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Abstract: Today, two of the most prosperous fields of physics are quantum computing and spintronics.
In both, the loss of information and dissipation play a crucial role. In the present work, we formulate
the quantization of the dissipative oscillator, which aids the understanding of the abovementioned
issues, and creates a theoretical frame to overcome these issues in the future. Based on the Lagrangian
framework of the damped spring system, the canonically conjugated pairs and the Hamiltonian of
the system are obtained; then, the quantization procedure can be started and consistently applied.
As a result, the damping quantum wave equation of the dissipative oscillator is deduced, and an
exact damping wave solution of this equation is obtained. Consequently, we arrive at an irreversible
quantum theory by which the quantum losses can be described.

Keywords: damped oscillator; Lagrangian; Hamiltonian; canonical quantization; Schrödinger equation
of the dissipative oscillator

1. Introduction

The existence of oscillator motion and the wave propagation mode are the necessary
conditions for signal transmission, and consequently, information transfer. In a realistic
quantum operation, the dissipation of a signal appears due to the loss of energy from a
quantum system, for example, a single atom coupled to a single mode of electromagnetic
radiation undergoes spontaneous emission [1]. This may happen in an ion trap quantum
computation, as proposed by Cirac and Zoller [2]. Similarly, in spin-wave interconnects,
spin-wave memories, or spin-wave transducers, and the attenuation reduces the efficiency,
the lossy spin-wave propagation leads to fundamental limitations [3]. In the construction of
quantum computers and further quantum information systems, the qubits are responsible
for information transfer. A single electron on a solid neon surface provides the experimental
realization of a new qubit platform [4]. In this realization, the limited coherent time is due
to the energy and phase loss originating from the material surface deficiency and the noise
of the environment.

These experiments and their theoretical discussions suggest the deeper understanding
of dissipation of a single quantum package. The key to wave propagation is the oscil-
lator; thus, it is worth dealing with the description of the quantized damped oscillator.
The idea of quantizing the damped oscillator and the description of non-conserving en-
ergy subsystems coincide with the birth of quantum theory itself [5,6]. Based on their
original idea of quantum dissipation, the description has been strongly developed [7].
In other research, the explicit time-dependent formulation can also provide a successful
deduction of the dissipative oscillator [8,9]. However, the uncertainty principle is incom-
patible with the time-dependent mathematical structure [10]. The dissipative quantum
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systems can be modeled by the sets of decoupled harmonic oscillators in a reservoir [11–13].
The considered systems have a statistical behavior, so the observed dynamics differ from
the motion of a single damped quantum oscillator.

Generally, the lack of success of the solution was due to several stumbling blocks in
the construction. The first difficulty was immediately in the formulation of the Lagrangian;
consequently, it was not possible to deduce the canonical variables, the Hamiltonian,
and the Poission bracket expressions. Thus, the commutation rules, required for the
quantization procedure, could not be formulated at all.

The problem of the missing Lagrangian structure of the dissipative systems was much
older than the elaboration of the quantization procedure of conservative systems; it went
back to Rayleigh [14]. The equation of motion (EOM) of the harmonic oscillator

ẍ + ω2x = 0 (1)

is deduced from the Lagrangian of

L =
1
2

ẋ2 − 1
2

ω2x2, (2)

where the related Euler–Lagrange equation is

d
dt

dL
dẋ
− dL

dx
= 0. (3)

To describe the damped oscillator, Rayleigh introduced the so-called dissipation
potential—pertaining to the drag force F = −Cẋ—

Φ =
1
2

Cẋ2, (4)

by which the EOM could be recovered in the following way:

d
dt

dL
dẋ
− dL

dx
=

dΦ
dẋ

. (5)

It is easy to check that the correct EOM appears:

ẍ + Cẋ + ω2x = 0. (6)

However, it can be proven that the added term on the right side in Equation (5) is not
from the least action principle, and the related variational calculus, i.e., the Lagrangian
frame is lost. Much later Bateman [15] suggested a mirror image description in which a
complementary equation appears due to the introduced function y. Here, the variation
problem is

