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Abstract: We investigate the dynamical evolution of genuine multipartite correlations for N-qubits
in a common reservoir considering a non-dissipative qubits-reservoir model. We derive an exact
expression for the time-evolved density matrix by modeling the reservoir as a set of infinite harmonic
oscillators with a bilinear form of interaction Hamiltonian. Interestingly, we find that the choice of
two-level systems corresponding to an initially correlated multipartite state plays a significant role
in potential robustness against environmental decoherence. In particular, the generalized W-class
Werner state shows robustness against the decoherence for an equivalent set of qubits, whereas a
certain generalized GHZ-class Werner state shows robustness for inequivalent sets of qubits. It is
shown that the genuine multipartite concurrence (GMC), a measure of multipartite entanglement
of an initially correlated multipartite state, experiences an irreversible decay of correlations in the
presence of a thermal reservoir. For the GHZ-class Werner state, the region of mixing parameters
for which there exists GMC, shrinks with time and with increase in the temperature of the thermal
reservoir. Furthermore, we study the dynamical evolution of the relative entropy of coherence and
von-Neumann entropy for the W-class Werner state.

Keywords: multipartite correlations; thermal reservoirs; Werner type states

1. Introduction

Entanglement arising from the superposition principle and tensorial structure of
Hilbert spaces is a striking feature of multiparty quantum systems [1]. In addition to
playing a significant role in the foundation of quantum mechanics [2–4], entanglement has
proved to be a crucial resource in quantum information tasks such as quantum telepor-
tation [5], secret sharing [6], and superdense coding [7], to mention a few. Entanglement
in a multipartite (more than two parties) system has also proved to be a significant re-
source. It plays an essential role in quantum metrology, and in some cases, protocols
involving multipartite correlations are more robust than protocols involving two-party
correlations [8,9]. For instance, a three-qubit maximally entangled GHZ state exhibits
non-locality more strongly than two-qubit Bell states [10]. Moreover, three-party tele-
portation protocols have been shown to be less vulnerable to cheating as compared to
two-party protocols [6,11]. Furthermore, protocols involving parties at several different
spatially separated locations necessarily require multipartite correlation. Therefore, the
characterization and quantification of genuine multipartite correlation has received sig-
nificant interest [12–17]. Entanglement in bipartite two-qubit systems is well understood
through several measures such as concurrence [18], entanglement of formation [19], nega-
tivity [20], etc. However, even for the simplest case of a three-qubit system, quantifying
the underlying correlations is non-trivial [12]. For the faithful quantification of three-party
correlations, which are used as a resource in teleportation and other quantum tasks, one
requires a genuine correlation quantifier, which is zero for all biseparable and product
states and non-zero for all non-biseparable states [14]. There exists several measures of
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genuine entanglement for pure tripartite systems [17,21,22]; however, quantifying genuine
entanglement for a general three-qubit system still remains a challenging task. The author
of [15] has defined a measure “genuine multipartite concurrence”, a quantifier of genuine
multipartite entanglement, which is reduced to the Wooter’s bipartite concurrence for
two qubits. However, a closed expression exists only for X-type states, wherein only the
diagonal and anti-diagonal elements are non-zero. Another measure widely studied for
mixed three-qubit states is the tripartite negativity, which is defined through the geometric
mean of negativity corresponding to the three bipartitions [23].

