condensed matter and optics [3]. The concept of nontrivial topological
properties of the wave function is important not only from the fundamental point of
view of the general quantum mechanics but also from the experimental and technological
point of view. The topological insulators [4] and quantum Hall effect (QHE) [5,6] are just
some of the most well-known examples of real systems with the above-mentioned effects
experimentally observed. Furthermore, the anyons, firstly suggested by F. Wilcek as the
composite particles consisting of the electric charge moving in the 2D plane around the
infinite magnetic flux tube perpendicular to it [7], are objects satisfying neither fermionic
nor bosonic statistics. In turn, the phase in the wave function, accumulated by braiding
the two of them, is neither zero (bosons) nor π (fermions) but some real number between
the two instead, reflecting the nontrivial topology of the wave function. The fundamental
requirement to be able to achieve such a nontrivial braiding is the two-dimensionality
(2D) of the system. So far, the only experimentally realized system exhibiting anyons
in the field of solid-state physics is the fractional QHE [8,9], which is emerging due to
electron–electron interactions. The extra efforts to realize anyons in different systems,
especially the so-called non-Abelian ones, is also motivated by their potential application
for quantum computation [10]. Some of these efforts are directed at finding the systems
in which anyons may emerge in the absence of interactions (e.g., the electron–electron
interaction) but solely due to the special topology of the wave function, resulting from
diagonalization of the Hamiltonian containing parameters that can be controlled from the
outside [11], the realization of which is still an open question.
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We analyze the topological properties of the 2D system with inverted electron and hole
bands. The band inversion and so-called “conical intersections” [12] are practically paradig-
matic prerequisites for the nontrivial topological properties and onset of the topological
insulators. Although the full scale of mechanisms leading to the band inversion is not fully
known yet, usually, the spin–orbit interaction in the solid state is used as its main generator.
The quest to generate the intrinsic QHE state, as an intrinsic property of the system without
the external magnetic field (so-called anomalous QHE) [13], has been continued since Hal-
dane’s proposal [14], its experimental realizations [15], as the important topic of modern
solid-state physics and material science through the design of new topological materials.
Here, we shall not discuss the mechanisms leading to the band inversion. We shall start
with the Hamiltonian already possessing that feature and explore its properties. The system
under consideration features the W-shaped bands with rotational symmetry (the so-called
“Witch’s hat” form created by the two oppositely oriented intersecting cones with a gap
created along the circular line of intersection). It is in essence the two-band derivative of
the low-energy Bernevig–Hughes–Zhang Hamiltonian (BHZ) [16] for the 2D system, which
is sometimes called the “half BHZ model”, leading to the modified Dirac equation [17],
which we generalize in terms of the number of parameters presumably tunable by the
external influence such as electric field, mechanical strain, etc. The results indicate regions
of parameters for which the Berry phase can achieve different nontrivial values; i.e., we
find regions in the parameter space with the nontrivial Berry phase characterized by the
integer multiplier of π and of 2π as well as the region where the Berry phase attains the
nontrivial value between the latter two depending on the parameters in the Hamiltonian.
Likewise, the anomalous QHE determined by it emerges, possessing the corresponding
nonstandard properties.

2. Methods
2.1. The Model

The low-energy Hamiltonian of the 2D two-band system under consideration, in the
basis of the plane waves characterizes by the 2D wave vector k = (kx, ky), reads

Ĥ =

[
(∆− α1|k|m) α2(kx − iky)n

α2(kx + iky)n −(∆− α1|k|m)

]
, (1)

where ∆ is one of the parameters determining the band gap, and parameters
(n, m) ∈ {1, 2, 3, . . .} are positive integers. In particular, m describes different possible
initial electron dispersions such as linear, parabolic etc., while n describes the possibility
of introducing more general topology beyond simple conical band intersections. The case
n = 0 (and m = 0) is also covered by the result, but it leads to the trivial topology; thus,
we shall comment on it at the end only for the sake of completeness. Here, α1 (α2) stand
for positive parameters giving, multiplied with km (kn), dimension of energy, e.g., for
m = n = 1, α1,2 are the Fermi velocity parameters α1,2 = h̄v1,2 such as for graphene, for
example; for m = n = 2, α1,2 are the effective mass (m∗) parameters α1,2 = h̄2/2m∗1,2 such
as for the free electron gas, etc.

