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Abstract: Covariant integral quantizations are based on the resolution of the identity by continuous
or discrete families of normalized positive operator valued measures (POVM), which have appealing
probabilistic content and which transform in a covariant way. One of their advantages is their ability
to circumvent problems due to the presence of singularities in the classical models. In this paper, we
implement covariant integral quantizations for systems whose phase space is Z× S1, i.e., for systems
moving on the circle. The symmetry group of this phase space is the discrete & compact version of the
Weyl–Heisenberg group, namely the central extension of the abelian group Z× SO(2). In this regard,
the phase space is viewed as the right coset of the group with its center. The non-trivial unitary
irreducible representation of this group, as acting on L2(S1), is square integrable on the phase space.
We show how to derive corresponding covariant integral quantizations from (weight) functions on
the phase space and resulting resolution of the identity. As particular cases of the latter we recover
quantizations with de Bièvre-del Olmo–Gonzales and Kowalski–Rembielevski–Papaloucas coherent
states on the circle. Another straightforward outcome of our approach is the Mukunda Wigner
transform. We also look at the specific cases of coherent states built from shifted gaussians, Von Mises,
Poisson, and Fejér kernels. Applications to stellar representations are in progress.

Keywords: covariant Weyl–Heisenberg integral quantization; discrete cylinder; coherent states; angle
operator; quantum mechanics on the circle; Wigner function
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1. Introduction

Quantum physics for systems whose configuration space is the circle S1 has been
considered by many authors over the last six decades [1–20]. These studies include work
by Carruthers (1968) [1], Lévy-Leblond (1976) [2], Kowalski et al. (1996 and 2021) [9,17],
De Bièvre [10], Gazeau et al. [11,16], and the most recent one by Mista et al. [20]. The
phase space associated with this configuration space is the cylinder, whether continuous or
discrete. These works included questions such as, for a given quantization scheme of the
phase space,

(i) What is the appropriate quantum position operator?
(ii) What is the appropriate quantum momentum operator?
(iii) What are the states (coherent states) that saturate some uncertainty relations?
(iv) Do these operators explicitly display the topology of the circle or the fact that the circle

is a curved manifold or a group?

The latter question raises interest in the extension of these investigations to higher-
dimensional configuration spaces, such as the group of rotation SO(3) in three dimensions.
Note that this group can be viewed as the configuration space for the motion of a rigid
body about one of its points.

Covariant integral quantizations [21] linearly transform functions (“classical observ-
ables”) on phase spaces (in a wider sense) into operators “quantum observables”) on some
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Hilbert spaces of “quantum states”. They are based on the resolution of the identity by
continuous or discrete families of normalized positive operator valued measures (POVM),
which transform in a covariant way under some symmetry group actions. In the simplest
cases these symmetries are described by the Weyl–Heisenberg group (projective represen-
tations of translations in 2D), or by the affine groups (translations of a subset of variables
combined with dilations of the remnant subset of bounded below variables). These quanti-
zation methods, whose origin can be traced back to Klauder, Berezin, Toepiltz, are relatively
easy to manipulate compared with geometric or deformation or other quantizations. Be-
yond their appealing probabilistic content, they allow us to circumvent ordering problems,
or those caused by the presence of singularities in the classical models.

In this work, we implement the covariant integral quantizations for systems whose
phase space or “discrete cylinder” is Z× S1, i.e., for systems moving on the circle and with
integral momentum. The symmetry group of this phase space is the discrete and compact
version of the Weyl–Heisenberg group H1. More precisely, it is a central extension of the
abelian group Z× SO(2), homeomorphic to R×Z× SO(2), and here denoted by Hdc

1 . The
phase space can be viewed as the right coset Γ := R\Hdc

1 .
In Section 2, we briefly review the covariant integral quantization procedure. We

particularly emphasize the role of the resolution of the identity provided by the integration
of operator-valued functions over a measure space. In Section 3, we derive the non-trivial
unitary irreducible representation U of Hdc

1 , acting on the Hilbert space L2(S1, dγ) of
functions that are square integrable on the circle. This representation is square integrable
on the discrete cylinder. We give an overview of the properties of the unitary Weyl operator
acting on L2(S1, dγ). We define the related Gabor transform associated with a resolution
of the identity and the resulting family of coherent states on the circle. In Section 4, we
first define our quantization tools: a weight function v defined on the discrete cylinder
and the related integral operator Mv acting on the representation space. In Section 5,
we define the quantization map, which associates a function f on the discrete cylinder
with an operator Av

f acting in L2(S1, dγ). We compute Av
f for separable functions in

position and momentum, in momentum only, and in position only. Finally, we examine
smooth de-quantizations under the form of the so-called semi-classical portraits f̌ of Av

f . In
Section 6, we give some concrete examples of quantum operators built through coherent
states for Hdc

1 , and those yielded by the weight v = 1 corresponding to the parity operator.
In Section 7, we examine quantizations resulting from various choices of weight function
v. We conclude in Section 8 with a few comments on the content of our work and on new
directions to be explored. In Appendix A, some fiducial vectors and their corresponding
reproducing kernels are presented in a table.

2. (Covariant) Integral Quantization: A Survey

Let (X, µ) be a measure space and H be a (separable) Hilbert space. An operator-
valued function

X 3 x 7→ M(x) acting inH , (1)

resolves the identity operator 1 inH with respect to the measure µ if∫
X
M(x)dµ(x) = 1 (2)

holds in a weak sense.
Integral quantization based on Equation (2) is the linear map of a function on X to an

operator inH, which is defined by

f (x) 7→
∫

X
f (x)M(x)dµ(x) := A f , 1 7→ 1 . (3)

If the operators M(x) in Equation (2) are non-negative and bounded, one says that
they form a (normalized) positive operator-valued measure (POVM) on X. If they are
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assigned a unit trace class for all x ∈ X, i.e., if the M(x)’s are density operators, then
the map

f (x) 7→ f̌ (x) := tr(M(x)A f ) =
∫

X
f (x′) tr(M(x)M(x′))dµ(x′) (4)

is a local averaging of the original f (x) (which can be very singular, similar to a Dirac) with
respect to the probability distribution on X,

x′ 7→ tr(M(x)M(x′)) . (5)

This averaging, or semi-classical portrait of the operator A f , is in general a regularization
—depending, of course, on the topological nature of the measure space (X, µ) and the
functional properties of the M(x)’s.

