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Abstract: Based on the axioms of quantum theory, we identify a class of topological singularities that
encode a fundamental difference between classic and quantum probability, and explain quantum
theory’s puzzles and phenomena in simple mathematical terms so they are no longer ‘quantum para-
doxes’. The singularities provide also new experimental insights and predictions that are presented
in this article and establish a surprising new connection between the physical and social sciences.
The key is the topology of spaces of quantum eventsand of the frameworks postulated by these axioms.
These are quite different from their counterparts in classic probability and explain mathematically
the interference between quantum experiments and the existence of several frameworks or ‘violation
of unicity’ that characterizes quantum physics. They also explain entanglement, the Heisenberg
uncertainty principle, order dependence of observations, the conjunction fallacy and geometric
phenomena such as Pancharatnam–Berry phases. Somewhat surprisingly, we find that the same topo-
logical singularities explain the impossibility of selecting a social preference among different individual
preferences: which is Arrow’s social choice paradox: the foundations of social choice and of quantum
theory are therefore mathematically equivalent. We identify necessary and sufficient conditions
on how to restrict experiments to avoid these singularities and recover unicity, avoiding possible
interference between experiments and also quantum paradoxes; the same topological restriction is
shown to provide a resolution to the social choice impossibility theorem of Chichilnisky.

Keywords: social choice; topological singularities; unicity assumption; quantum events; framework
selection

1. Introduction

Quantum physics is the most successful scientific theory of all time, having emerged
less than a century ago from axioms created by Born [1], Dirac, [2] and von Neumann [3].
Based on the same axioms, we identify here a class of topological singularities that encode
the fundamental difference between classic probability and quantum probability, and
explain quantum theory’s puzzles and phenomena in simple and rigourous mathematical
terms so in this sense they cease to be ‘quantum paradoxes’. The singularities provide
also new experimental insights and predictions that are presented in this article as well
as a surprising new connection between the physical and social sciences. The key is the
topology of spaces of quantum events and of the frameworks that are postulated by the
quantum axioms, which are quite different from their counterparts in classic physics.

Events are physical phenomena that either occur or do not occur. They are central to any
probability theory. In classic probability all experiments are part of one large experiment
and events are described within one sample space with a single basis of coordinates or
framework (Events in classic probability theory are measurable sets such as the Borelian
sets in Rn. Events in quantum probability are quite different): this is the unicity assumption
of classic physics (Griffiths, 2003 [4]). The space of all events has no singularity. In quantum
probability, instead, quantum events are projection maps on a Hilbert space. Quantum theory
considers all possible experiments on a physical system and breaks tradition by explicitly
accepting that there may be no universal experiment and no single framework to describe all

Quantum Rep. 2022, 4, 201–220. https://doi.org/10.3390/quantum4020014 https://www.mdpi.com/journal/quantumrep

https://doi.org/10.3390/quantum4020014
https://doi.org/10.3390/quantum4020014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0000-0003-2627-9962
https://doi.org/10.3390/quantum4020014
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/article/10.3390/quantum4020014?type=check_update&version=1


Quantum Rep. 2022, 4 202

observed events (In the famous double-slit experiment, light is observed both as particles
and waves. Superposition implies the possibility of having a proposition and its opposite).
The multiplicity of frameworks in quantum theory violates unicity: there may be no unique
basis of coordinates to describe the results of all possible experiments on a physical system
and the violation emerges from the fact that the space of quantum events has singularities.
When two frameworks or coordinate systems fail to be orthogonal to each other they give
rise to so-called ‘interaction’ or ‘interference’ among experiments that is at the heart of
quantum theory and distinguishes it from classic physics; a classic example is the two hole
experiment discussed below, e.g., Griffiths, 2003 [4]; Gudder[5]. As seen in the examples
of the last section, the matter has further ramifications as different frameworks lead to
Heisenberg uncertainty and order dependence of experiments.

This article explains, in simple mathematical terms, the genesis of interference, where
it comes from, and in particular, when and how it can be avoided. For example, it is
well known that when all experiments under consideration are part of a single larger
experiment, the unicity of classic physics is recovered within quantum theory, in this case
experiments do not interfere and are consistent with each other. Being part of a larger
experiment is a sufficient condition to eliminate interference. Is it possible to find necessary
as well as sufficient conditions on the range of acceptable quantum experiments to recover
unicity? We show that the topological structure of the spaces of quantum events —which
are also the propositions of quantum logic—explains why experiments interfere, why
we typically have no common frameworks, and why quantum logic is more complex
and richer than the binary logic of classic physics [5]. We find a necessary and sufficient
condition that, when used to restrict the domain of acceptable experiments, ensures that
one can select a single framework for all experiments thus eliminating interference. This
condition restricts appropriately the domain of experiments so they are consistent and
do not interfere with each other. It turns out that this topological restriction by itself,
creates a connection between quantum theory and social choice theory, a rather unexpected
connection. The necessary and sufficient condition that eliminates interference between
experiments turns out to be the same as the restriction required to resolve Arrow’s classic
impossibility theorem in social choice (Arrow [6]) allowing us to aggregate individual
into social preferences. It was shown in 1980 that Arrow’s impossibility theorem has a
topological structure, see Chichilnisky [7,8]) and here we show that the same topological
structure is at the core of the paradoxes of quantum theory. The last section illustrates the
theorems and discusses simple and practical examples and new experimental predictions,
examples of interference, order dependence of experiments, Heisenberg’s uncertainty
principle [5,9] and Pancharatnam-Barry geometric phases [10] all of which have a similar
topological origin, and their connection with the topology of spheres.

From the outset we note that the case of infinite dimensional Hilbert spaces with
complex parameters (which is quite standard) is not included in this paper in order to
facilitate the presentation of the topological results. It can be included however at the cost
of losing simplicity and a transparent connection to the topology of social choice. Please
see also for more of a discussion in Section 3 below.

2. Organization

We start by stating the axioms of quantum theory created by von Neumann. Based
on these axioms we define and analyze the spaces of quantum events and of frameworks,
showing that their topological structure separates classical events from the events of
quantum physics. We then establish the impossibility of selecting a common framework
for all experiments, based on the topological singularities within quantum events and
frameworks. The same singularities are behind the impossibility of selecting a common
social preference to different individual preferences: this is the social choice impossibility theorem.
We establish that a resolution to the social choice problem is the same as a resolution to
the violation of unicity, and that both cases require the same topological restriction on the
domains of experiments and of preferences, respectively. Finally, we illustrate the results
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with examples of interference, order dependence of experiments, Heisenberg’s uncertainty
principle, and Pancharatnam—Barry phases.

3. The Axioms of Quantum Theory

We start with key concepts in quantum theory and show how they differ in topological
terms from their classical counterparts. In classic mechanics there are three important
components: states, observables (dynamic variables, such as events) and dynamics. The same
three components are present in quantum mechanics, but they are described by different
objects. In classic mechanics the three components are described by points, functions
and trajectories, while in quantum mechanics they are described by entities in a Hilbert
space. This fundamental difference arises in great measure because the two theories have
different goals, which can be summarized as follows: “The main goal of classic probability
is the construction of a model for a single probabilistic experiment—or subexperiments of a single
experiment. Quantum theory is based on Hilbert space probability theory and is much more
ambitious. It seeks a mathematical model for the class of all experiments that can be performed on a
physical system. Why cannot we construct a classical model for each experiment and then “paste”
all the models together? The problem is that we do not know how to do the pasting since we do not
know how the various experiments interact of interfere with each other. The pasting is automatically
done by the Hilbert space structure.” S. Gudder [5] 1988, (p. 68).