Using the in-plane rotational symmetry of the problem, i.e., using the polar coordinates
k = |k| > 0 and ϕ = arctan(ky/kx), in which kx ± iky = k exp(±iϕ), and expressing energy
E in units of α1, i.e., E → E ≡ E/α1 consequently scaling the Hamiltonian in the same
way, i.e., Ĥ → Ĥ ≡ Ĥ/α1, we can write the Hamiltonian (1) in the convenient form for
analytical analysis

Ĥ =

[
(δ− km) γkne−inϕ

γkneinϕ −(δ− km)

]
, (2)

where δ ≡ ∆/α1 and γ ≡ α2/α1 are the control parameters of the model, together with the
corresponding exponents n and m. It is straightforward to diagonalize the Hamiltonian (2).
The eigen-states, i.e., the electronic energy bands, are



Quantum Rep. 2022, 4 478

E±(k) = ±
√
(δ− km)2 + γ2k2n, (3)

where the sign “+” stands for the conduction (or electron) band, and sign “−” stands for the
valence (or hole) band. The bands are shown schematically in Figure 1 for several choices
of parameters.

Figure 1. Schematics of the energy bands (3), conduction E+ and valence E− as a function of k
assuming the rotational symmetry for several choices of system parameters. The vertical distance
of the cone tips, along the energy axis, is 2δ (δ = 1 in all four panels). The other parameters are:
(a) n = m = 1, γ = 0 (the gap is closed); (b) n = m = 1, γ = 0.5; (c) n = m = 2, γ = 0.5; (d) n = 4,
m = 7, γ = 0.5.

The (normalized) eigen-vectors in the plane wave basis in polar coordinates, corre-
sponding to the eigen-states (3), are

ψ±(k, ϕ) =
1

√
2((δ− km)2 + γ2k2n)

1
4

 ±γkn
(
∓(δ− km) +

√
(δ− km)2 + γ2k2n

)− 1
2 e−inϕ(

∓(δ− km) +
√
(δ− km)2 + γ2k2n

) 1
2

. (4)

2.2. The Berry Phase

Knowing the eigen-vectors, we can calculate the Berry connection ~A(±) = (A(±)
k ,A(±)

ϕ )
in polar coordinates, where

A(±)
k (k, ϕ) = −i〈ψ±(k, ϕ)|∂k|ψ±(k, ϕ)〉,

A(±)
ϕ (k, ϕ) = − i

k 〈ψ±(k, ϕ)|∂ϕ|ψ±(k, ϕ)〉,
(5)

playing the role of the “Berry (vector) potential”, or synthetic gauge field generated by the
“topological charge” located in the origin. Performing the partial differentiation ∂k,ϕ and
the straightforward algebra, we obtain
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A(±)
k (k, ϕ) = 0

A(±)
ϕ (k, ϕ) = − n

2

[
1
k ±

δ−km

k
√

(δ−km)2+γ2k2n

]
.

(6)

The Berry phase for each band is then calculated as the contour integral of A along
the path encircling the “topological charge” in the origin. In the case of standard solid-state
systems at the lattice, that path encircles the Brillouin zone, being the natural boundary
along which the derivative of the wave function vanishes due to the periodicity condition.
The topology of the 2D Brillouin zone is the one of the torus, granting the integer (or trivial,
i.e., zero) TKNN invariant, also called the Chern number, in the standard noninteracting
systems, thus reflecting its topological nature [18]. The presented model is approximate
in the sense that it is continuous; we modeled just the vicinity of the conical intersection
without full periodicity conditions of the lattice (so-called low-energy Hamiltonian). Thus,
the path encircling the “topological charge” in the origin should be taken in the limit k→ ∞.
This reflects its geometric instead of pure topological nature (such as for the pure Dirac
cone in graphene, for example). Therefore, the Berry phase B(±) is

B(±) = lim
|k|→∞

∮
~A(±)(k)dk = lim

k→∞

∫ 2π

0
A(±)

ϕ (k)kdϕ (7)

which transforms, after inserting the expression for the Berry connection (6) and taking the
integral, into

B(±) = −nπ

[
1± lim

k→∞

δ− km√
(δ− km)2 + γ2k2n

]
, (8)

and, taking the limit, we finally obtain

B(±) =


−πn

[
1∓ 1√

1+γ2

]
, n = m

−πn, n > m
0 or − 2nπ, n < m.