A realistic quantum system can never be considered isolated, as the system will
inevitably interact with the environment. The interaction between the system and the
environment causes a brisk decline of quantum correlations in the system. Therefore, for
all practical applications, it is of significant importance to carry out a careful study of the
characterization and quantification of quantum correlations under environmental deco-
herence. The dynamics of quantum correlations of single-qubit, bipartite, and tripartite
systems in an open system have been studied extensively [24–35]. Viola et al. [36,37] worked
out an exact model for a two-state quantum system coupled to a reservoir of harmonic
oscillators and also showed that decoherence can dynamically be suppressed through
repeated effective time-reversal operations on the combined system and bath. Correlations
of bipartite systems have been extensively studied for zero temperature reservoirs [28]
and finite temperature reservoirs [38]. Zeng-Zhao Li et al. [33] studied the entanglement
dynamics of two coupled qubits in different environments. Their investigation showed that
at zero temperature, the entanglement of two qubits saturates to a non-zero value when
qubits are placed in a common environment. Recently, dynamics of a more general bipartite
correlation, namely quantum discord for two initially correlated qubits in two different
reservoirs, was studied for ohmic reservoirs [38], and it was shown that the preservation
duration gets longer, the lower the temperature of the environment, the weaker the envi-
ronmental coupling, and the larger the temperature difference between the reservoirs. The
dynamics of decoherence and quantum correlation for two Bose–Einstein condensates has
also been studied, where the decoherence can be controlled by manipulating the interaction
between the system and the environment [39]. Jun-Hong et al. [31] explored the dynamics
of a quantum register for two and three-qubit systems with dipole–dipole interactions,
interacting with a common environment. Their study indicated that the environment could
incoherently induce entanglement among qubits in the decoherence free space. Deco-
herence in quantum correlation for a three-qubit system has been studied for the case of
classical environmental noise, where the quantum correlations display different decaying
behaviors, depending on the system–environment interactions and different types of noise
considered [40]. We note that in addition to the harmonic oscillator model, a well-known
alternative to model the environment is through spin chains [41], and the resulting deco-
herence on the correlations and consequently on information theoretic protocols has been
extensively studied [42].

In this work, we study the dynamics of genuine multipartite concurrence of various
multipartite correlated states in the presence of a common thermal reservoir. The reservoir
is modelled with infinite quantum harmonic oscillators, and a non-trivial bilinear form
of interaction Hamiltonian is considered such that the system is non-dissipative (i.e.,
interaction Hamiltonian commutes with the system Hamiltonian). We show that the
symmetric GHZ class of Werner state experiences irreversible loss in the genuine correlation,
with the decay rate depending on the spectral density under consideration. We find the
preservation time of the genuine correlation for various spectral densities and different
temperature, and show that the multipartite system experiences entanglement sudden
death for most of the initially mixed states. For an asymmetric form of the GHZ-class
Werner state and inequivalent sets of qubits obeying a sum of frequency rule, multipartite
correlation persists for a long time, and the system shows robustness against environmental
decoherence, whereas the same is observed to be the case for the W-class Werner state
for a set of equivalent qubits. Therefore, the choices of qubits and the initial correlated
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multipartite state are of significant importance in the potential robustness of the existing
multipartite correlations against environmental decoherence.

The paper is organized as follows. In Section 2, we present the N-qubit reservoir
model and exactly solve for the time-evolved multipartite density matrix. In Section 3, we
study the dynamics of genuine multipartite concurrence for a symmetric and asymmetric
GHZ class of Werner state for various spectral densities. Furthermore, we investigate
the decoherence in the W-class Werner state. Finally, in Section 4, we conclude with the
summary of results and discussions.

2. Model: N-Qubits in a Common Environment

Consider a physical system of N non-interacting qubits with the energy levels sep-
arated by 2Ω1, 2Ω2, 2Ω3, ... 2ΩN immersed in a common thermal reservoir. The total
Hamiltonian including N-qubits, reservoir, and the interaction term is given by,

HT = HS +HR +HI +Hren, (1)

whereHS is the Hamiltonian of the N-qubits system,HR is the Hamiltonian of the reservoir,
andHI is the Hamiltonian representing the interaction between the qubits and the reservoir.
The Hamiltonian of the N-qubits system is given by,

HS =
N

∑
i=1

Ωiσ
i
z (2)

where σi
z = |0〉i〈0|+ |1〉i〈1| with i ∈ (1, 2, ...., N). States |0〉i and |1〉i are the excited and

ground state respectively, of the ith qubit. The thermal reservoir, which is an environment
to the N-qubits, is modeled by a heat bath (at a temperature T) composed of an infinite set
of harmonic oscillators with the Hamiltonian as following,