While classic physics attempts to explain the universe, quantum theory shares with
general relativity an emphasis on the observer. For this reason “quantum events” are
defined as maps rather than as measurable sets of objects as in classic physics. Quantum
events are a key concept in this article, and they are identified with projection maps (see
Axiom A below), and with the subspaces of a Hilbert space onto which the projections map.
Frameworks are orthonormal bases of coordinates of the Hilbert space and can be identified
with subspaces of the spaces of events. When two frameworks fail to be orthonormal the
corresponding experiments are said to interfere with each other. In classic physics things
are different: there is only one experiment—the ‘Universe’—and one single framework,
so quantum interference is impossible: this is the “unicity hypothesis” that is violated in
quantum theory. A key difference is therefore that quantum theory does not assume a
single framework nor a single sample space.

In the following we consider Hilbert spaces of finite dimension n, where n is arbitrarily
large, namely euclidean spaces Rn, which correspond to physical systems with n degrees of
freedom. Under appropriate assumptions the theory presented here can be made applicable
to infinite dimensional Hilbert spaces. The finite dimensional case is useful to simplify
the presentation and to show that fundamental properties of quantum theory occur even
within finite dimensional real Hilbert spaces, even though full generality requires infinite
dimensional Hilbert spaces with complex coefficients. Quantum Theory uses infinite
dimensional complex Hilbert Spaces which are important to represent certain notions such
as wave particle duality. Here, we focus instead on topological issues, and for those, in view
of Bohr’s and von Neumann’s axioms, it suffices to focus on finite dimensional real spaces.
The reason is that “observables” in quantum theory are by definition self-adjoint operators,
this is von Neumann’s first axiom of quantum theory (see Gudder [5]) and it explains
the focus on (a) finite dimensions and (b) real spaces. This is because quantum theory’s
operators are self-adjoint (observables) and an operator is self-adjoint if and only if it is
unitarily equivalent to a real valued multiplication operator (see Gudder [5]). Furthermore,
the structure of self-adjoint operators in infinite dimensional Hilbert spaces essentially
resembles the finite dimensional cases. Therefore, by the above observations it suffices to
focus here on (a) finite dimensional and (b) real spaces (see Gudder [5]).

To provide a clear foundation and highlight the differences, we start from basic
concepts of probability theory and show the difference between classic probability and
quantum probability (Observe that the violation of unicity that characterizes quantum
theory occurs both in finite as well as in infinite dimensional spaces). In classic theory, the
set of individual outcomes of a probabilistic experiment is called a sample space and it is a



Quantum Rep. 2022, 4 204

non-empty set denoted X. ∑ denotes a σ−algebra of subsets of X, which is the collection
of outcomes sets to which probabilities can be assigned, the pair (X, ∑) is called a measurable
space, and the sets in the σ−algebra ∑ are also called ‘events’. By definition the events
are all included within the common sample space X, which is the union of the outcome
sets. To facilitate the comparison between classic and quantum theory, the sample space X
can be assumed to be a Hilbert space with an attendant orthornomal basis of coordinates;
with finite dimensions the sample space is therefore Rn. The basic postulate of unicity that
divides classic from quantum physics is as follows:

Definition 1. The Unicity postulate of classic physics is the requirement that all events are
included in one single sample space X.

Assume that the sample space X is a Hilbert space of dimension n, so that X = Rn.

Example 2. In classic probability all events are subsets of a single sample space X = Rn; the space
of all events is denoted ∑ and is the σ−algebra of Borelian subsets of Rn, so the union of all events
is the single sample space Rn. In classic physics, therefore, unicity is satisfied.

Below we show the difference between classic probability and quantum probability.
For a presentation of quantum probability theory, see also Griffiths, 2003 [4].

The following four axioms of quantum theory were introduced by von Neumann [3]
and highlight the difference between classic and quantum theories.

Von Neumann’s Axioms for Quantum Theory

(A.1) The states of a quantum system are unit vectors in a (complex) Hilbert space H
(In what follows we simplify by assuming real Hilbert spaces, because the phenomena we
are interested in analysing can be found in these spaces) ,

(A.2) The observables are self-adjoint operators in H (A definition of a self adjoint
operator is in Dunford and Schwartz [11]) ,

(A.3) The probability that an observable T has a value in a Borel set A ⊂ R when
the system is in the state Ψ is < PT(A)Ψ, Ψ > where PT (.) is the resolution of the identity
(spectral measure) for T and

(A.4) If the state at time t = 0 is Ψ, then at time t it is Ψt = e−itH/hΨ where H is the
energy observable and h is Planck’s constant.

To summarize from Axiom (A.2) above, the observables or events in a quantum theory
experiment are not sets but rather self-adjoint operators T defined on the Hilbert space H.
In further detail, by Axiom (A.3) above, the results of experiments compute the probability
that the observable T has a value in the Borelian set A when the system is in state Ψ and
the probability is < PT(A)Ψ, Ψ > where PT (.) is the resolution of the identity (spectral
measure) for T ( Definitions and statements of self-adjoint operators, the spectral theorem
and the resolution of the identity (spectral measure) are in Dunford and Schwartz [11]) .

The four axioms presented above can be greatly simplified: Gudder [5] (pp. 50–53)
shows that these four axioms can be derived from a single axiom if we begin with a
probabilistic structure defined on a Hilbert space. As already mentioned, the single basic
axiom of quantum theory that separates it from classic physics pertains to the structure of
quantum events, which are observations of physical phenomena (as defined above) that
either occur or do not occur. The following is the single axiom from which the rest can be
derived Gudder [5] (pp. 50–53):

Axiom (A) The events of a quantum system can be represented by (self-adjoint) projections
on a Hilbert space.

The events in quantum theory are observables (as defined above), so quantum theory
shares with relativity the emphasis on observations and the observer (Quantum probability
theory is presented in Griffiths [4]). The axioms presented above do not specify a particular
Hilbert space in which the states are represented, nor which self-adjoint projection operator
represents a particular physical observable or event. The next step is to show how Axiom
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A determines the space of quantum events. Consider a Hilbert space H of finite dimension
n, which could be very large, H = Rn, and assume that H is spanned by an orthonormal set
of vectors V = {Vi}i=1,...,n that forms a basis for the space H (This is an arbitrary choice and
other bases can be used. The order of the vectors in the basis is not relevant). Then from
Axiom A we know that a quantum event is a (self adjoint) projection (A self adjoint projection
is similar to a product operator, like position or momentum) on a subspace of H and can be
identified by a subspace S ⊂ H spanned by a subset VS ⊂ V of basis vectors (The order of
the vectors Vi does not matter, and since we are concerned with subspaces, nor does their
orientation, as is discussed further below); in words the event occurs when an experimental
observation lies in the subspace S ⊂ H. The event S corresponds to orthogonal projections
PS whose image covers S. For each event S there is an orthonormal basis of coordinates
(Gudder 1988 [5], Griffiths 2003 [4]) that defines the subspace S (Events are identified
here with subspaces of H and are therefore given by unordered and unoriented bases of
coordinates of the subspaces. Orienting the vectors does not change the main results). If
the set V has n− 1 vectors, it defines an n− 1 dimensional subspace and together with
its orthonormal vector it defines an orthonormal base of coordinates for the entire space
Rn, which is also called a framework (The basis of coordinates need not be an ordered
set and the vectors need not be oriented). As an example if S is a subset of vectors in
the basis V, and x is an observable or experiment of our physical system, corresponding
to S is the event that occurs when a measurement of x results in a value in S, see, e.g.,
Gudder [5] (p. 52). Following the above description, a framework can be defined as an
unordered unoriented orthonormal basis of coordinates of Rn The space of frameworks
in Rn is therefore the space of all bases of coordinates (unoriented and unordered, since
the order or the orientation of the coordinate vectors of S does not alter the subspace S)
and is denoted Fn (No orientation is required, although similar results are obtained if the
frameworks are unorderd but oriented bases of coordinates).