(9)

2.3. The Anomalous QHE

Another way to address the intrinsic QHE originating solely from the band topology
is the calculation of the electrical conductivity tensor within the adiabatic approximation,
namely its off-diagonal element that accounts for the Hall conductivity. The contribution in
the case of the full band accounts exactly for the QHE as illustrated in detail in early works
of Streda, Kohomoto and others [19–21]. The simplest way is to calculate the average of
the, say, x-component of the current operator as the response to the perpendicular electric
field introduced through the time-dependent gauge, i.e., the vector potential of the form
A = (0,−Eyt, 0), where Ey is the perpendicular component of electric field, and t is time.

The current operator is defined by the expression

Ĵ =
e
h̄

1
(2π)2

∫
dkx

∫
dkyOkĤ(k, t), (10)

where Ĥ is the Hamiltonian of the system, and the Hall conductivity σxy is defined as
the response function, i.e., 〈 Ĵx〉 = σxyEy. The Hall conductivity in this case, per state |η〉
with energy Eη in the, by assumption, fully occupied band, is given by the well-known
Kubo formula

[
σxy
]

η
= −ih̄ ∑

η′ 6=η

〈η|Jx|η′〉〈η′|Jy|η〉 − 〈η|Jy|η′〉〈η′|Jx|η〉
(Eη′ − Eη)2 . (11)
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In our case with two bands ν and ν′, Equation (11), after summing up the contributions
per states |k〉 in the band, reduces to the expression for the Hall conductivity per band
ν [22]

σ
(ν)
xy = h̄ ∑

k

2Im
[

J(νν′)
x (k)J(ν

′ν)
y (k)

]
(Eν′(k)− Eν(k))2 . (12)

where we calculated it per unit area. To pursue this quest, one needs to calculate the
current vertices

J(νν′)
κ (k) =

e
h̄ ∑

ll′

∂Hll′

∂kκ
UlνU†

l′ν′ , (13)

where κ ∈ {x, y} accounts for the Cartesian component and l, l′, ν, ν′ are the indices denot-
ing (row, column) the corresponding matrix elements. Ulν are elements of the k-dependent
unitary matrix

Û =

[
eiφk cos(ϑk/2) eiφk sin(ϑk/2)
− sin(ϑk/2) cos(ϑk/2)

]
, (14)

determined by the condition ÛĤÛ† = Ê, where Ê is the diagonal eigenvalue matrix and

H12 = |H12|eiφk , tan φk =
Im[H12]

Re[H12]
, tan ϑk =

−2H12

H11 − H22
. (15)

Taking it into account, the current vertices (13) read

J(νν)
κ (k) = e

h̄

(
1
2 cos ϑk

∂(H11−H22)
∂kκ

+ sin ϑk
∂|H12|

∂kκ

)
,

J(νν′)
κ (k) = e

h̄

(
1
2 sin ϑk

∂(H11−H22)
∂kκ

+ i|H12| ∂φk
∂kκ

+ cos ϑk
∂|H12|

∂kκ

)
,

(16)

for the intraband (νν) and interband (νν′) case, respectfully.
We illustrate the procedure and the result for the particular problem, using the Hamil-

tonian (1) for the case n = m = 1. Having H11 = −H22 = ∆− α1|k|, H12 = α2|k| exp (iφk),
tan φk = −ky/kx and tan ϑk = −α2|k|/(∆ − α1|k|), we calculate the interband current
vertices for our two-band system with the valence band (ν = ”− ”) and conduction band
(ν′ = ” + ”)

J(−+)
x (k) = e

h̄
α2
|k|

(
∆
Ek

kx − iky

)
,

J(−+)
y (k) = e

h̄
α2
|k|

(
∆
Ek

ky + ikx

)
,

(17)

for which J(+−)κ = [J(−+)
κ ]∗, and where the spectrum, appearing in the expression, is

Ek =
√
(∆− α1|k|)2 + α2

2|k|2.
The (quantum) Hall conductivity of the system with a fully occupied valence band

(ν = ”− ”) and empty conduction band (ν′ = ” + ”), with Ek ≡ E+(k) = −E−(k), is given
by the expression

σxy = h̄
2

∫ dkx
2π

∫ dky
2π

1
E2

k
Im
[

J−+x (k)J+−y (k)
]

= − e2

h
α2

2∆
2

∫ ∞
0

kdk

((∆−α1k)2+α2
2k2)

3/2

= − e2

h
1
2

[
1 + 1√

1+γ2

]
.