δ
∫

y
(

ẍ + Cẋ + ω2x
)

dt = 0. (7)

In addition to the damped oscillator equation, the mirror image equation is

ÿ− Cẏ + ω2y = 0. (8)

While the equation of x relates to the damping solution, the equation of y pertains to an
exponentially increasing amplitude motion. The calculated Hamiltonian includes both of
these functions at the same time. It may cause a cumbersome explanation and elaboration
of canonical variable pairs. A few years ago, Bagarello et al. proved that the canonical
quantization for the damped harmonic oscillator using the Bateman Lagrangian did not
work [16]. Similarly, Morse and Feshbach [17] used the variable duplication method for the
diffusion problem. In this case, the diffusion variable was considered a complex quantity,
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and its complex conjugate pair was the duplicated variable. Here, interpretation was
cumbersome, due to the complex diffusion functions and the related canonical formulation.

The application of the complex absorbing potentials—firstly used for the description of
scattering processes [18–26]—may provide an opportunity for the description of dissipation
and ireversibility in quantum theory. The method is that the Schrο̋dinger equation is
formulated by a complex potential Vr(x) + iVc(x), where Vr(x) represents the conservative
potential, and Vc(x) pertains to the damping. Therefore, the EOM for this system is

h̄
i

∂Ψ
∂t
− h̄2

2m
∇2Ψ + (Vr + iVc)Ψ = 0. (9)

The deduced balance equation for Ψ∗Ψ is

∂(Ψ∗Ψ)

∂t
+

ih̄
2m
∇(Ψ∇Ψ∗ −Ψ∗∇Ψ)− 2

h̄
VcΨ∗Ψ = 0, (10)

where just the complex part of the potential remains, generating the loss of the system. An
obvious choice is to describe the motion of the quantum damped oscillator by the complex
harmonic potential introduced by real-valued angular frequencies ωr and ωc [26]

V(x) =
1
2

m
(

ω2
r − iω2

c

)
x2. (11)

The solution can be obtained by the application of the Feynman path integral method [27–30],
as it was shown previously [26]. We see that this method stands on the complex generalization
of the acting potential, and the dissipation appears as a consequence of this non-hermitian
potential. However, we miss the direct—introduced by an “equation-level”—formulation
of the dissipation.

An explicit time-dependent Lagrangian method using the WKB approximation in the
quantization procedure was developed by Serhan et al. [31,32]. Despite the exponentially
decreasing time-dependence of the wave function, it describes a standing solution in space.

A path integral method with a dynamical friction term was suggested for quantum dis-
sipative systems by El-Nabulsi [33]. Here, Stokes’ drag force introduced the loss. However,
the equation did not contain the velocity-dependent term. It contrasts with the standard
EOM, which yields the usual exponential relaxation in time.

Presently, we apply the canonical quantization method for the damped harmonic
oscillator. We point out this classically developed procedure works in dissipative cases
not only with conservative potentials. We start from the EOM, and we formulate the
Lagrangian and the Hamiltonian of the problem in general in Section 2. As a particular
case, the Hamiltonian of the underdamped oscillator is expressed in Section 3. The canon-
ical quantization procedure is described in Section 4, and the damping wave function is
calculated by the path integral method in Section 5. The results are summarized in a short
conclusion in Section 6.

The present technique has multiple advantages compared to the previous approaches.
(i) The canonical expressions and the quantization steps are similar to the usual procedure.
Thus, the developed description can be considered a generalization. (ii) The solving
methods, such as the path integral method, can be applied without radical changes. (iii) The
required necessary difference in the interpretation of the damped wave function can
be interpreted.