The notions of events and frameworks just defined play a key role in quantum physics.
The concept of interference or incompatibility between experiments is a critical new idea
that distinguishes quantum probability from classic theory and is identified with the
‘violation of unicity’ (Griffith 2003 [4], Gudder 1988 [5]): “A key feature of quantum theory is
that while some events may be compatible and share the same framework, or bases of coordinates
consisting of vectors that are orthogonal to each other, other events may be incompatible and do not
share a common basis of coordinates or framework.” cf. also Busemeyer and Bruza 2012 [9].
When the various bases of coordinates that appear within several quantum experiments
include vectors that are not orthogonal to each other this causes experimental ‘weirdness’
as shown in the illustrations of the last section. It is worth noticing that as we show here
the violation of unicity can occur both in finite or infinite dimensional spaces and in real or
complex Hilbert spaces. In all cases as seen in the last section it leads to interference between
experiments, non-conmuting observations, i.e., the order of the experiments changes the
observed results, the probabilistic error known as the ”conjunction fallacy" by which two
events are deemed to be more likely to occur together than each on its own, Busemeyer
and Bruza [9], and to Heisenberg’s uncertainty principle. At the heart of quantum theory
is the lack of a common basis of coordinates for different observations, namely the lack of a
common framework for all possible experiments on a physical system. The following sections
show that this is intrinsically a topological issue.

4. Classic and Quantum Physics with n ≥ 2 Degrees of Freedom

This section illustrates fundamental differences between classic and quantum physics
that emerge from the axioms, starting from the simplest possible examples. Consider
initially physical systems with two degrees of freedom, n = 2.

Example 3. Classic physics. The simplest possible physical system has two degrees of freedom
and the Hilbert space for such systems is H = R2. In this case the space of events is the Boolean
σ−algebra of Borelian sets in R2, and the sample space is their union, namely R2. Therefore a classic
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event is a Borel set, there is a single sample space (R2) and a common framework for all events,
namely a single orthonormal coordinate basis for the space R2. Unicity is satisfied.

Example 4. Quantum physics. From Axiom (A) above, the events of a quantum system with
two degrees of freedom n = 2 are (self-adjoint)(For a definition of self-adjoint operators see Dunford
and Schwartz [11]; self adjoint operators are the closest there is to ‘multiplication’ operators that
are used to describe basic observables in physics such as position and momentum (Gudder [5]))
projections of R2, and each can be identified with a one-dimensional subspace (or line through the
origin) L in R2. The space of all quantum events Q2 in this case is the space of all one-dimensional
subspaces or lines through the origin of R2. Observe that each projection or quantum event can also
be identified with an orthonormal unordered and unoriented basis of coordinates of the space R2,
namely with a framework in R2, by adding a vector that is orthonormal to the line L in Rn (The
orthonormal bases of coordinates in R2 has two vectors: one is the vector spanning the line and the
second is an orthonormal vector. One can choose the vectors so the space of all lines is included in
the space of all orthonormal bases of vectors in R2 and the map is one to one and onto. Observe that
the bases are unordered and the vectors are unoriented) .

In summary:

Lemma 5. The space F2 of frameworks of a quantum system with two degrees of freedom (n = 2)
in R2 can be identified with the one dimensional projective space P1 of all lines through the origin in
R2, and the space P1 in turn can be identified with the unit circle S1 in R2, P1 ≈ S1 (Spanier [12],
Milnor and Stasheff [13]).

Proof. As mentioned in Example 3, each line through the origin in R2 uniquely defines an
unoriented, unordered system of coordinates in R2 namely a framework. The space of all
such lines is by definition the projective space P1, cf. Spanier [12], Milnor and Stasheff [13]
who also show the identification between P1 and S1.

The following result provides a geometric characterization of the spaces of events and
frameworks in quantum theory and in classic physics. It is based on the axioms stated
above, and uses basic definitions and properties of topological spaces. A basic definition is

Definition 6. For n > 1, and k < n, let G(k, n) be the Grassmanian manifold of k planes of
Rn. (Spanier [12], Milnor and Stasheff [13]).

Observe that when k = n− 1 , G(k, n) = Pn−1: by definition therefore G(n− 1, n) is
the n−1 projective space in Rn (For definitions and topological properties of Grassmanian
manifolds see Milnor and Stasheff, [13]).

The following summarizes and shows the geometrical differences between quantum
theory and classic physics:

Lemma 7. The space of classic events ∑ in R2 is the Boolean σ−algebra of Borel measurable
sets in R2.This is a convex space and is therefore topologically trivial (i.e., all its homotopy groups
are zero) (For definition of homotopy groups see Spanier [12]). Unicity is satisfied since there is a
unique sample space, namely R2; the space of classic frameworks has a single element, namely
a (single) basis of coordinates for R2. In contrast, the space of quantum events Q2 in R2 is the
space of all unoriented lines through the origin within two dimensional space R2 also called the
one-dimensional projective space P1; this space is the Grassmanian of 1−spaces in R2, denoted
G(1, 2), The space G(1, 2) can be identified with the unit circle S1, P1 ≈ S1 ≈ G(1, 2). When
n = 2, the space of frameworks F2 in R2 can be identified with the space of quantum events in R2,
i.e., F2 ' Q2. Both the space of quantum frameworks F2 and the space of quantum events Q2 can
be identified with the projective space P1 ≈ G(1, 2) ≈ S1. (S1 denotes the unit circle in R2. P1, S1

and G(1, 2) are not contractible.) Neither the space of quantum events nor the space of frameworks
in R2 are contractible.
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Proof. From Axiom (A) above, a quantum event in R2 is by definition a projection of R2

and therefore can be identified with a (non zero) subspace of R2 namely a line through the
origin of R2; in turn each line can be identified with a basis of coordinates in R2 as seen in
Example 4 and in Lemma 5. The rest follows immediately from classic probability theory
and the unicity postulate stated above.

Definition 8. A singularity is a non- zero element of the homology of the space of events. Since the
space of classic events is contractible it has no singularities. In quantum physics the space of events
is Q2 = S1 and therefore has one singularity.

5. n ≥ 2 Degrees of Freedom

The next step is to characterize spaces of quantum events and frameworks in systems
with n > 1 degrees of freedom, and exhibit the difference with the same concepts in
classic theory:

Definition 9. A framework in Rn is an n-dimensional unordered orthonormal basis of coordinates
of Rn. The space of frameworks in Rn is a manifold denoted Fn, and it consists of all possible
coordinate systems of R2. (No orientation is required, although similar results are obtained if the
frameworks are unordered but oriented bases of coordinates).

Lemma 10. For n > 1, the manifold Fn of all frameworks in Rn is a connected subset of the
manifold Qn of events in Rn.

Proof. Consider an event S which by Axiom (A) is a (self-adjoint) projection in Rn. When
the image of the projection is an n− 1 dimensional subspace S of Rn, define an n framework
by adding an orthonormal unit vector to the n− 1 basis of coordinates of the subspace that
represents S. This maps events, which are projections into n− 1 dimensional subspaces,
into frameworks of Rn; the map is continuous, one to one and onto the space of all n
dimensional bases of coordinates of Rn, namely the space of frameworks Fn, which is a
connected space. The manifold Fn of frameworks is therefore contained as a connected
subset of the manifold Qn of quantum events in Rn.

The following summarizes:

Theorem 11. In a physical system with n > 1 degrees of freedom the space of quantum events
Qn can be identified with the space of all subspaces of Rn and therefore can be identified with the
union of the Grassmanian manifolds G(k, n) of k dimensional subspaces of Rn ∀ k < n, Qn ≈
∪k<nG(k, n). In particular the Grassmanian G(n− 1, n) consisting of all the n− 1 subspaces of
Rn can be identified with the space Fn of all frameworks in Rn. In particular, when n = 2, the space
Q2 of quantum events of R2 equals the space of frameworks F2 of R2 and can be identified with the
projective space F2 ≈ P1 ≈ S1. When k = n− 1, G(k, n) is G(n− 1, n) the n− 1 projective space
and the space Fn of all frameworks of Rn.