Now, consider a set of parameters κ and corresponding families of POVM Mκ(x)
solving the identity ∫

X
Mκ(x)dµ(x) = 1 , (6)

One says that the classical limit f (x) holds at κ0 if

f̌κ(x) :=
∫

X
f (x′) tr(Mκ(x)Mκ(x′))dµ(x′)→ f (x) as κ→ κ0 , (7)

where the convergence f̌ → f is defined in the sense of a certain topology.
Otherwise said, tr(Mκ(x)Mκ(x′)) tends to

tr(Mκ(x)Mκ(x′))→ δx(x′) (8)

where δx is a Dirac measure with respect to µ,∫
X

f (x′) δx(x′)dµ(x′) = f (x) . (9)

Nothing guarantees the existence of such a limit on a general level. Nevertheless, if the
semi-classical f̌κ might appear more realistic and more easily manageable than the original
f , the next step is to evaluate the range of acceptability of the parameters κ.

Let us now assume that X = G is a Lie group with left Haar measure dµ(g), and let
g 7→ U(g) be a unitary irreducible representation (UIR) of G in a Hilbert spaceH. Let M be
a bounded self-adjoint operator onH, and let us define g-translations of M as

M(g) = U(g)MU(g)† . (10)

Suppose that the operator

R :=
∫

G
M(g)dµ(g) , (11)

is defined in a weak sense. From the left invariance of dµ(g), the operator R commutes
with all operators U(g), g ∈ G, and so, from Schur’s Lemma, we have the resolution of the
unity up to a constant,

R = cM1 . (12)

The constant cM can be found from the formula

cM =
∫

G
tr(ρ0 M(g))dµ(g) , (13)

where ρ0 is a given unit trace positive operator. ρ0 is chosen, if manageable, in order to
make the integral convergent. Of course, it is possible that no such finite constant exists for
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a given M; or worse, it cannot exist for any M (which is not the case for square integrable
representations). Now, if cM is finite and positive, the true resolution of the identity follows:∫

G
M(g)dν(g) = 1 , dν(g) := dµ(g)/cM . (14)

For instance, in the case of a square-integrable unitary irreducible representation
U : g 7→ U(g), let us pick a unit vector |ψ〉 for which cM =

∫
G dµ(g)|〈ψ|U(g)ψ〉|2 < ∞, i.e.,

|ψ〉 is an admissible unit vector for U. With M = |ψ〉〈ψ|, the resolution of the identity (14)
provided by the family of states |ψg〉 = U(g)|ψ〉 reads

∫
G
|ψg〉〈ψg|

dµ(g)
cM

= 1 . (15)

Vectors |ψg〉 are named (generalized) coherent states for the group G.
The Equation (14) provides an integral quantization of complex-valued functions on

group G, as follows

f 7→ A f =
∫

G
M(g) f (g)

dµ(g)
cM

. (16)

Furthermore, this quantization is covariant in the sense that:

U(g)A f U(g)† = AF where F(g′) = (U(g) f )(g′) = f (g−1g′) , (17)

i.e., U(g) : f 7→ F is the left regular representation if f ∈ L2(G, dµ(g)).
For the group Hdc

1 considered in this paper, an adaption of this material is necessary in
the sense that we have to replace the group Hdc

1 with its right coset Γ = R\Hdc
1 ∼ Z× SO(2),

which amounts to replacing its UIR with its projective version.

3. Overview: Weyl Operator Acting on L2(S1, dγ)

The group Hdc
1 is the set of triplets (s, m, θ) ∈ R×Z× S1 equipped with the following

Weyl–Heisenberg-like multiplication:

(s, m, θ) (s′, m′, θ′) =

(
s + s′ +

mθ′ −m′θ
2

, m + m′, θ + θ′mod 2π

)
. (18)

The neutral element is e = (0, 0, 0) and the inverse is given by

(s, m, θ)−1 = (−s,−m,−θ mod 2π) .

Let us define the representation of Hdc
1 acting on L2(S1, dγ) as:

(V(s, m, θ)ψ)(γ) = ei se−i
mθ
2 eimγψ(γ− θ) . (19)

This representation is unitary and irreducible. Due to the central parameter s ∈ R, it is
not square integrable on the group equipped with its semi-discrete Haar measure d(s, m, g),
i.e., there is no ψ ∈ L2(S1, dγ), such that ∑m∈Z

∫
R×S1 ds dθ |(ψ, (V(s, m, θ)ψ)|2 < ∞. On

the other hand, it is square integrable on the right coset R\Hdc
1 = of Hdc

1 with its center.
This right coset is identified with the phase space or discrete cylinder Γ = Z× S1. The
representation (19) induces the unitary (∼Weyl) operator U defined on Γ by the section
s = 0 on the group, i.e., U(m, θ) := V(0, m, θ):

(U(m, θ)ψ)(γ) = e−i
mθ
2 eimγψ(γ− θ) . (20)

One can show, through the use of Schur’s Lemma, that for any φ in L2(S1, dγ) the
family {U(m, θ)φ}(m,θ)∈Γ constitutes an overcomplete family resolving the identity in the
sense of Equations (2) or (14) or (15):
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∑
m∈Z

∫
S1

dθ |U(m, θ)φ〉〈U(m, θ)φ| = 1 . (21)

This implies that for any φ, ψ in L2(S1, dγ), we have:

∑
m∈Z

∫
S1

dθ |〈ψ|U(m, θ)φ〉|2 = ||ψ||2||φ||2 . (22)

The function Γ 3 (m, θ) 7→ φ(m,θ) := U(m, θ)φ is a coherent state (CS) for the group
Hdc

1 in the sense given by Perelomov [18], and the function φ is then called a fiducial vector.
The interpretation of the projection of ψ on φ(m,θ), namely

〈 φ(m,θ)|ψ〉 =
∫
S1

dγ (U(m, θ)φ)(γ)ψ(γ) =
∫
S1

dγ ei
mθ
2 e−imγφ(γ− θ)ψ(γ) , (23)

is the phase space or momentum-angular position representation of ψ with respect to the
family of coherent states φ(m,θ).