2. The Lagrangian and Hamiltonian of a Damped Harmonic Oscillator

The quantization procedure requires the formulation of the complete Lagrangian–
Hamiltonian frame first. To achieve this aim, we begin our examination with the EOM for
the damped harmonic oscillator

ẍ + 2λẋ + ω2x = 0, (12)
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where m is the mass, λ is a specific damping factor, and ω is the angular frequency. For
the measurable quantity x, we define a generator potential q characterizing the underlying
degrees of freedom, i.e., the definition equation can be obtained as in [34–36],

x = q̈− 2λq̇ + ω2q. (13)

A suitable Lagrangian can be formulated by the potential

L =
1
2

(
q̈− 2λq̇ + ω2q

)2
. (14)

The equations of motion can be calculated from a Lagrangian of the general form

L
(

q, q̇, q̈, . . . , q(n), . . . , q(N), t
)

q(n) denotes the nth order time derivative) [37,38]:

0 =
N

∑
n=0

(−1)n dn

dtn
∂L

∂q(n)
. (15)

This method results in the EOM of the harmonic oscillator for the potential as the
Euler–Lagrange equation. In general, Hamiltonian formalism requires canonical coordinate
and momentum pairs

qn = q(n−1) (16)

pn =
N−n

∑
k=0

(−1)k dk

dtk
∂L

∂q(n+k)
, (17)

where (n = 1, . . . , N). The Hamiltonian can be deduced from the abovementioned general
Lagrangian as

H =
N

∑
n=0

pn
dqn

dt
− L. (18)

For the present particular case, N = 2 and n = 1, 2, we obtain the relevant coordi-
nates as

q1 := q, (19)

and
q2 := q̇. (20)

Moreover, the general expression for the momentum p1 is

p1 :=
1

∑
k=0

(−1)k dk

dtk
∂L

∂q(1+k)
=

∂L
∂q̇
− d

dt
∂L
∂q̈

, (21)

by which we calculate the particular case as

p1 := 4λ2q̇− ...
q −ω2q̇− 2λω2q. (22)

Similarly, we formulate the momentum p2

p2 :=
0

∑
k=0

(−1)k dk

dtk
∂L

∂q(2+k)
=

∂L
∂q̈

, (23)

i.e.,
p2 := q̈− 2λq̇ + ω2q. (24)
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The Hamiltonian can be calculated by Equation (18). As a first step, we obtain it by
the potential function q

H = p1q̇1 + p2q̇2 − L

= 2λ2q̇2 − ...
q q̇−ω2q̇2 +

1
2

q̈2 − 1
2

ω4q2. (25)

The following step is to substitute the potential function with the coordinates and the
momenta. We arrive at the canonical formulation of the Hamiltonian as

H =
1
2

p2
2 −ω2 p2q1 + p1q2 + 2λp2q2. (26)

To preserve the energy-like unit of the Hamiltonian, we transform the coordinates and
the momenta. The transformation means a simple product by ω, mω, and mω2. Thus, we
obtain new coordinates, Q1 and Q2, and new momenta, P1 and P2.

p2 −→ P2 = mωp2, [P2] = kg
m
s

, (27)

q2 −→ Q2 = ωq2, [Q2] = m, (28)

p1 −→ P1 = mωp1, [P1] = kg
m
s2 , (29)

q1 −→ Q1 = ωq1, [Q1] = m s. (30)

The meaning of the canonical moment P2 and the canonical coordinate Q2 is the same
as the mechanical momentum and the spatial coordinate. Moreover, the Hamiltonian, H′,
is obtained

H′ −→ H′ = mω2H, [H] = kg
m2

s2 = J. (31)

The units of the quantities are denoted by the bracket [ ]. Finally, the Hamiltonian of
the damped oscillator is

H′ =
1

2m
P2

2 −ω2P2Q1 + P1Q2 + 2λP2Q2. (32)

Before we turn to the quantization procedure, it is worth examining a further property
of this Hamiltonian. Since this Hamiltonian pertains to a dissipative process, we expect that
this is a non-hermitian operator. The reason is that the probability does not conserve during
dissipation. We will see later that the operators that belong to the first three terms are
hermitian, but the fourth term is not. The fourth term operator will generate the dissipation
in the description. Furthermore, the appearance of λ in the term similarly shows this fact.