HR = ∑
j

ωja†
j aj, (3)

where ωj is the frequency of jth harmonic oscillator. a†
j and aj are the bosonic creation and

annihilation operators satisfying the commutation relations [ak, a†
j ] = δkj and [ak, aj] = 0 =

[a†
j , a†

k ]. The interaction Hamiltonian is assumed to be of the following form,

HI = HS ∑
j

cj(a†
j + aj), (4)

where cj is the coupling constant between the system of qubits and the jth harmonic
oscillator of the thermal reservoir. One observes that [HI ,HS] = 0; therefore, the system is
non-dissipative in nature. We note that this form of coupling has been previously studied
in the context of quantum decoherence in trapped ions and Bose–Einstein condensates
by Kuang et al. [39], for single-qubit systems by Viola and Lloyd [36], and for two-qubit
systems by Yuan et al. [28].

Finally, the term Hren is a renormalization term first considered in [43], which is
given by

Hren = H2
S ∑

j

c2
j

ωj
, (5)

and this term is crucial for the total Hamiltonian to be diagonalizable.
The Hamiltonian (1) can be exactly solved by employing the following unitary transformation,

U = exp

[
HS ∑

j
cj(a†

j − aj)

]
. (6)
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Applying U on the total Hamiltonian (1), one obtains a decoupled Hamiltonian of the
form H′T = HS + ∑j ωja†

j aj, whereas the initial total density operator ρT(0) will become

ρ′T(0) = UρT(0)U†, which evolves in time as ρ′T(t) = exp (−iH′Tt)ρ′T(0) exp (+iH′Tt).
Through the converse transformation of (6), one obtains the total density operator associ-
ated with the total Hamiltonian (1) as,

ρT(t) = e−iHst U−1 e−iHRt UρT(0)U−1 eiHRt U eiHst . (7)

Assuming that the system and reservoir are initially uncorrelated, the total initial
density operator ρT(0) can be written as a product state of the system and reservoir density
operator, i.e., ρT(0) = ρS(0)⊗ ρR(0), where ρS(0) and ρR(0) are the initial density operators
for the system and reservoir, respectively. The reservoir density operator ρR(0) can be

expressed as ρR(0) = Πjρj(0), where ρj(0) = (1− e−βωj)e−βωja†
j aj corresponds to the initial

density operator of the jth oscillator in thermal equilibrium at an inverse temperature β.
At any time t, the reduced density matrix for the system can be obtained by tracing over
the reservoir ρ(t) = TrR(ρT(t)). It should be noted that the set {|a1a2a3 ... aN〉} where
a1, a2, a3 ... aN ∈ {0, 1} forms a basis of the N-qubit system, and the state |a1a2a3 ... aN〉 is
an energy eigenstate ofHS with eigenvalue Ea1...aN = ∑N

i=1(−1)ai Ωi. In the computational
basis, one obtains

ρ(a1...aN)(b1...bN)(t) = ρ(a1...aN)(b1...bN)(0)F(a1...aN)(b1...bN)(t)×
exp

(
−i(Ea1...aN − Eb1...bN )t

)
,

(8)

where ρ(a1...aN)(b1...bN) = 〈a1 ... aN |ρ|b1 ... bN〉, and the factor F(a1...aN)(b1...bN)(t) depends on
the reservoir part and is obtained as,

F(a1...aN)(b1...bN)(t) = Πj TrR

[
D(−αb1...bN j) eitωj Nj D(αb1...bN j)