Let us now summarize the most important features of the above CS analysis of the
elements of L2(S1, dγ) resulting from the resolution of the identity (21).

Proposition 1. Let L2(Γ, d(m, θ)) be the Hilbert space of square integrable functions on Γ equipped
with its semi-discrete measure. For any function φ, ψ ∈ L2(S1, dγ), such that ||φ|| = 1, the map

L2(Γ, dγ) 3 ψ→ 〈φ(m,θ)|ψ〉 ∈ L2(Γ, d(m, θ)) (24)

satisfies the following properties:

• It is an isometry:

‖ψ‖2 =
∫
S1

dγ |ψ(γ)|2 = ∑
m∈Z

∫
S1

dθ |〈φ(m,θ)|ψ〉|
2 , (25)

• It can be inverted on its range:

ψ(γ) = ∑
m∈Z

∫
S1

dθ 〈φ(m,θ)|ψ〉φ(m,θ)(γ) , (26)

• Its range is a reproducing kernel space:

Ψ(m, θ) := 〈φ(m,θ)|ψ〉 = ∑
m′∈Z

∫
S1

dθ′ 〈φ(m,θ)|φ(m′ ,θ′)〉Ψ(m′, θ′) , (27)

where the reproducing kernel Kφ is the two-point function on the phase space:

Kφ((m, θ), (m′, θ′)) = 〈φ(m,θ)|φ(m′ ,θ′)〉 . (28)

One can show that:

Kφ((m, θ), (m′, θ′)) = A(m, m′, θ, θ′)Φ(m−m′, θ − θ′) (29)

A(m, m′, θ, θ′) = ei
m(θ−θ′)−(m−m′)θ′

2 (30)

Φ(m−m′, θ − θ′) =
∫
S1

dγ e−i(m−m′)φ(γ− (θ − θ′))φ(γ) (31)
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Let us now present a list of useful formulae for the sequel.

U†(m, θ)ψ(γ) = ei
mθ
2 e−im(γ+θ)ψ(γ + θ) = e−i

mθ
2 e−imγψ(γ + θ)

= U(−m,−θ)ψ(γ) .
(32)

U(m, θ)U(m′, θ′) = e−i
mθ′−m′θ

2 U(m + m′, θ + θ′) . (33)

U(m′, θ′)U(m, θ)U†(m′, θ′) = ei(mθ′−m′θ)U(m, θ) . (34)

U†(m, θ)U†(m′, θ′) = e−i
mθ′−m′θ

2 U†(m + m′, θ + θ′) . (35)

Tr[U(m, θ)] = δm 0δ(θ) . (36)

As was stated, any square integrable function on the circle can be used as a starting
function, i.e., a fiducial vector to build a coherent state. However, one is mostly interested
in considering fiducial vectors that have some “good” localization both in angular position
and momentum. One way of achieving this is to take the periodized version of a square
integrable function that has good localization properties on the real line (see [22], page
146, for the equivalent of the uncertainty principle on the circle). For this purpose, we use
periodization combined with the Poisson summation formula (see [22], pages 137–138). So,
let us pick a function φ that is integrable on the real line. The periodization operator Per is
defined by

(Per φ)(x) = 2π ∑
n∈Z

φ(x + 2π n) , (37)

and the application of the Poisson summation formula reads:

2π ∑
n∈Z

φ(x + 2π n) = ∑
n∈Z
F [φ](n)ei n x (38)

where F [φ] is the Fourier transform of φ, which is defined with its inverse by

F [φ](ω) =
1

2π

∫
R

d x e−iω xφ(x) , φ(x) =
∫
R

d x ei x ωF [φ](ω) . (39)

Let us present some examples of such periodizations [22] and other examples of
fiducial vectors.

• Periodized (L2 normalized ) gaussian kernel and theta function.

2π

(2π)
1
4

1√
σ

∑
n∈Z

e−
(x+2π n)2

2σ2 = 2π(2π)−
3
2 ∑

n∈Z
ei n xe−

σ2
2 n2

= (2π)−
1
2 θ

(
x

2π
,

σ√
2π

)
, (40)

where ϑ3 is the third Jacobi theta function:

ϑ3(x, s) = ∑
n∈Z

ei 2π n x eiπ s n2
. (41)

A number of authors ([9,12]) have used variants of this function as a fiducial vector
for coherent states on the circle.
The corresponding reproducing kernel for σ = 1 is:

〈φ(m,θ)|φ(m′ ,θ′)〉 =

= (2π)2 ei
m(θ−θ′)−(m−m′)θ′

2 e−
(m−m′)2

2 ∑
n∈Z

e−n2
ei n (i(m−m′)+(θ−θ′))

= (2π)2 ei
m(θ−θ′)−(m−m′)θ′

2 e−
(m−m′)2

2 ϑ

(
i(m−m′) + (θ − θ′)

2π
,

i√
π

)
.

(42)

• Periodized (L2 normalized ) Poisson kernel.
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Pσ(x) = 2 ∑
n∈Z

σ−1

(x + 2π n)2 + σ−2 =
1− r2

1− 2 r cos(x) + r2 . (43)

• Dirichlet fiducial vector (L2 normalized ).