Proof. This follows directly from Lemmas 7 and 9.

We analyzed the spaces of frameworks and of quantum events in Rn, n > 1, and the
topological difference between the concept of events in classic physics and in quantum the-
ory. The next sections show the critical role played by the topology of spaces of frameworks
and of spaces of events in separating quantum theory from classic physics.

Definition 12. For each n a singularity is a non-zero element of the n− th homology of the space
of events with integer coefficients. Since the space of classic events for every n > 1 is contractible, it
has no singularities. In quantum physics the space of quantum events is Qn ≈ ∪k<nG(k, n) and
therefore it has as many [singularities] as generators of the homology of Qn [12,13].
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Below we explore the practical consequences of these facts with examples illustrating
their connection with social choice theory.

6. Unicity and Restricted Domains of Experiments

Unicity plays an important role in separating classic physics from quantum theory,
and it is generally not satisfied in quantum experiments in which more than one frame-
work is needed to explain observations (Gudder [5], Griffiths [4], Busemeyer [9] . Indeed
we saw that the two theories differ in that quantum theory attempts to explain all pos-
sible experiments on a given physical system, which may require different frameworks,
while experiments in classic physics are restricted from the outset to be part of one large
experiment having a single framework. A natural question is whether it is possible to
overcome the lack of unicity in quantum theory by restricting appropriately the domain
of experiments that are performed on a physical system. There is a simple answer to this
question and it is affirmative. Restricting the domain of quantum theory experiments
to all the subexperiments of a single experiment—having a single framework—has the
desired effect. In classic physics there is a unique experiment that contains all the rest,
and from this unique experiment emerges the classic postulate of unicity. It is known that,
under the same conditions, the same is true in quantum theory: if the various experiments
within a restricted domain are all part of a single larger experiment, it is always possible
to define a common framework for all the quantum experiments, see, e.g., Gudder [5]. In
quantum theory these are called compatible experiments, Gudder [5]. Compatible observables
correspond to noninterfering measurements, Gudder [5]. In quantum logic there is a parallel
mathematical characterization of compatible observables see Gudder [5] (p. 82). Quantum
theory under these restricted conditions therefore agrees with classic theory.

The question tackled in this section is whether there are more general domains of
experiments where unicity can be recovered without requiring that all the experiments be
subsets of a single larger experiment.

In the following we characterize restricted domains of experiments where there is a
common framework for any given set of experiments within the domain, without requiring
that they are initially subexperiments of one single experiment. The ability to find a
common framework for a set of experiments decides whether or not it is possible to reduce
quantum theory to classic theory, within a restricted set of experiments. There have been
indications that this may be possible: indeed it is known that in some cases it may be
possible to ‘prepare’ appropriately the physical system before carrying out the various
experiments, so that all the experiments in the domain can be observed within a common
basis of coordinates of frameworks, see, e.g., Cerceda [14] Gudder [5] and Busemeyer and
Bruza [9] (p. 158).

What follows provides a formal approach to the same problem: we identify topological
conditions on a restricted domain of experiments that ensures the existence of a single or
common framework for all experiments within the restricted domain. A simple example
illustrates the issues:

Example 13. Consider two different bases of coordinates or frameworks in euclidean space R2

that are not orthonormal to each other (Two bases of coordinates are called orthonormal to each
other, when eachvector in one basis is either the same or orthonormal to all the vectors in the other,
for examples and a mathematical discussion see Gudder [5]). As an illustration consider the two
orthonormal coordinate systems F1 and F2 in R2 defined as F1 = {(0, 1) and (1, 0)} and F2 =
{(1, 1), (1,−1)}. F1 and F2 are two different orthonormal bases of coordinates or frameworks for R2

that are not orthonormal to each other since the vector (0, 1) is at 45◦ from the vector (1, 1). Having
two different bases of coordinates (or frameworks) that are not orthonormal to describe the same
object can create problems, since it leads to different representations for the same object since, e.g., the
vector (x, y) in F1 is (x− y, x− y) in F2. The problems can cause violation of unicity, interference
and superposition of observations, and can lead to apparent contradictions as is illustrated in the
last section of this article, which provides practical examples. Nevertheless, for any two given bases
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of coordinates in Rn such as F1 and F2 there is always a change of coordinates that maps one into
the other, i.e., there is always a way to translate or to change one basis of coordinates into the other,

denoted F1 → F2. In this case the map is given by the (self adjoint) matrix M = (
1 1
1 −1

)

that maps the two vectors (1, 0), (0, 1) into the two vectors (1, 1) and (1,−1), and more generally
(x, y) into (x + y, x − y).The matrix M can be thought of as a “dictionary” that translates one
language or framework into another. For any two given frameworks F1 and F2 therefore one can
define a common framework by selecting one of the two frameworks: in this case selecting F2 and
changing the coordinates of F1 correspondingly using the matrix M. This way, we can always define
a common framework for any vector v = (x, y) in R2: we simply consider the new vector M(v).
The experiment can now be performed in the same basis of coordinates. At the end one uses the

inverse matrix M−1 =
1/2 1/2
1/2 −1/2

to translate the results back into their original framework F1.

For those two given frameworks F1 and F2, therefore, unicity can be recovered. Allowing changes
of coordinates seems a mild and natural way to resolve the problem for having a pair of different
frameworks that are not orthogonal and thus it resolves the problem of lack of unicity for the two
given frameworks.

We will show however that this solution, while it works for any two frameworks, does
not work in general. For any two given frameworks it is possible to select one, and translate
the second into the first as shown above, but the question becomes whether one can always
select one framework for any two given frameworks and to do it consistently, therefore
resolving the lack of unicity by changes of coordinates.

In trying to do so one runs into a topological problem that identifies the nature of lack
of unicity. As we saw for any two given bases of coordinates by one can always define
a common basis of coordinates, but as we will see the change of coordinates that works
for two given bases of coordinates does not work for all others and the selection is not
consistent and continuous overall (The obvious example is when averaging the vectors in
two bases of coordinates to obtain a common basis: this works in many cases but it does
not work when the vectors one is trying to average are 180 degrees apart: if so, when one
attempts to average both vectors one gets the zero vector. What results is therefore not a
framework and the problem remains unresolved). To recover unicity one needs to be able
to select a single basis of coordinates or frameworks for any number of bases of coordinates
that may arise from different experiments in a way that (1) does not depend on the order of
the two frameworks, (2) when the original frameworks are the same, one keeps the same
framework. The map that selects a common framework for any k frameworks must be
(3) continuous, so the selection of one framework among two frameworks coming from
two different directions yields the same single outcome. In selecting a single framework,
continuity is important in order to approximate the outcome by making increasingly
accurate measurements. This is also called ‘statistical sufficiency’ and is critical for any
probabilistic theory. When continuity fails, practically identical experiments will lead to
fundamentally different results, causing by itself contradictions and ‘weird’ observations.
We need some definitions:

Definition 14. A map Φ : Xk → X is called symmetric if it does not depend on the order
of the arguments, namely Φ(x1, ..., xk) = Φ ◦ Π(x1, ..., xk), where Π is any permutation of
k > 1 elements.

Definition 15. A map Φ : Xk → X is called the identity on the diagonal if ∀x ∈ X,
Φ(x, ..., x) = x. Equivalently, Φ is the identity on the diagonal ∆ of the product space Xk, where
∆ = {(x1, ..., xk) : ∀i, j, xi = xj} when ∀k > 1, the restriction map Φ|∆(Xk) : ∆(Xk) → X is
the identify map on ∆(Xk).

Let F ⊂ Rn be the space of frameworks of Rn, n > 1.We can now define
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Definition 16. A framework selection is a way to select a single framework among any k > 2
frameworks, satisfying the conditions (1), (2) and (3) above. Formally, a framework selection is
a sequence of continuous maps {Φk}k=1,2,...that selects one framework within any set of k > 1
frameworks,where Φk : Fk→ F, (1) Φk is continuous (2) Φk is symmetric,and (3) Φk/∆(Fn)k = idk.