× D(−αa1...aN j) e−itωj Nj D(αa1...aN j)ρj(0)
]
,

(9)

where Nj = a†
j aj, αa1...aN j = Ea1...aN cj/ωj, and D(α) = exp(αa† − α∗a) is a displacement

operator. Using the properties of a displacement operator, namely,

D(α1)D(α2) = D(α1 + α2) exp(i Im(α1α∗2))

exp(βNj)D(α) exp(−βNj) = exp(α eβ a†
j − α∗ e−β aj),

(10)

the above Equation (9) is reduced to

F(a1...aN)(b1...bN)(t) =Πj exp

(
−i

(E2
a1...aN

− E2
b1...bN

)c2
j sin ωjt

ω2
j

)
×

TrR

[
D(ξa1...aN b1...bN j)ρj(0)

]
,

(11)

where ξa1...aN b1...bN j = (αb1...bN j − αa1...aN j)(e
iωjt−1). Using the following result [44],

TrR D(α)ρj(0) = exp(
−1
2
|α|2 coth

βωj

2
), (12)

the above expression (11) is simplified to

F(a1...aN)(b1...bN)(t) = exp

(
−iφ(a1...aN)(b1...bN) ∑

j

c2
j sin(ωjt)

ω2
j

)
×

exp

(
−2τ(a1...aN)(b1...bN) ∑

j

c2
j

ω2
j

sin2(
ωjt
2

) coth(
βωj

2
)

)
.

(13)
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where φ(a1...aN)(b1...bN) = E2
a1...aN

− E2
b1...bN

and τ(a1...aN)(b1...bN) = (Ea1...aN − Eb1...bN )
2. In the

continuum limit, we take ∑j →
∫

dω J(ω), where J(ω) is the spectral density of the thermal
reservoir, and cj → c(ω), and the above equation becomes,

F(a1...aN)(b1...bN)(t) = e−iφ(a1...aN )(b1...bN )Q1(t) e−2τ(a1...aN )(b1...bN )Q2(t), (14)

with,

Q1(t) =
∫ c2(ω)

ω2 sin(ωt)J(ω)dω

Q2(t) =
∫ c2(ω)

ω2 sin2(
ωt
2
) coth(

βω

2
)J(ω)dω.

(15)

Therefore, we have the exact evolution for the N-qubits density operator, and hence,
we can study the dynamics of various correlations. We note in passing that the interaction
Hamiltonian considered in the above analysis is the simplest non-trivial bilinear operator on
the system and reservoir state. In contrast, one can do a similar analysis with some arbitrary
function of the system Hamiltonian f (HS) in the interaction term. It is important to note
that in all these scenarios, the system Hamiltonian commutes with the total Hamiltonian,
i.e., [HS,HT ] = 0. Therefore, the interaction is non-dissipative, which is also evident from
the above analysis, where diagonal terms are shown to be unaffected.

3. Dynamics of Genuine Multipartite Correlations for N-Qubit States
3.1. GHZ-Class Werner States

We begin with a brief review of a genuine multipartite correlation and measure
genuine multipartite concurrence (GMC). It is an entanglement measure that captures the
multipartite entanglement and is zero if the system is separable across any bipartition i.e.,
product and biseparable states. This measure works for mixed-density matrices as well,
and it reduces to the Wootter’s concurrence for two qubits [19]. Rafsanjani et al. provided
an exact expression of GMC for an N-qubit X-state, where the density matrix contains only
diagonal and anti-diagonal elements [15]. For a N-qubit system with a density matrix in
the computational basis, the only non-zero elements are ρii and ρi(n+1−i), where i = 1, ..., n
with n = 2N . Genuine multipartite concurrence for such states are given by

CGM = 2 max{0, |ρj(n+1−j)| −
n/2

∑
k 6=j

√
ρkkρ(n+1−k)(n+1−k)}, (16)

where j = 1, 2, ... n/2. In what follows, we will study evolution of genuine multipartite
concurrence for the N-qubit Werner state, which is of the form,