Dn(γ) =
1√

2π(n + 1)

m=+n

∑
m=−n

ei n ϕ =
1√

2π(n + 1)
×

sin(n + 1
2 )(γ)

sin γ
2

. (44)

The corresponding reproducing kernel is:

〈φ(m,θ)|φ(m′ ,θ′)〉 =
1

2π(n + 1)
ei

m(θ−θ′)−(m−m′)θ′
2

sin((n + 1
2 )(θ − θ′))

sin( θ−θ′
2 )

. (45)

• Fejér fiducial vector.

Fn(ϕ) =
D0(ϕ) + D1(ϕ) + ... + Dn(ϕ)

n + 1
(46)

=
1

n + 1

[
sin(( n+1

2 )ϕ)

sin 1
2 ϕ

]2

=
k=n

∑
k=−n

(1− | k|
n + 1

)ei kϕ.

• Von Mises fiducial vector (L2 normalized)

φ(γ) =
eλ cos(γ)√
2π I0(2λ)

, (47)

where I0 is the modified Bessel of the first kind of zero order. The corresponding
reproducing kernel is:

〈φ(m,θ)|φ(m′ ,θ′)〉 =
ei

(m−m′)θ−m (θ−θ′)
2

2π I0(2λ)
× Im−m′(2λ) cos

(
θ − θ′

2

)
. (48)

This fiducial vector is related to the Von Mises kernel, which is widely used in the
area of circular data analysis. In the context of quantum mechanics on the circle, it was
derived by Carruthers in 1968 [1], and several other authors, including Kowalski [17] and
collaborators, have used it.

4. Quantization Operators and the Quantization Map

Following previous works [23,24], we pick a function v, called weight (but not
necessarily positive), on the phase space Γ. We then define the operator Mv acting in
L2(S1, dγ) by

Mv =
1

2π ∑
m∈Z

∫
S1

dθ v(m, θ)U(m, θ) . (49)

Proposition 2. With the assumption that the weight v has been chosen such that the operator
Mv is bounded:

(i) The operator Mv is the integral operator:

(Mvψ)(γ) =
∫
S1

dγMv(γ, γ′)ψ(γ′) , (50)

where the kernelMv(γ, γ′) is given by:
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Mv(γ, γ′) =
1

2π ∑
m∈Z

v(m, γ− γ′) ei
m(γ+γ′)

2 ≡ 1
2π

ṽp1

(
γ + γ′

2
, γ− γ′

)
. (51)

Here, ṽp1 is the inverse discrete Fourier transform of v with respect to the first variable.
(ii) The operator Mv is symmetric if—and only if—the weight satisfies:

Mv = Mv† ⇔ v(−m, γ) = v(m,−γ) . (52)

(iii) The operator Mv is trace class, and its trace is given by

Tr(Mv) = v(0, 0) . (53)

Proof. (i) The action of Mv on ψ is given by:

(Mvψ)(γ) =
∫
S1

dγ′
(

1
2π ∑

m∈Z
v(m, γ− γ′)ei

m(γ+γ′)
2

)
ψ(γ′)

=
∫
S1

dγ′Mv(γ, γ′)ψ(γ′) .

(ii) The condition that Mv be symmetric implies the following condition on the kernel:

Mv(γ, γ′) =Mv(γ′, γ)

which gives:

ṽp1

(
γ + γ′

2
, γ− γ′

)
= ṽp1

(
γ + γ′

2
,−(γ− γ′))

)
.

(iii) Therefore, the trace of Mv corresponds the integral of the kernel over its diagonal; that is:∫
S1

dγMv(γ, γ) =
1

2π

∫
S1

dγ ∑
m∈Z

v(m, 0)eimγ =
1

2π ∑
m∈Z

v(m, 0)2πδm 0 = v(0, 0).

�

In turn, one retrieves the weight v from the quantization operator Mv through a
tracing operation.

Proposition 3. The trace of the operator U†(m, θ)Mv is given by:

Tr[U†(m, θ)Mv ] = v(m, θ) (54)

Proof. To compute this trace, one uses the expansion of the kernel in terms of the orthonor-
mal Fourier basis

{
en(γ) =

1√
2π

ei nγ
}

as follows

Tr[U†(m, θ)Mv ] = ∑
n∈Z
〈 en|U†(m, θ)Mven〉 = ∑

n∈Z
〈U(m, θ) en|Mven〉

= ∑
n∈Z

∫
S1

dγ
1√
2π

ei
mθ
2 e−imγ e−i n (γ−θ) 1

2π ∑
m′∈Z

∫
S1

dθ′ v(m′, θ′)e−i
m′θ′

2 eim′γ 1√
2π

ei n(γ−θ′)

=
1

(2π)2 ∑
m′∈Z

∫
S1

dθ′ v(m′, θ′)2πδ(θ − θ′)2πδm m′

= v(m, θ).

�
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5. Covariant Affine Integral Quantization from Weight Function
5.1. General Results

We now establish general formulae for the integral quantization issued from a weight
function v(m, θ) on Γ = Z× S1, yielding the bounded self-adjoint operator Mv defined
in (49). This allows us to build a family of operators obtained from the Weyl operator
transport of Mv:

Mv(m, θ) = U(m, θ)MvU†(m, θ) . (55)

Then, the corresponding integral quantization is given by the linear map:

f 7→ Av
f =

1
2π ∑

Z

∫
S1

dγ f (m, θ)Mv(m, θ) . (56)

We then obtain the following result.