Based on the above example, unicity can be defined as the possibility of selecting
in a systematic way a single common framework or basis of coordinates for any set of
k > 1 frameworks.

Remark 17. Observe that when a framework selection exists, the unicity of frameworks can be
recovered by standard changes in coordinates as in Example 11 above.

Another example already mentioned is as follows

Example 18. If all experiments within a restricted domain are subsets of a single larger experiment,
then a common framework exists and unicity is satisfied, see e.g., Gudder [5] (p. 82) and see also
below. Observe that under these conditions the inclusion of each experiment as a subset of a larger
experiment provides the framework selection required.

Is it always possible to select one common framework for any set of frameworks as
defined above? In general the answer is negative. We show in the next section that it is
impossible to select a common framework for all the bases of coordinates of Rn. As shown
below the reason is topological: the ability to select one common framework among several
is a property that is only satisfied under certain topological conditions on the domain of
frameworks that arises from the various experiments.

7. Why Unicity Fails: Impossibility Theorems for Selecting Frameworks

The next step is to define restricted domains of experiments within which one can
recover unicity, and show why the recovery cannot be obtained in general. Starting with
simple examples in two dimensional spaces, we extend gradually the results to provide a
characterization that is valid for all dimensions (Under certain conditions the results can
be extended to Hilbert spaces of infinite dimensions either complex or real, which appear
naturally in physical systems with n degress of freedom evolving over time. Dynamics in
quantum theory can be formulated both in discrete and in continuous time, Gudder [5]).

First we establish that it is generally impossible to select a single common framework.
Then we identify restricted domains of experiments within which a single framework can
be selected:

Theorem 19 (Chichilnisky [7]). In experiments with two degrees of freedom where H = R2 there
is no way to select a single framework for all experiments on a physical system. Formally, there
exists no continuous function Ψ that selects one common framework Ψ : F2 × F2 → F2 that is
independent from the order of the frameworks i.e., ∀x, y ,Ψ (x, y) = Ψ(y, x) and respects unanimity,
∀x, Ψ(x, x) = x.

Proof. With two degrees of freedom the space of frameworks F2 and the space of quantum
events Q2 coincide by Lemma 5; they are both the one-dimensional projective space P1

and this space can be identified with the circle (S1 = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1}).
S1, Spanier [12], and F2 ≈ S1 ≈ P1. Therefore the theorem reduces to the non-existence
of a continuous function Ψ : S1 × S1 → S1 that is symmetric, i.e., ∀x, y Ψ(x, y) = Ψ(y, x),
and respects unanimity, i.e., ∀x, Ψ(x, x) = x. By definition, Ψ is the identity map on the
diagonal D = {(x, y) ∈ S1 × S1 : x = y} namely Ψ |D= idD (x, x) = x . For a given z ∈ S1

define A = {(x, z), ∀x ∈ S1} and B = {(z, x), ∀x ∈ S1}. Then A ∪ B can be continuously
deformed into D within S1 × S1 so by definition the degree mod 2 of the map Ψ on D must
be the same as the degree mod 2 of the map Ψ on A ∪ B:
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deg(Ψ |D) = deg(Ψ |A∪B)mod2 (1)

Degree of Ψ |D:S1 → S1 is 1 since Ψ |D is the identity map, while the degreee Ψ |A∪B
is even, since Ψ is symmetric, which is a contradiction with (1). The contradiction arises
from assuming that a map Ψ with the stated properties exists and therefore the map Ψ
cannot exist. See also [7].

The next result shows why the selection of a single framework is a topological problem,
which can only be resolved in spaces that are contractible or topologically trivial (The space
X can be euclidean, or it can be a manifold in euclidean space or a CW manifold cf [15]),
namely in spaces of frameworks that are homotopic to a point or can be continuously
deformed through themselves into a point:

Theorem 20 (Chichilnisky and Heal [15]). Let X be a manifold or CW complex (Generally one
works on CW manifolds, cf. [7]). There exists a continuous selection map Φ : Xk → X satisfying
axioms (1) (2) and (3) above, if and only if the space X is topologically trivial or contractible, i.e., X
is homotopically equivalent to a point.

Proof. See Chichilnisky and Heal [15].

Theorem 21 (Chichilnisky [7]). There is no continuous function Ψ : (G(n− 1, n))k → (G(n−
1, n) for any n > 1 that is symmetric and respects unanimity for all k > 1.

Proof. By Theorem 13 the necessary and sufficient condition for the existence of a continu-
ous map Ψ : Xk → X satisfying the conditions of symmetry and unanimity for all k > 1,
is that the space X be contractible, see Chichilnisky and Heal [15]. For every n > 1,the
Grassmanian manifold G(n− 1, n) is not a contractible space (Milnor and Stasheff [13]).
This completes the proof.

The above can be summarized as follows:

Theorem 22. Let H be a finite dimensional Hilbert space, H = Rn, and Fn the space of its
frameworks. Then Fn violates unicity, i.e. there is no way to select a single framework among
k frameworks because there exists no continuous map Φ : Fk → F selecting a common
framework in Fn for any k frameworks ∀k > 1.The space of frameworks Fk can be identified with
the Grassmanian G(n− 1, n) which is not topologically trivial as required for unicity. Violation of
unicity is therefore due to the topology of the space of frameworks Fk.

Proof. See Theorem above, and Chichilnisky [7] and Chichilnisky and Heal (The charac-
terization of the space F defined as the orbits of all orthonormal bases of coordinates of
euclidean space Rn, n ≥ 2 under the action of the symmetry group Sn on n elements is
F = S1 × S2 × ...Sn. This is in Chichilnisky [16]).

The results provided above show the topological origin of the violation of unicity. The
next step is to show that by restricting the domain of experiments it is possible to recover
unicity: indeed by Theorem 21 the topological condition of contractibility is necessary as
well as sufficient for unicity. Consider now a physical system with n degrees of freedom
and corresponding Hilbert space H = Rn.

Theorem 23. A necessary and sufficient restriction on the experiments of a quantum system with n
degrees of freedom to satisfy unicity, is that the corresponding space of frameworks Fn is topologically
trivial or contractible.

Proof. This follows from Theorem 20 above.
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8. Quantum Theory and Social Choice

The topological roots of the violation of unicity create an unexpected and fertile con-
nection between quantum theory and social choice theory. Social Choice Theory emerged
from the classic theory of elections. The work of Nicolas Marquis de Condorcet (see
Arrow [6] and de Condorcet [17]) on the theory of elections focused on explaining how
societies take into consideration the preferences of different individuals in arriving at a
social decision. Condorcet found an essential paradox that bears his name and appears in
majority decisions, that are widely used in voting within democracies. Here is a sketch
of the problem: if one individual prefers a to b and b to c, represented (a, b, c), a second
individual prefers (c, a, b), and a third prefers (b, c, a) then two out of three individuals
prefer a to b, two out of three prefer b to c and two out of three prefer c to a. By transitivity,
the choices made by majorities of two individuals are inconsistent, a majority prefers a to c
and a majority prefers c to a. Kenneth Arrow uses this ‘paradox’ as a foundation for a new
and general theory that he called Social Choice.

Social choice theory originated with Arrow’s impossibility theorem, which defined
reasonable axioms for the aggregation of individual into social preferences and proved
that they were impossible to achieve [6]. In 1980 social choice theory was redefined as
follows: one seeks to define a map Ψ that assigns a social preference to any two or more
individual preferences, formally Ψ : Pk → P where P represents a space of preferences [7,8].
Reasonable conditions are that the map Ψ must be continuous and symmetric, depending
on individual’s preferences but not on the order of the individuals, and that Ψ respects
unanimity so that if both individuals have the same preferences, the social preference is the
same. Continuity means that it is possible to approximate the social preference by taking
sufficiently accurate measurements of the individual preferences.