3. The Devil Is in the Details

Since the formulation of the Lagrangian does not contain explicit time dependence,
the Hamiltonian must be a constant value, i.e., the Hamiltonian expresses a conservation
law. At this point, there is an open question of what the Hamiltonian exactly means. Here,
we try to clarify the role of the Hamiltonian in this theory.

We focus just on the solutions that pertain to the underdamped and overdamped cases.
As was shown previously by Szegleti et al. [34], the q(t) solution holds

q(t) = a1e−(λ+γ)t + a2e−(λ−γ)t + b1e(λ+γ)t + b2e(λ−γ)t, (33)

where γ =
√

λ2 −ω2. The last two terms are proportional to the exponentially increasing
eλt, so they have non-physical meaning. Consequently, they could not have a role in the
measurable x(t). After the fit of the initial conditions for the measurable quantities, the



Quantum Rep. 2022, 4 395

position, and the velocity, x(0) = x0 and ẋ(0) = v0, keeping the physical solutions, the
relevant potential is

q(t) =
(γ− λ)x0 − v0

8γλ(λ + γ)
e−(λ+γ)t +

(γ + λ)x0 + v0

8γλ(λ− γ)
e−(λ−γ)t. (34)

Now, we are ready to substitute this generator’s potential function into the expression
of the Hamiltonian in Equation (25). The mathematical calculation results in

H = 0, (35)

and similarly,
H′ = 0 (36)

by Equation (32). Since there is no explicit time dependence in the Lagrangian, the Hamil-
tonian must be constant. Generally, the Hamiltonian is the energy of the oscillating mass
point. However, now the energy of the damped oscillator dissipates during the vibration.
So, the non-zero energy cannot be the constant of motion. This strange result means that
this zero value Hamiltonian is the conserved quantity of the damped oscillator. We may
say there is no contradiction in the theory. However, the Hamiltonian loses the meaning of
the “total energy of the system”. Despite this situation, we consider the Hamiltonian as
an energy-like quantity. We will see that this zero value Hamiltonian in Equation (50) (see
below) enables us to elaborate on the quantization formulation of the dissipative oscillator.

4. The Quantization Procedure

To achieve the state equation of the quantized damped oscillator, we need to identify
the canonical momenta in the Hamiltonian, H′, in Equation (32). In the case of the canonical
pair (P2, Q2) from Equations (27) and (28), we introduce into the transformed space the
spatial coordinate y

P2

(
= mv = m

dy
dt

=

)
= h̄k, Q2 = y. (37)

The momentum P2 and the coordinate Q2 are the usual canonically conjugated pairs.
The construction of the momentum P1 and the coordinate Q1 are based on Equations (29)
and (30) and a comparison with the momentum P2 and the coordinate Q2 in Equation (37).
The appearing time factor in Equations (29) and (30) can be associated with Fourier trans-
formed pairs, i.e.,

P1 = −ih̄kω, Q1 =
y

iω
. (38)

∂

∂y
= ik,

∂

∂t
= −iω,

1
−iω

=
∫

... dt, ky −→ 1
i

. (39)

The terms of the Hamiltonian can be expressed in the operator formulation applying
the above rules. The calculation of P2 and P2

2 proceeds as is usual.