Proposition 4. Av
f is the integral operator on L2(S1, dγ)

(Av
f ψ)(γ) =

∫
S1

dγ′Av(γ, γ′)ψ(γ′) , (57)

and its kernel is given by

Av
f (γ, γ′) =

1
2π ∑

n∈Z
F(γ− γ′, n)v(n, γ− γ′)ei n (γ+γ′)

2 , (58)

where F(ϕ, k) is the Fourier transform of f with respect to the angle variable and the inverse
(discrete) Fourier transform in the momentum variable,

F(ϕ, n) =
1

2π ∑
k∈Z

∫
S1

dθ f (k, θ)ei(kϕ−nθ) (59)

Proof. The calculation of the kernel of the integral operator Av
f goes through the following steps.

(Av
f )(ψ)(γ) =

1
2π ∑

m∈Z

∫
S1

dθ f (m, θ)
(
Mv(m, θ)ψ

)
(γ)

=
1

(2π)2 ∑
m∈Z

∑
n∈Z

∫
S1

dθ
∫
S1

dα f (m, θ)v(n, α)
(

U(m, θ)U(n, α)U†(m, θ)ψ
)
(γ)

=
1

(2π)2 ∑
m∈Z

∑
n∈Z

∫
S1

dθ
∫
S1

dα f (m, θ)v(n, α)ei(mα−nθ)(U(n, α)ψ)(γ)

=
1

(2π)2 ∑
m∈Z

∑
n∈Z

∫
S1

dθ
∫
S1

dα f (m, θ)v(n, α)ei(mα−nθ)e−i
nα
2 ei nγψ(γ− α)

=
1

(2π)2 ∑
m∈Z

∑
n∈Z

∫
S1

dθ
∫
S1

dγ′ f (m, θ)v(n, γ− γ′)ei(m(γ−γ′)−nθ)e−i
n(γ−γ′)

2 ei nγψ(γ′)

≡
∫
S1

dγ′
{

1
2π ∑

n∈Z
F(γ− γ′, n)v(n, γ− γ′)ei n (γ+γ′)

2

}
ψ(γ′)

�

One easily determines that f = 1 gives F(ϕ, k) = 2πδ(ϕ)δk 0. Inserting this in (58) gives:

Av
1 (γ, γ′) =

1
2π ∑

n∈Z
2πδ(γ− γ′)δn 0v(n, γ− γ′) ei n (γ+γ′)

2 = δ(γ− γ′)v(0, 0) = δ(γ− γ′) (60)

for v(0, 0) = 1.
Covariance in the sense given by Equation (17) is easily proven in the present case.
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Proposition 5. The quantization map f 7→ Av
f is covariant with respect to the action of the

representation V; that is,
V Av

f V† = Av
V f (61)

where (V(s, m, θ) f )(n, ϕ) = f (n−m, ϕ− θ) is the induced action on the phase space.

Let us summarize the above set of results.

Proposition 6. Let v(m, θ) be a weight function on Γ = Z× S1 obeying

v(0, 0) = 1 , v(−m, γ) = v(m,−γ) , (62)

and such that the operator Mv defined in (49) is bounded. The operators Mv(m, θ) =
U(m, θ)MvU†(m, θ) are bounded self-adjoint, resolving the identity

1
2π ∑

Z

∫
S1

dθ Mv(m, θ) = 1 (63)

and yielding a covariant integral quantization of functions (or distributions) on the phase space Γ.

In the sequel, we suppose that the choice of a weight function complies with the
conditions of Proposition 6.

5.2. Quantization of Separable Functions

As a first application, we consider the quantization of a separable function:

f (k, θ) = g(k) h(θ) . (64)

In this case, the function F in (58) and the integral kernel read as

F(γ− γ′, n) =
1

2π ∑
k∈Z

∫
S1

dθ g(k)h(θ)ei(k(γ−γ′)−nθ) = g̃(γ− γ′)ĥ(n) , (65)

Av
gh(γ, γ′) = g̃(γ− γ′)

1
2π ∑

n∈Z
ĥ(n)v(n, γ− γ′)ei n (γ+γ′)

2 . (66)

5.3. Quantization of Functions of Momentum Only

The restriction of (65) and (66) to a function of momentum only, f (m, θ) = g(m), yields
for the function F and the corresponding integral kernel:

F(γ− γ′,−n) = g̃(γ− γ′)δn 0 , (67)

Av
g (γ, γ′) =

1
2π ∑

n∈Z
g̃(γ− γ′)δn 0v(n, γ− γ′)e−i n (γ−γ′)

2

=
1

2π
g̃(γ− γ′)v(0, γ− γ′) ,

(68)

where g̃(γ) = ∑m∈Z g(m)eimγ. This results in the following action of the operator Av
g :

(Av
g ψ)(γ) =

1
2π

∫
S1

dγ′ g̃(γ′ − γ)v(0, γ− γ′)ψ(γ′) . (69)

Let us give some elementary examples:

• Angular momentum g(m) = m, through integrating parts and appropriate derivability
properties of the weight function,
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(Av
mψ)(γ) =

1
2π ∑

m∈Z

∫
S1

dγ′
(

∂

−i∂γ′
eim(γ−γ′)

)
v(0, γ− γ′)ψ(γ′)

=
1

2π ∑
m∈Z

∫
S1

dγ′eim(γ−γ′)
{
−i ∂

∂γ′
− ∂

∂γ′
[iv(0, γ− γ′)]

}
ψ(γ′)

=

(
−v(0, 0) i

∂

∂γ
− ∂

∂γ
[iv(0, γ)]γ=0

)
ψ(γ) =

(
−i ∂

∂γ
− ∂

∂γ
[iv(0, γ)]γ=0

)
ψ(γ) ,

and so, with the definition

Ω(γ) := v(0, γ) , Ω(0) = 1 , (70)

Av
m = −i ∂

∂γ
− ∂

∂γ
[iv(0, γ)]γ=0 ≡ L−Ω′(0) . (71)

Hence, with a weight function obeying v(0, γ)]γ=0 = Ω′(0) = 0, we retrieve the usual
angular momentum operator L = −i ∂

∂γ .
• Square angular momentum g(m) = m2. Using similar methods and assumptions on

the weight function, we find

(Av
m2 ψ)(γ) =

1
2π ∑

m∈Z

∫
S1

dγ′
(
− ∂2

∂γ′ 2
eim(γ−γ′)

)
v(0, γ− γ′)ψ(γ′)

=
1

2π ∑
m∈Z

∫
S1

dγ′eim((γ−γ′){− ∂2

∂γ′ 2
[v(0, γ− γ′)ψ(γ′)]

=

(
−Ω(0)

∂2

∂γ 2 + 2Ω′(0)
∂

∂ γ
−Ω′′(0)

)
ψ(γ) .