(18)
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3. Results

The most natural way to analyze the obtained results is to start with the properties
of the electron energy bands (3) which also reflect the topological properties, depending
on parameters. The band structure, depending on the characteristic choices of parameters,
is shown in Figure 2. In principle, the energy bands have two intersecting cones with a
gap opened between them along the circular intersecting line (we call it “the nodal ring”).
The tips of the protruding cones are located symmetrically, beyond and beneath the origin,
at the distance equal to 2δ. The circular nodal ring, giving the W-shape (or “Mexican
hat-shape”, depending on n, m), shrinks in radius as γ increases, but it is preserved up to
the limit γ→ ∞.

Figure 2. The energy band E+(k), assuming the angular rotational symmetry, for several choices
of system parameters. The other energy band is simply E−(k) = −E+(k). In both panels, δ = 0.5,
the energy gap between E+(k) and E−(k) closes for γ = 0 and remains opened for finite γ varied
between values zero and 20. The other parameters are: (a) n = m = 1; (b) n = m = 2. The minimum
of E+(k) determines the radius of the nodal ring (see Figure 1) k0 which shrinks with increasing γ

and becomes zero in the limit γ → ∞, turning the picture of two intersecting cones (with the gap
opened along the intersection) into the picture of two distant cones, which are separated “vertically”
by 2δ from each other.

For the case n = m, the radius of the nodal ring is k0 = (δ/(1 + γ2))1/n, and the
real band gap, i.e., the vertical distance between the lower and upper band, along the
nodal ring is equal to E+ − E− = 2δγ/

√
1 + γ2 (or E+ − E− = 2∆γ/

√
1 + γ2 in the

original units of energy). In the general case n 6= m, one needs to solve the equation
nγ2k2n−m

0 + mkm
0 −mδ = 0 for k0 and insert it into expression (3) to find the value of the

gap E+ − E−.
The Berry phase of the system is a sum of the contributions of all occupied bands. We

consider the case with only the lower band (“−”) fully occupied and upper band (“+”)
empty. Then, the Berry phase of the system is equal to B = B(−), i.e.,

B =


−πn

[
1 + 1√

1+γ2

]
, n = m

−πn, n > m
−2πn, n < m.

(19)

opening the possibility of different classes of nontrivial results dependent on the system
parameters (but not on the scaling of energy). It is essential to stress that this result holds
as long as we have two distinct bands, i.e., until the gap closes. Basically, the result exhibits
three main classes depending on the relation of n and m: (a) if n < m, B attains the value
−2πn; if n > m, B attains the value −πn; if n = m, B attains the value between −2πn and
−πn depending on γ. We show the Berry phase for the case n = m in Figure 3. Apparently,
as γ→ 0, the band gap closes and B → −2nπ. In the opposite case γ→ ∞, the W-shape of
the band is lost, yielding the value B → −nπ.
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Figure 3. The Berry phase B (19) as a function of parameter γ for the case n = m. It attains a value of
B = −2πn for γ = 0 and tends to the value B → −πn as γ→ ∞.

The anomalous QHE is confirmed also by the “electrodynamical approach”, i.e., by
the calculation of the Hall conductivity in the gapped state using the interband current
vertices. The result (18), obtained for the case n = m = 1, can be easily generalized using
the analogous straightforward procedure for the case of general (n, m) ∈ {1, 2, 3, . . .}. It
yields the result σxy = (e2/h) · C, where

C =


− 1

2

[
1 + 1√

1+γ2

]
n, n = m

− 1
2 n, n > m
−n, n < m.