[P2, Q2] =
h̄
i

. (40)

Applying the above Fourier formulations, we can obtain the commutation rules

[P1, Q1] = −
h̄
i

, (41)

[P2, Q1] = 0, (42)

[P1, Q2] = 0. (43)
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We take P2 from Equation (37) and the first Fourier transform in Equation (39); then,
we obtain

P2 = h̄k =
h̄
i

∂

∂y
−→ P2

2 = −h̄2 ∂2

∂y2 . (44)

The second term includes the P2Q1 product. Now, we consider P2 from Equation (37)
and Q1 from Equation (38); then, we apply the third Fourier transform in Equation (39).
The detailed steps are shown one by one

P2Q1 = h̄k
y

iω
=

1
iω︸︷︷︸

−
∫

... dt

h̄k︸︷︷︸
mv

y = −
∫

mvy dt

= −
∫

my
dy
dt

dt = −1
2

my2, (45)

by which we obtain the second term of the Hamiltonian in the operator formalism

−ω2P2Q1 =
1
2

mω2y2. (46)

We continue with the P1Q2 term. We take P1 from Equation (38) and Q2 from Equa-
tion (37), and we apply the second and fourth Fourier transform, i.e.,

P1Q2 = −ih̄kωy = −ih̄ ky︸︷︷︸
1/i

ω︸︷︷︸
i ∂

∂t

=
h̄
i

∂

∂t
. (47)

The last term of the Hamiltonian includes the P2Q2 product. The relevant substitutions
come from Equation (37), and we consider the fourth Fourier transform

P2Q2 = h̄ky = h̄ ky︸︷︷︸
1/i

=
h̄
i

, (48)

by which we write

2λP2Q2 = 2λ
h̄
i

. (49)

Taking the Hamiltonian in Equation (32), the fact that H′ = 0 in Equation (36), and
substituting these expressions into it, the quantized state equation of the damped oscillator
can be formulated as

0 = − h̄2

2m
∂2ψ

∂y2 +
1
2

mω2y2ψ +
h̄
i

∂ψ

∂t︸ ︷︷ ︸
frictionless quantum oscillator

+ 2λ
h̄
i

ψ︸ ︷︷ ︸
damping term

. (50)

Now, we can recognize the importance of the zero-valued Hamiltonian. Similar to
the complex absorbing potential in Equation (11), a non-hermitian term appears in the
state equation. Its role is the same as the term that generates dissipation in the motion.
However, the deduction of the damped state equation comes from a consequent calculation;
the complex part of the potential in Equation (11) is an ad hoc assumption. We can divide
the equation into the undamped quantum harmonic oscillator and the damping part.
The damping term also includes the quantum action factor h̄.



Quantum Rep. 2022, 4 397

5. Solution of Damping Wave Equation

The oscillation starts from a normalized Gaussian shape initial wave function, which
is the eigenfunction of the lowest-lying energy level of the frictionless case:

Ψ0(y, 0) = 4

√
mω

πh̄
exp

(
−mω

2h̄
(y− y0)

2
)

(51)

with its center position y0. The movement of the undamped oscillator (the frictionless part
of Equation (50)) can be calculated by the Feynman path integral method [27–30]. Souriau
pointed out a correction that is necessary beyond the first half-period of motion in the
integration formula of Feynman [39]. However, a further detailed study was to refine the
oscillator wave packet motion. Naqvi and Waldenstrøm [40] introduced a γ 6= 1 parameter
by which the width of the Gaussian wave packet changes periodically in time around the
origin (see Figure 2 in Ref. [26])

|Ψ(y, t)|2 =
1

σy(t)
√

2
× exp

{
− [y− y0 cos(ωt)]2

2σ2
y (y, t)

}
, (52)

where
σ2

y (y, t) =
h̄

2γmω

[
cos2(ωt) + γ2 sin2(ωt)

]
(53)

ensures the width change.
The first two terms in Equation (50) do not depend on the time, and since the third

term includes a first-order time derivative, the damping effect can be extracted from the
third and fourth terms (see Appendix A), i.e.,

0 =
h̄
i

∂ψ′

∂t
+ 2λ

h̄
i

ψ′. (54)

The solution to this equation can be expressed as

ψ′ ∼ exp(−2λt). (55)

Finally, we obtain the exact solution of the quantum dissipative oscillator Equation (50) as

|Ψ(y, t)|2 =
1

σy(t)
√

2
exp

{
− [y− y0 cos(ωt)]2

2σ2
y (y, t)