Finally,

Av
m2 = L2 + 2i

∂

∂γ
Ω′(0) L−Ω′′(0) . (72)

Remark 1. At this point, it is valuable to compare the above quantization of functions defined on
the discrete cylinder Γ = Z× S1 with the quantization of the same functions defined on the cylinder
C := R× S1, for instance that one using De Bièvre or similar coherent states on the circle (see [16]
and references therein). Both approaches yield similar results (up to an additive constant) for the
classical momentum, i.e., the angular momentum, and its square, i.e., the kinetic energy, of a particle
moving on the circle. Is it a kind of elementary illustration of Hamiltonian reduction in the sense of
Marsden and Weinstein [25]?

5.4. Quantization of Function of Angular Position Only

We now turn to the quantization of a function of the position only, f (m, θ) = h(θ). From

f̃ (γ− γ′, n) = δ(γ− γ′)ĥ(n) , (73)

we obtain for the integral kernel:

Av
h (γ, γ′) = 2πδ(γ− γ′) ∑

n∈Z
ĥ(n)v(n, γ− γ′)ei n (γ+γ′)

2 . (74)

This yields the multiplication operator

(Av
h ψ)(γ) =

(
1

2π ∑
n∈Z

ĥ(n)v(n, 0)ei nγ

)
ψ(γ) := hv(γ)ψ(γ) . (75)
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We observe that the coefficients of Fourier series of the factor hv(γ) are the those of
the original h multiplied by v(n, 0).

6. Semi-Classical Portraits

Given a function v(m, θ) on the phase space Γ, normalized at v(0, 0) = 1, and yielding
a positive unit trace operator, i.e., a density operator, Mv , the quantum phase space portrait
of an operator A on L2(Γ, dγ) reads as:

Ǎ(m, θ) := Tr
(

A U(m, θ)MvU†(m, θ)
)
= Tr

(
AMv(m, θ)

)
. (76)

The most interesting aspect of this notion in terms of probabilistic interpretation holds
when the operator A is precisely the quantized version Av

f of a classical f (m, θ) with the
same function v (actually, we could define the transform with two different ones, one for
the “analysis” and the other for the “reconstruction”). Then, with the use of the composition
rule (33), we compute the transform:

f (m, θ) 7→ f̌ (m, θ) ≡ Ǎv
f (m, θ) = Tr

(
Av

f Mv(m, θ)
)

=
1

2π ∑
m′∈Z

∫
S1

dθ′ f (m′, θ′)Tr
(

U(m′, θ′)MvU†(m′, θ′)U(m, θ)MvU†(m, θ)
)

=
1

2π ∑
m′∈Z

∫
S1

dθ′ f (m′, θ′)Tr
(
Mv U(m−m′, θ − θ′)MvU(−(m−m′),−(θ − θ′))

)
=

1
2π ∑

m′∈Z

∫
S1

dθ′ f (m−m′, θ − θ′)Tr
(
Mv U(m′, θ′)MvU†(m′, θ′)

)
=

1
2π ∑

m′∈Z

∫
S1

dθ′ f (m−m′, θ − θ′)Tr
(
Mv Mv(m′, θ′)

)
.

Finally, we get:

Proposition 7. The semi-classical portrait of the operator Av
f with respect to the weight v is given by:

f̌ (m, θ) =
1

2π ∑
m′∈Z

∫
S1

dθ′ f (m−m′, θ − θ′)Tr
(
Mv(m′, θ′)Mv

)
. (77)

This expression, which can be viewed as a convolution on the phase space, has the
meaning of an averaging of the classical f . The function

(m, θ) 7→ Tr
(
Mv(m, θ)Mv

)
, (78)

is a true probability distribution on Γ, i.e., it is positive and with integral on Γ equal to
1, as demonstrated by the resolution of the identity and the fact that Mv is chosen as a
density operator. Expression (78) is actually a kind of Husimi function. The expression of
Tr(Mv(m, θ)Mv) is easily derived, and reads as

Tr
(
Mv(m, θ)Mv

)
=

1
2π ∑

n∈Z
〈 en|

(
Mv(m, θ)Mv

)
en〉

=
1

2π ∑
m′∈Z

∫
S1

dθ′|v(m′, θ′)|2ei (mθ′−m′θ) .
(79)

Integrating this expression on Γ, we get 1, which means that 1̌ = 1, as expected.
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7. Quantization with Various Weights

7.1. Weight Related to Coherent States for Hdc
1

The weight vψ corresponding to the projection operator |ψ〉〈ψ| of a square integrable
function ψ, with unit norm, on S1 is found through the trace formula given by Proposition 3:

vψ(m, θ) = Tr[U†(m, θ)|ψ〉〈ψ|] = 〈U(m, θ)ψ|ψ〉 (80)

In this case, from vψ = 〈U(m, θ)ψ|ψ〉, and from the Fourier expansion of ψ ∈ L2(S1, dγ),

ψ = ∑
m∈Z

ψ̂(m)em , ψ̂(m) = 〈em|ψ〉 =
∫
S1

dγ
e−imγ

√
2π

ψ(γ) , (81)

for Ωψ(γ) = vψ(0, γ), we have:

Ωψ(γ) = 〈U(0, γ)ψ|ψ〉 = ∑
m∈Z

eimγ|ψ̂(m)|2 =
〈

eimγ
〉
|ψ̂|2

, (82)

Ω′ψ(0) = i ∑
m∈Z

m |ψ̂(m)|2 = i〈m〉|ψ̂|2 , (83)

Ω′′ψ(0)) = − ∑
m∈Z

m2|ψ̂(m)|2 = −〈m2〉|ψ̂|2 , (84)

where 〈·〉|ψ|2 means the average of the random variable “·” with respect to the discrete
probability distribution Z 3 m 7→ |ψ̂(m)|2 (ψ has unit norm). We then derive the following
quantizations of the angular momentum, of its square, and a function of the angle only.