(20)

The conductivity appears in the units of conductivity quanta e2/h multiplied by the
dimensionless quantity C which appears as the “winding number” equal to the Berry phase
divided by 2π, therefore being in accordance with Equation (19). In the next section, we
shall discuss when it may have the meaning of the topological invariant known as the Chern
number.

4. Discussion

Physical systems featuring different topological properties are nowadays well cat-
egorized in terms of classes of corresponding topological invariants depending on the
symmetries that the system possesses [23]. The general topological properties of conical
intersections, as generators of nontrivial synthetic gauge fields, and inverted bands are
rather well-understood. The interesting upgrade to that established picture is to find a way
how to tune or violate certain assumptions, upon which the symmetry classes are built,
through the change of parameters, and then track the transitions between the topological
phases. The model that we analyze is symmetric with respect to the time reversal; it is the
low-energy approximation which reflects topological properties of the single (generalized)
conical intersection, which is expressed in terms of the “winding number” C given by
Equation (20). The character of the conical intersection, expressed by C, is determined by
the system parameters m, n and γ = α2/α1, yielding the topological phase diagram with
two phases and the unusual boundary between them—Figure 4.

The result reproduces, for example, the result for the modified Dirac equation,
C = −1 [17], taking parameters m = 2 and n = 1, or the K′ point of simple “massive
graphene” [24] with C = −1/2 for m = 0 and n = 1, or trivial insulator with C = 0
for n = 0, ∀m (e.g., n = 0, m = 2 case is considered in Ref. [25]), etc. However, the
analyzed system goes qualitatively beyond that. Apart from the trivial phase (C = 0)
for n = 0, in the case of the nonzero n, the “winding number” C = −1 · n remains such
for all m > n. It attains the value C = −1/2 · n for all m < n. Finally, for all m = n,
C = −n

[
1 + 1/

√
1 + γ2

]
/2. As a result of the lack of other effective means of visualiza-

tion, we illustrate the effect of topology, “encoded” into the wave function (4), on the spin
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operator (σx, σy, σz), by calculating the vector field Σ(kx, ky) having the expected values of
σx and σz operators as its components, i.e.,

Σ(kx, ky) = (〈Ψ−(kx, ky)|σx|Ψ−(kx, ky)〉, 〈Ψ−(kx, ky)|σz|Ψ−(kx, ky)〉),

as depicted in Figure 5 (the topologically trivial case C = 0 would have all spins directed
“upwards”).

Figure 4. Topological phase diagram of the system described by the Hamiltonian (1) characterized by
the “winding number” C, given by Equation (20), depending on parameters (n, m) ∈ {0, 1, 2, 3, . . .}
and γ ∈ R+. (0) n = 0, ∀m (orange): the trivial phase, C = 0; (I) m < n (green): C = −n/2; (II) m > n
(blue): C = −n; (III) m = n 6= 0 (red): C = −n

[
1 + 1/

√
1 + γ2

]
/2. Along the m = n > 0 line, C is a

function of γ which interpolates between values of C in the regions I and II, being equal to the value
in I in the limit γ→ ∞, and equal to the value in II in the limit γ = 0.

Figure 5. The vector field representing the expected value of (σx, σz) operator with respect to the state
Ψ−(kx, ky) (4) on the (kx, ky) domain. The horizontal labels (1), (2), (3) represent values of parameter
γ = 0.1, 1, 10, respectively, while the vertical ones are: (a) (m, n) = (1, 1), C = −0.998, −0.854, and
−0.651, respectively; (b) (m, n) = (1, 2), C = −1/2, (c) (m, n) = (2, 1), C = −1. The topologically
trivial case for which the bands touch (γ = 0, C = 0) would have all “spins” directed upwards.
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To apply the presented results to the real systems requires taking into account all
symmetries that it imposes. For example, the system on the lattice, such as graphene, is
limited with symmetry yielding the necessity of an even number of Dirac points in the
Brillouin zone. Those may cancel each other’s Berry phase if the Berry curvatures are of
the opposite signs; thus, some time-reversal symmetry-lifting mechanism (for example,
such as the Haldane model [14]) is necessary to observe the finite effect. In this quantum
report, we do not go into such details but rather focus on reporting the unusual topological
property of the quantum system (1) possessing the anomalous QHE and the non-integer
“winding number” for the certain set of parameters.
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