In 1980 the social choice problem was rewritten and given a simple geometrical
form in [7,8]. Geometrically, linear preferences are vectors in a sphere Sn, where n is the
dimension of the space of choices. When n = 1, the problem is finding a map that assigns a
single point to every two points in the circle S1 in a continuous way that is symmetric, so it
does not depend on the order of the preferences, and respects unanimity; Chichilnisky [7,8]
established that the problem has no solution: it is not possible to find such maps in the
circle S1, or in higher dimensional spheres Sn, or even in general spaces of preferences
that are co-dimension one oriented smooth foliations of Rn. (This result was extended to
necessary and sufficient conditions for the existence of such maps on manifolds of any
dimension [7,15]. Formally, the problem is the non existence of a continuous function Ψ
that assigns to k individual preferences a social preference, Ψ : Pk → P, so that (1) Ψ is
symmetric and (2) Ψ respects unanimity, as defined in the previous section. Here k > 1
represents the number of individuals and P is the space of preferences. One seeks to
define a map Ψ that assigns a common (‘social’) preference to any two or more individual
preferences) [7,8].

There is a deep connection between social choice and the topology of spheres and it
comes from the definition of preferences. Preferences are rankings or orders. A linear function
f :Rn → R defines a ranking � as follows x � y ⇔ f (x) > f (y). Linear preferences are
defined by linear functions on Rn. A linear function has by definition a constant gradient
vector in Rn; and therefore a linear preference is defined by a single unit gradient vector
in Rn. The space of linear preferences P can therefore be represented by a set of vectors of
length one, the unit circle S1 ⊂ R2 or more generally the unit sphere Sn. The space of all
smooth preferences P is the space of all smooth co-dimension one oriented foliations of
Rn[7,8]. The problem of social choice as introduced in Chichilnisky was formulated as the
existence of a continuous function Ψ : Pk → P satisfying two axioms (1) and (2) above. It
was shown in Chichilnisky [7] that this problem has no solution, namely such a map Ψ does
not exist. This non-existence result was shown to be a topological property of the space of
co-dimension one foliations of Rn. In the special case of linear preferences, the problem
reduces to a topological property of spheres of all dimensions (The problem is equivalent
under certain conditions to Arrow’s Impossibility Theorem Arrow [6]). Chichilnisky [7]
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established that there is no continuous map Ψ : (Sn)k → Sn that is symmetric and is the
identity on the diagonal ∆ ⊂ Sn.

To understand the connection between social choice with unicity in physics we need
more definitions:

Definition 24. A vector x in the unit circle S1 represents a linear preference (or order) on R2,
defined by the linear map fx : R2 → R having the vector x as a gradient, i.e., such that D fx = x.
The unit circle S1 ⊂ R2 can therefore be identified with the space P of all linear preferences on R2

(Alternatively the vector is the gradient at {0} of a smooth function defined on R2 that need not
be linear) .

Definition 25. Let P be the space of smooth preferences or co-dimension one oriented foliations of
euclidean space Rn [7] for n > 1. When preferences are linear P = Sn. For k > 1, a continuous
function Ψ : Pk → P satisfying the two axioms (1) and (2) is called a preference selection or a
common preference.

The simplest case is n = 1 :

Theorem 26 (Chichilnisky [7]). There is no continuous function Ψ : S1 × S1 → S1 that
is symmetric, i.e., ∀x, y Ψ(x, y) = Ψ(y, x), and respects unanimity, i.e., ∀x, Ψ(x, x) = x,
i.e., In other words: is not possible to define a common preference for any two individuals with
linear preferences.

Proof. See Theorem above and Chichilnisky [7].

The result extends to spheres of all dimensions:

Theorem 27. For n > 1, it is not possible to define a common preference for any k > 1 individuals
with linear preferences; there is no continuous map Ψ : (Sn)k → Sn that is symmetric, and is the
identity on the diagonal ∆(Sn)k ⊂ (Sn)k.

Proof. See Chichilnisky [7].

Theorem 25 extends to general spaces P of smooth preferences consisting of oriented
codimension-one smooth foliations of Rn:

Theorem 28. For any n > 1, it is not possible to find a common preference for any k > 1 smooth
preferences on Rn : In particular for n > 1, and ∀k > 1, there is no continuous map Ψ : (P)k → P
that is symmetric, and is the identity on the diagonal ∆ ⊂ Pk.

Proof. See Chichilnisky [7].

From the above results we can now formally establish the connection between quan-
tum theory and social choice:

Lemma 29. The space Fn of frameworks in R2 can be identified with the space of linear preferences
on Rn.

Proof. When n = 2, the result is immediate because the space of frameworks F2 is in this
case the one dimensional projective space P1 that is the unit circle S1 Spanier [12], and the
space of linear preferences in R2 is also the unit circle S1. When n > 2, by Theorem 11 the
space of frameworks can be identified with the space of n− 1 subspaces of Rn. G(n− 1, n)
and each n− 1 subspace A in Rn defines an orthonormal vector v(A) in Rn as shown in
Theorem 13, which in turn can be identified with the gradient of a linear preference in Rn.
This completes the proof.
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We have therefore established:

Theorem 30. For any restricted domain of preferences M ⊂ Rn n > 1, the social choice problem
of aggregation of preferences in M is the existence of a map Ψ : Mk → M satisfying axioms (1)
(2) and (3) for all k > 1, and this problem formally coincides with the quantum theory problem of
existence of unicity for all frameworks within the manifold M.

Proof. This follows from Lemma 28, from the identity between the axioms (1) and (2) in the
two cases, in quantum theory and in social choice, and from the definition of unicity.

Theorem 31. The existence of common preferences is equivalent to the existence of common
frameworks, or unicity.

Proof. The equivalence can be seen formally by considering the necessary and sufficient
conditions for the existence of a selection of a single framework in restricted domains of
experiments. In quantum theory, for any k ≥ 2 experiments on a given physical system, it
may not be possible to define in a continuous way a corresponding common framework f .
In social choice theory, instead, it may not be possible to define continuously a common
preference in a way that respects unanimity and is anonymous, i.e., is symmetric. In this
sense the general mathematical problem underlying quantum theory, which is the ‘violation
of unicity’, can be seen as the non-existence of a continuous map Φ : Fk → F assigning a
common framework to every k ≥ 2 frameworks ( f1... fk) ∈ Fk in a way that is symmetric
and respects unanimity namely ∀ f , Φ( f , ..., f ) = f .

9. Examples of ‘Weirdness’ without Common Frameworks: Conjunction Fallacy,
Interference, Heisenberg Uncertainty and Order Dependence

The examples provided below of the conjunction paradox, the order effect in changing
observations, and of the Heisenberg Uncertainty Principle, are all obtained by representing
observables as self-adjoint operators, which is von Neumann’s first axiom of quantum
theory (see Gudder [5]). For simplicity, the examples are provided in two or three dimen-
sional real spaces. The examples below are obtained by replacing the standard observables
in traditional physics, by observables in quantum theory, which as we saw above, are
self-adjoint operators. In fact they are multiplicative real valued operators. We already
discussed above that self-adjoint operators ( the “observables” in quantum theory) are
unitarily equivalent to multiplicative operators that are real valued.