• g(m) = m, and from (71), we get:

A
vψ
m = −i ∂

∂ γ
+ 〈m〉|ψ̂|2 = L + 〈m〉|ψ̂|2 . (85)

• g(m) = m2 and from (72), we get:

A
vψ

m2 = L2 + 2〈m〉|ψ̂|2 L + 〈m2〉|ψ̂|2 . (86)

• h(θ) and from (80) we get the multiplication operator:

(
A

vψ

h φ
)
(γ) =

[
∑

m∈Z
ĥ(m) 〈U(m, 0)ψ|ψ〉 eimγ

]
φ(γ)

=

[
∑

m∈Z
ĥ(m) 〈e−imγ〉|ψ|2 eimγ

]
φ(γ) .

(87)

Note that for the CS weight (80), the expression (78) Tr(Mv(m, θ)Mv) is the Fourier
transform of the Husimi function associated with ψ.

7.2. Weight Related to the Angular Parity Operator

The weight vP corresponding to the parity operator Pψ(γ) = ψ(2π − γ) on a square
integrable function ψ on S1 is simply:

vP(m, θ) = 1 . (88)
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Proof.

2 Tr[U†(m, θ)P] = 2 ∑
n∈Z
〈 en|U(m, θ)†P en〉

= 2
1

2π ∑
n∈Z

∫
S1

dγe−i nγe−i
mθ
2 e−imγe−i n(θ+γ) = 2

1
2π ∑

n∈Z

∫
S1

dγe−im(γ+ θ
2 )e−i n(θ+2γ)

= 2
1

2π

∫
S1

dγ e−im(γ+ θ
2 )2πδ(2γ + θ) = 1 .

�

Defining a Wigner-like distribution of ψ on the phase Z× S1 as

Wψ(m, θ) =
1

2π

∫
S1

dγ e−im γψ
(

θ − γ

2

)
ψ
(

θ +
γ

2

)
, (89)

let us see how it is linked to the parity operator P and its corresponding uniform weight
vP(m, θ) = 1. This was derived by Mukunda in 1979 [3]. It is interesting to compare
the following result derived from the Hdc

1 symmetry with the one issued from the Weyl–
Heisenberg H1 symmetry [26].

Proposition 8. The Wigner-like distribution of ψ on the phase Z× S1 is the mean value ×1/2π
of the Weyl–Heisenberg transport of the parity operator in the state ψ :

Wψ(m, θ) =
1

2π
〈ψ|P(m, θ)ψ〉 , with P(m, θ) = U(m, θ)PU(m, θ)† . (90)

Proof.

Wψ(m, θ) =
1

2π
〈ψ|P(m, θ)ψ〉 = 1

2π
〈ψ|U(m, θ)PU†(m, θ)ψ〉

=
1

2π
〈U†(m, θ))ψ|PU†(m, θ)ψ〉

=
1

(2π)2

∫
S1

dγ ei
mθ
2 eimγψ(γ + θ)×

× ∑
n∈Z

∫
S1

dϕ ei n γe−i
nϕ
2 e−i

mθ
2 e−im (γ−ϕ)ψ(γ− ϕ + θ)

=
1

(2π)2

∫
S1

dγ
∫
S1

dϕ eim ϕψ(γ + θ)ψ(γ− ϕ + θ) ∑
n∈Z

ei n(γ− ϕ
2 )

=
1

(2π)2

∫
S1

dγ
∫
S1

dϕ eim ϕψ(γ + θ)ψ(γ− ϕ + θ) (2π) δ
(

γ− ϕ

2

)
=

1
2π

∫
S1

dϕ eim ϕψ
(

θ +
ϕ

2

)
ψ
(

θ − ϕ

2

)
.

�

Given a state ψ, one can also show that its Wigner distribution can be retrieved through
the symplectic Fourier transform of its reproducing kernel; that is:

1
(2π)2 ∑

m∈Z

∫
S1

dγ ei (m
′θ−mθ′)〈φ(m′ ,θ′)|ψ〉

=
1

(2π)2 ∑
m′∈Z

∫
S1

dθ′ ei (m
′θ−mθ′)

∫
S1

dγ ei
m′θ′

2 e−im′γψ(γ− θ′)ψ(γ)

=
1

(2π)2

∫
S1

dθ′ e−imθ′
∫
S1

dγ ψ(γ− θ′)ψ(γ)2πδ

(
θ +

θ′

2
− γ

)
=

1
2π

∫
S1

dθ′ e−imθ′ ψ

(
θ − θ′

2

)
ψ

(
θ +

θ′

2

)
.
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Remark 2. We observe that the Wigner function for ψ, which is given in Equation (89), is the
m-th Fourier coefficient of the 2π-periodic complex valued function ψ

(
θ − ·2

)
ψ
(
θ + ·

2
)
. Due to

Equation (63) and the normalization ‖ψ‖2 = 1, we have

1
2π ∑

Z

∫
S1

dθ Wψ(m, θ) = 1 . (91)

Hence, as in the case of the standard phase space R×R, it is a normalized, not necessarily
non-negative distribution on the discrete cylinder [3]. However, while the Wigner function for the
former case is non-negative for Gaussian states, and more generally for standard coherent states.
This is not true in the case of the discrete cylinder, as is well asserted by the recent study [17] on the
circular CS, the Gaussian CS and the Gaussian–Fourier on the circle. As a matter of fact, it was
proved in [27] that the Wigner function of a pure state |ψ〉 is non-negative if—and only if—|ψ〉 is
an eigenstate of the angular momentum operator.