}
× exp(−4λt). (56)

The time evolution of |Ψ(y, t)|2 is presented in Figure 1, as it is similarly experienced
from the complex potential approximations in the description of dissipative quantum
systems [18,26]. However, in the present quantization procedure, the damped oscillator
frequency is identical to the frequency of the undamped oscillator. In contrast to the classic
case, the damping does not modify the eigenfrequency ω, i.e., the damping pertains to the
energy and information loss. This fact suggests that the well-known Lorentz distribution
in the scattering process does not relate to a frequency shift due to the damping effect
on a quantum level. On the other hand, this result is in line with the second quantized
solution in Ref. [41]. In this reference, Equation (A4.21) clearly shows that there is no
frequency shift in the case of a damped quantum oscillator but just amplitude damping.
The experimental and theoretical motivations for the quantum dissipation can be found in
the early Refs. [42,43].

A time series of ρ(y, t) with parameters set as m = 1, h̄ = 1, ω = 1, and λ = 0.01 is
shown in Figure 1 in which the evolution can be easily followed in one time period.
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Figure 1. The dissipation caused shape damping of the distribution ρ(x, t) of the damped oscillator
in one time period. The applied parameter set is m = 1; h̄ = 1; ω = 1, γ = 0.8, λ = 0.01. The time
period is T = 2π/ω. The peak of the initial distribution is at y0 = −1.

The damping of the quantum dissipative oscillator arises from the smooth function
exp(−4λt), so the graph is similar for higher λ values.

6. Conclusions

We presented a thorough investigation and a solution for the age-old problem, the
quantization of the damped oscillator. The information loss is closely related to the
signal distortion, i.e., the energy dissipation. Our method overcame the limitations of
the previous formulations using several means to achieve the damping state equation.
We returned to the fundamentals of quantum theory, such as (i) the Lagrangian formula-
tion, (ii) the Hamiltonian canonical description, and (iii) the quantization procedure. Thus,
we applied this mathematical framework to the damping oscillator. In possession of the
correct Lagrangian description, the way opened toward the quantization procedure. As
was shown, a remarkably understandable damping state equation energed. Finally, we
calculated the exact solution of this quantum dissipative oscillator equation. We conclude
that a consequent construction of the damping quantum oscillator equation is presented by
the exact solution of this damped state equation. However, we emphasize that due to the
non-hermitian complex potential, the probability meaning of the wave function is lost. The
results bring us closer to the understanding of energy dissipation, information loss, and the
maximal probability of the recovery of a signal on the microscopic level. Our studies in the
area of quantum dissipation require further discussion and examination.
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Appendix A

We point out that the solution of the damping quantum oscillator equation can be
exactly obtained as a product of the solution of the undamped oscillator and an exponen-
tially decreasing time-dependent function. We start from the dissipative state equation by
repeating Equation (50)

0 = − h̄2

2m
∂2ψ

∂y2 +
1
2

mω2y2ψ +
h̄
i

∂ψ

∂t
+ 2λ

h̄
i

ψ. (A1)

Let us denote the solution of the undamped oscillator by

ψ0(y, t), (A2)

i.e.,

0 = − h̄2

2m
∂2ψ0

∂y2 +
1
2

mω2y2ψ0 +
h̄
i

∂ψ0

∂t
(A3)

is completed. Now, we find the solution to the damped equation in the form

ψ0(y, t) exp(−2λt). (A4)

It is easy to check by substitution that this function is a solution to the problem:

0 =

[
− h̄2

2m
∂2ψ0

∂y2 +
1
2

mω2y2ψ0 +
h̄
i

∂ψ0

∂t

]
× exp(−2λt) +

h̄
i

ψ0[−2λexp(−2λt)] + 2λ
h̄
i

ψ0 exp(−2λt). (A5)

Since the last two terms eliminate each other, we retain the undamped part of the
problem. However, we assume that ψ0(x, t) is the solution to the undamped motion. Q.E.D.
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