This section illustrates with specific examples the theory developed in this article.
It shows how the topology of spaces of events and frameworks that is the main focus
of the article, by interfering with the existence of a common framework as shown in
previous sections, leads to interference and to the Heisenberg Uncertainty principle, to the
observations changing with the order of the experiments, and to the so-called ‘conjunction
fallacy’ where two events together are considered more likely to occur than each on
their own. Interference, the Heisenberg Uncertainty principle and order dependence of
experiments are instances of ‘weirdness’ that are commonly associated with quantum theory.
We also illustrate the results presented above with a geometric phase (the Pancharatnam—
Berry phase) that appears in quantum mechanics, which is a phase difference acquired
by a system over the course of a cycle, a phenomenon in which a parameter is slowly
changed and then returns to its initial value, executing a closed path or “loop” and where
its initial and final states differ in their phases. The examples offered here are taken from
the literature to (Busemeyer and Bruza [9], 2012) Ong and Wei-Li Lee [10] Gudder [5]) to
help eliminate differences of data interpretation. In addition we offer a new experiment that
is a modification of the classic “two slit experiment” that anticipates observations of new
phenomena from the theory offered here. Observe that with the topological interpretation
of quantum theory provided above, the ‘weirdness’ phenomena are simply a reflection
of the natural topological structure of the problem, namely the general impossibility of
finding common frameworks. In this sense there is no weirdness at all. The following
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examples arise in experiments that have different frameworks. In each case, if the two
frameworks were reduced to a common framework, of course, the so called weirdness
would dissappear, while in each case one may find a common framework for two specific
cases of the given experiments, the above topological results show their strength in that
they demonstrate that in general this cannot be achieved: there will always exist two
experiments where the common frameworks fail to exist. Quantum theory’s violation of
unicity has a logical, topological necessity that cannot be avoided. This is an issue that is not
contemplated nor considered in the existing literature: we have shown that it is not possible
to consistently reinterpret or measure all experiments—and their frameworks—to find
always a common framework. The weirdness examples illustrated here will necesssarily
emerge for some experiments, no matter how one may change the instruments and redefine
the measurements, and therefore the frameworks, in the specific examples presented below.

Example 32. The conjunction fallacy.

Tversky & Kahneman, Ref. [18] 1983 defined an important and common probability
judgment error, called the ‘conjunction fallacy’, that is based on the lack of common
frameworks. It is the famous ‘Linda’ problem. Judges are provided a brief story of a
woman named Linda who used to be a philosophy student at a liberal university and was
active in the anti-nuclear movement. The judges are asked to rank the likelihood of the
following events: that Linda is now (a) active in the feminist movement, (b) a bank teller,
(c) active in the feminist movement and a bank teller, (d) active in the feminist movement
and not a bank teller, and (e) not active in the feminist movement and a bank teller. The
conjunction fallacy occurs when option (c) is judged to be more likely that option (b) (even
though the latter contains the former). The experimental evidence shows that, surprisingly,
people frequently produce conjunction fallacies for the Linda problem and for many other
problems as well (Tversky and Kahneman [18] 1983).

In the following we use a geometric approach to quantum theory taken from Buse-
meyer and Bruza [9] (2012), and explain how this relates to the results of the previous
sections of this article. We refer the reader to [9] for further details and for clarifications on
the examples.

First we represent two answers to the feminism question by two different frameworks
or basis of coordinates for euclidean space R2. Each framework is given by two orthogonal
rays that span a two dimensional space. The answer yes to feminism is represented by a
ray labeled F and the answer no to the feminism question is represented by an orthogonal
ray labeled −F. This is the first framework. The person’s initial belief about the feminism
question which is generated from the Linda story, can be represented as a unit length vector
labeled S, within the two dimensional space spanned by these two rays. Note that the
initial state vector S is close to the ray for yes to feminism, which matches the description
of the Linda story. As explained geometrically by Busemeyer and Bruza [9], quantum
theory computes probabilities for an event, or for a sequence of events, as follows: first
one computes the so called ‘amplitude’ or inner product of two vectors denoted < F | S >
for transiting from the initial state S to the ray F—this inner product equals of course the
projection of the state S onto the F ray, which is the point on the F ray that intersects with
the line extending up from the S state. The quantum theory axioms postulate that the
squared amplitude equals the probability of saying yes to the feminism question starting
from the initial state and this is equal to |< F | S >|2= 0.9755. Now we introduce the
second framework, and rotate the axis to change from one to the other framework. The
bank teller question is represented by two orthogonal rays labeled B and −B which are
rotated so −B is 20◦ below F. This defines the second framework, and it means that being
a feminist and not being a bank teller are close in this belief space. The amplitude for
transitioning from the initial state S which is close to F is also far away from the B ray (S is
close to the orthogonal ray −B). The amplitude < B | S > for transitioning from the initial
state S to the ray B equals the projection of the state S onto the B ray which is illustrated
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by the point along the B ray that intersects with the line segment extending from S up to
B. In this second framework, and according to the axioms of quantum theory, the square
amplitude equals the probability of saying yes to the bank teller question starting from the
initial state and this equals |< B | S >|2 = 0.0245.

Now consider the sequence of answers in which the person says yes to the feminism
question and then says yes to the bank teller question in that order. The order that questions
are processed is critical in quantum theory, and here we are assuming that the more likely
event is evaluated first. The axioms of quantum theory imply that the amplitude for this
sequence of answers equals the amplitude for the path S → F→ B and the latter equals
the product of the amplitudes namely < B | F > . < F | S > . The first transition is
from the initial state S to the ray F and the second is from the ray F to the state B. The
amplitude < F | S > is the projection from S to F which has a square magnitude equal
to |< F | S >|2= 0.9755, and the amplitude < B | F > is the projection from the unit
length basis vector aligned with F to the B ray, which has a square magnitude equal to
|< B | F >|2= 0.0955. By definition, the probability for the sequence equals the square
amplitude for the path is |< B | F > . < F | S >|2 = (0.9755).(0.0955) = 0.0932. Note
that this probability exceeds the probability of saying yes to the bank teller when starting
from the initial state based on the story, |< B | S >|2= 0.0245. In conclusion this simple
geometric model reproduces the basic facts of the conjunction fallacy.

Example 33. Order effects in observations.

The same example can be used to show how quantum theory produces order effects
that are observed in attitude research. Note that the probability of the sequence for the
order “yes to bank teller and then yes to feminism” is quite different than the probability
for the opposite order. The bank teller first sequence has a probability equal to |< F | B >
. < B | S >|2= (0.0955)(0.0245) = 0.00234 which is much smaller than the feminism first
sequence |< B | F > . < F | S >|2= (0.9755)(0.0955) = 0.0932. This order effect follows
from the fact that a property of incompatibility that arises between the feminism question
and the bank teller question.

Example 34. Heisenberg uncertainty principle.

We have assumed two frameworks, namely that the person is able to answer the
feminism question using one basis of coordinates or framework {F,−F} but the person
requires a different basis of coordinates or framework {B,−B} for answering the bank
teller question. Observe that this implies that if the person is definite about the feminism
question (in other words the belief state vector S is lined up with the ray F) then he or she
must be indefinite about the bank teller’s question, because F and B are not orthogonal to
each other and can be said to “interact or interfere” with the other. Similarly, if the person
is definite with respect to the bank teller question then he or she must be indefinite about
the feminism question. This is essentially the Heisenberg uncertainty principle.

Example 35. Violation of unicity.

Busemeyer and Bruza [9] state that, given that the two questions are treated as in-
compatible, we must also be violating unicity. Indeed, they say, we are assuming that the
person is unable to form a single description (i.e., a single sample space) containing all the
possible conjunctions {F∩ B,F∩−B,−F∩ B,−F∩−B}. What they do not explain is why
this is assumed. This article shows that, for topological reasons that are akin to those of the
social choice paradox, this assumption is unavoidable. In other words, it is unavoidable
that the person will be unable to form a single description for some basis of coordinates, or
frameworks. The results presented here explain the violation of unicity. This implies that
necessarily in some cases, the person would have never thought about conjunctions—for
example those involving feminism and bank tellers—sufficiently to assign probabilities
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to all these conjunctions. Instead the person relies in such cases on two separate sample
spaces: one based on elementary events {F,−F} for which they are familiar, and a second
based on elementary events {B,−B} for which they are also familiar. If we did assume
unicity in this example, then we could not explain the conjunction fallacy because the joint
probabilities can be defined under unicity, and they will always be less than (or equal to)
the marginal probabilities. Therefore as stated by Busemeyer and Bruza, to explain the
experimental result requires the violation of unicity. The results of this article go further:
they explain why the violation of unicity is a necessary logical implication when consider-
ing all possible experiments of a given physical system—as is the goal of quantum theory.
Furthermore, they illustrate why violation of unicity is, at its core, the same as the paradox
of social choice.