In this case of unit weight vP = 1, we trivially have for Ω(γ) = vP(0, γ) = 1:
Ω′(γ) = Ω′′(γ) = 0. Hence, for the quantizations of elementary functions, we get

• g(m) = m, AvP
m = L,

• g(m) = m2, AvP

m2 = L2,
• h(θ),

(AvP
h ψ)(γ) =

(
∑

m∈Z
ĥ(m)

eimγ

√
2π

)
ψ(γ) = h(γ)ψ(γ) . (92)

which means that:

(AvP
sin θψ)(γ) = sin γ ψ(γ) , (AP

cos θψ)(γ) = cos γ ψ(γ) . (93)

In this case, we can consider the position operator through the multiplication by the
smooth Fourier exponential eiγ.

Alternatively, we can quantize the periodized angle function (PerA)(θ). One finds
the multiplication operator defined by the same discontinuous (PerA)(γ). There is no
regularization. On the contrary, the choice of a smooth weight function allows us to obtain
a multiplication via smooth regularization of this angle function.

Finally, for the angular parity weight, the expression in Equation (78) reduces to

Tr
(
MvP(m, θ)MvP

)
= δm0δ(θ) .

In this case, the semi-classical portrait of AvP
f is f , f̌ (m, θ) = f (m, θ).

8. Conclusions

In this paper, we have established a covariant integral quantization for systems moving
on the circle with integral momentum, i.e, for systems whose phase space is the discrete
cylinder Z× S1. The symmetry group of this phase space is the discrete and compact
version of the Weyl–Heisenberg group, namely the central extension of the abelian group
Z× SO(2), and the phase space can be viewed as the right coset of the group with its
center. The existence of a non-trivial unitary irreducible representation of this group on the
phase space, as acting on L2(S1), allowed us to derive interesting results. First, we have
established the concomitant resolution of the identity and subsequent properties, such as
the Gabor transform on the circle and its inversion, the reproducing kernel, and the fact
that any square integrable function on the circle is a fiducial vector. Moreover, picking
a weight function on the discrete cylinder with suitable properties allows us to build a
bounded self-adjoint operator on L2(S1). The Weyl transported versions of this operator
yield a resolution of the identity and the subsequent covariant quantization of functions or
distributions defined on the discrete cylinder.



Quantum Rep. 2022, 4 377

There are noticeable results related to the quantization of a point (m, θ) in the phase
space according to two standard choices of the weight.

• With the parity weight, the quantization of the momentum is the expected angular
momentum operator L.

m 7→ m̂ = L , Lψ(γ) = −i ∂

∂γ
ψ(γ) . (94)

while the quantization of the angle yields the multiplication operator via the angle.

θ 7→ θ̂ , θ̂ψ(γ) = γψ(γ) . (95)

This is, of course, unacceptable. Alternatively, one can quantize the periodized an-
gle function (PerA)(θ). One finds the multiplication operator defined by the same
discontinuous (PerA)(γ). There is no regularization.

• With the coherent state weight, one obtains the quantization of the momentum as the
usual L plus an additional term, i.e., a kind of covariant derivative on the circle whose
topology is now taken into account,

m 7→ m̂ = L + 〈m〉|ψ|2 , (96)

whereas the quantization of the periodized function theta leads to its smooth regularization,

(PerA)(θ) 7→
[

∑
m∈Z

ĥ(m) 〈e−imγ〉|ψ|2 eimγ

]
φ(γ) . (97)

In forthcoming work, we will extend the results of the present paper in three directions.

• Analyzing circular data (see, for instance, [28–30]). We expect that the formalism we
have developed above will be useful for circular data or circular statistics. Some of the
fiducial vectors we have considered here are probability densities in these areas, namely
the uniform distribution, the shifted gaussian, and the Von Mises, Fej́er and Poisson.

• Quantum systems for which the configuration space is SO(3): the group of rotations
in three dimensions [31]. In this case [32], although the corresponding phase space is
not a coset arising from a group, the Weyl formalism still applies.

• Stellar representation. In forthcoming work [33], we intend to link this formalism for
both SO(2) and SO(3) to the so-called stellar representations [34,35] .
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Appendix A. Some Fiducial Vectors & Reproducing Kernels

For simplicity in the table we denote A(m, m′, θ, θ′) by A:

Fiducial Vector Reproducing Kernel

General φ(γ) 〈φ(m,θ)|φ(m′ ,θ′)〉

Constant 1√
2π

δm m′ eim (θ−θ′)

Basis 1√
2π
× ei nγ A δm m′

Shifted gaussian (2π)−
1
2 θ
(

γ
2π , σ√

2π

)
4π2 A e−

(m−m′ )2
2 ∑n∈Z e−n2

ei n (i(m−m′)+(θ−θ′))

Dirichlet
sin(n+ 1

2 )ϕ

sin 1
2 ϕ

A
2π(n+1)

sin((n+ 1
2 )(θ−θ′))

sin( θ−θ′
2 )

Fejer 1
n+1

[
sin(( n+1

2 )γ)

sin 1
2 γ)

]2
A ∑k=n

k=−n

(
1− | k|

n+1

)(
1− | k−(m−m′)|

n+1

)
ei k(θ−θ′)

Von Mises eλ cos(γ)√
2π I0(2λ)

A
2π I0(2λ)

Im−m′
(

2λ cos
(

θ−θ′
2

))
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