10. The Classic Two-Hole Experiment

The two-hole experiment is used as a famous example to show how quantum theory
can explain observations that could not be explained with classic probability and physics.
In the two-hole experiment below S is a source of electrons all of whom have the same
energy but they leave S in all directions and many impinge on a planar screen A. The
screen A has two holes, 1 and 2, through which the electrons may pass. Behind the screen
we have an electron detector which can be placed at distance x from the center of the
screen. The detector records each passage of a single electron traveling from S through
a hole in A to the point x, see Gudder [5] (Figure 2.1 p. 58). In a classic analysis of the
two hole experiment, e.g., [5] (pp. 58–59), after performing the experiment many times
with many different values of x one obtains a probability density P(x) that the electron
passes from S to x as a function of x. Since an electron must pass through either hole 1
or hole 2, in classic probability theory P(x) = P(x1) + P(x2), where P(xi) is the chance of
arrival coming through i = 1, 2. Figure 1 illustrates the observed distribution: the actual
experimental result of the two-hole experiment is quite different, and it is shown in this
figure (see also Gudder [5] (p. 59)) which forces us to conclude that P 6= P1 + P2. In this
sense the observations contradict classic probability.

Figure 4: Chichilnisky two rotating hole experiment (top view)

angle, and is the classic analog of the Pancharatnam - Berry phase in quantum
physics, see e.g. Ong and Lee [15]

13 Around the World in 90 days

In a famous book of the same name, Jules Verne wrote a story around the
concept of the "time line" about a gentleman who places a bet on being able to
travel around the Earth in 90 days, and thinks he has lost by one day, arriving
in 91 days,

Figure 6: Two rotating hole experiment (side view). The two planar screens A
and are here replaced by cylinders. The position of each of the two holes 1 and
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Figure 1. Chichilnisky two rotating hole experiment (top view).
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11. The New Two Rotating Hole Experiment

The author proposed a variation of the classic two-hole experiment to predict new
experimental observations based on the results of the article. The predicted observations
are consistent with but different from the Pancharatnam—Berry Phases results that are
analyzed in [10] and are illustrated below. The two rotating hole experiment (side view).is
illustrated in Figure 2 below. The two planar screens A and B of the two-hole experiment
are replaced by cylinders A and B. The position of each of the two holes 1 and 2 in the
cylinder A can be rotated with knobs K1 and K2, respectively; each knob can move the
respective hole around the entire cylinder A, with K1 rotating the hole 1 clockwise and
K2 rotating the hole 2 counterclockwise. On the basis of the results presented above, the
author’s prediction is that as hole 2 is rotated clockwise to the initial position of hole 1,
and hole 1 is rotated counterclockwise to the initial position of hole 2, thus reproducing
exactly the initial position of the two holes together at the end, the observations of the
density distributions on the cylinder B will be different, even though in the final position
the positions of the two holes together is indistinguishable from the initial position of
the two holes .This prediction remains to be tested experimentally, but it is close to the
experimental results that have been obtained in the so called Pancharatnam–Berry phase,
which is explained below, and which has been widely accepted, to the extent that with
some good will, those can be considered experimental tests of the results of this article.

Figure 4: Chichilnisky two rotating hole experiment (top view)

angle, and is the classic analog of the Pancharatnam - Berry phase in quantum
physics, see e.g. Ong and Lee [15]

13 Around the World in 90 days

In a famous book of the same name, Jules Verne wrote a story around the
concept of the "time line" about a gentleman who places a bet on being able to
travel around the Earth in 90 days, and thinks he has lost by one day, arriving
in 91 days,

Figure 6: Two rotating hole experiment (side view). The two planar screens A
and are here replaced by cylinders. The position of each of the two holes 1 and
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Figure 2. Two rotating hole experiment (side view). The two planar screens A and are here replaced
by cylinders. The position of each of the two holes 1 and 2 can be rotated with a knob (K1 and K2,
respectively) and each knob can move the respective hole around the entire cylinder A.

12. The Pancharatnam—Berry Phase

The Pancharatnam—Berry Phase can be briefly summarized geometrically as follows,
for a full presentation see, e.g., [10]. Suppose we travel on a closed path C on a sphere
(Earth) while holding a vector V parallel to the surface, i.e., in the local tangent plane
(Figure 3 below). At each point, V does not twist around the local vertical axis (the local
normal vector n). This is known as parallel transport of the vector V around C. When we
return to the starting point, we find that in general V makes an angle α(C) with its initial
direction: the angle α, which depends only on the particular path C; α(C) is known a the
geometric angle, and is the classic analog of the Pancharatnam—Berry phase in quantum
physics, see, e.g., Ong and Lee [10].
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2 can be rotated with a knob (K1 and K2 respectively) and each knob can
move the respective hole around the entire cylinder A.

Figure 7: Pancharatnam - Berry Phase: suppose we travel on a closed path C
on a sphere (Earth) while holding a vector V paralell to the surface, i e in the
local tangent plane (Figure 1.2). At each point, V does not twist around the
local vertical axis (the local normal vector n). This is known as paralell

transport of V around C. When we return to the starting point, we find that
in general V makes an angle α(C) with its initial direction: the angle, which
depends only on the particular path C is known as the geometric angle, and is
the classic analog of the Pancharatnam - Berry phase in quantum physics, see

e.g. Ong and Lee [15]

only to find out that time went slower at the initial location so at their return
they had effectively won their bet. This literary piece illustrates the "time line"
break in time, so that if one starts traveling around the world along a path
such as C in Figure 7 at the end of the journey when one goes all around the
world and reaches the initial position, the time measured by a traveling watch
will be different than the time at the initial position at the moment of return,
measured by a stationary watch. It can be shown that the topological problem
posed by Jules Verne is the same as in the Pancharatnam Berry phases. It is
well accepted that Barry phases arise from the existence of a singularity, which
is the same origin that is postulated here for the basic properties of quantum
theory that are described above, a topic that has to be discussed in further
writings.
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Figure 3. Pancharatnam —Berry Phase: suppose we travel on a closed path C on a sphere (Earth)
while holding a vector V paralell to the surface, i.e. in the local tangent plane. At each point, V does
not twist around the local vertical axis (the local normal vector n). This is known as paralell transport
of V around C. When we return to the starting point, we find that in general V makes an angle α(C)
with its initial direction: the angle, which depends only on the particular path C is known as the
geometric angle, and is the classic analog of the Pancharatnam—Berry phase in quantum physics,
see, e.g., Ong and Lee [10].

13. Around the World in 90 Days

In a famous book of the same name, Jules Verne wrote a story around the concept of
the "time line" about a gentleman who places a bet on being able to travel around the Earth
in 90 days, and thinks he has lost by one day, arriving in 91 days, only to find out that time
went slower at the initial location so at their return they had effectively won their bet. This
literary piece illustrates the "time line" break in time, so that if one starts traveling around
the world along a path such as C in Figure 3 at the end of the journey when one goes all
around the world and reaches the initial position, the time measured by a traveling watch
will be different than the time at the initial position at the moment of return, measured by a
stationary watch. It can be shown that the topological problem posed by Jules Verne is the
same as in the Pancharatnam Berry phases. It is well accepted that Barry phases arise from
the existence of a singularity, which is the same origin that is postulated here for the basic
properties of quantum theory that are described above, a topic that has to be discussed in
further writings.
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