ρW = x|ψ〉〈ψ|+ (1− x)
I
n

, (17)

where x ∈ [0, 1] is the mixing parameter, |ψ〉 is a genuine multipartite entangled pure
state, and I is the n-dimensional identity matrix. It is noted that the density matrix is
pure for x = 1 and maximally mixed for x = 0. Equation (17) is in the form of an X-
state when the pure state |ψ〉 is a generalized GHZ state, which is given by |GHZ〉gen =

1√
2
(|i1i2 · · · iN〉 ± |j1 j2 · · · jN〉), where iα 6= jα ∈ {0, 1}, α = 1, 2, 3. It is important to

note that the X states density matrix is physically realizable in various scenarios [45,46].
For instance, pseudo-pure states in NMR spin systems are essentially of the same form
as (17). More specifically, a highly mixed thermal state of the form can be described
through a traceless deviation of maximally mixed state, i.e., ρt ' (1− ε ∑i σi

z)/n, which
upon an action of completely positive and trace preserving map yields a density matrix
ρP = T(ρt) = 1/n− εα(ρpp − 1/n), with ρpp representing a pure state, ε representing a
small deviation parameter, and α, a factor determining signal loss, is essentially of the same
form as the Werner state density matrix, with the mixing parameter x = εα [47].
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For the density matrix (17), with the |ψ〉 = 1√
2
(|i1i2 · · · iN〉 + |j1 j2 · · · jN〉), where

iα 6= jα ∈ {0, 1}, α = 1, 2, 3...N, the genuine multipartite concurrence is obtained as

CGM(ρW) = max{0,
2(n− 1)x− (n− 2)

n
}, (18)

which for a tripartite GHZ state i.e., n = 8 yields,

CGM(ρW) = max{0,
7x− 3

4
}. (19)

Naturally, it takes the maximum value one for x = 1, i.e., maximally entangled GHZ
states and non-zero for x > (n− 2)/2(n− 1). The GMC is zero for x ≤ (n− 2)/2(n− 1).
Therefore, it is separable across at least one bi-partition; i.e., the density matrix can be
written as a convex sum of bi-separable states.

Consider an N-qubit system in a common heat bath with the initial state given by
ρ(0) = ρW . As evident from the explicit form of (8), the diagonal elements will remain
unchanged. For |ψ〉 = 1√

2
(|00 · · · 0〉+ |11 · · · 1〉), there are only two non-zero off-diagonal

elements of the density matrix ρ(00···0)(11···1) = ρ∗(11···1)(00···0), and their time evolution is
given by

ρ(00···0)(11···1)(t) =
x
2

e−i∆Et e−i(E2
00···0−E2

11···1)Q1(t) e−2(∆E)2Q2(t), (20)

where ∆E = E00···0 − E11···1. Using E00···0 = Ω1 + Ω2 + .... + ΩN and E11···1 = −E00···0,
one obtains

ρ(00...0)(11...1)(t) =
x
2

e−i2(∑N
i=1 Ωi)t e−8(∑N

i=1 Ωi)
2Q2(t) . (21)

Therefore, the genuine multipartite concurrence for ρ(t) is obtained as

CGM(ρ(t)) = max{0, x e−8(∑N
i=1 Ωi)

2Q2(t)−n− 2
n

(1− x)}. (22)

Since Q2(t) is a positive and increasing function of both time and temperature, there-
fore, the region for which the state has genuine multipartite entanglement shrinks with
the increase in time and temperature. More precisely, at Q2(t), the state has genuine multi-

partite entanglement for the region x ∈
(

n−2

n−2+ne−8ω2
T Q2(t)

, 1
]

, where ωT = (∑N
i=1 Ωi). A few

qualitative conclusions can be made without specifying the specific form of spectral density
of the reservoir and relying on the fact that Q2(t) is a positive and increasing function of
time. It is immediately obvious that the region of mixing parameter x for which the state
is genuine multipartite entangled decreases with the increase in time, the rate of which
depends on the specific reservoir under consideration. Furthermore, for a given mixing
parameter x, the correlation will decay with time, and the state encounters the sudden
death of multipartite entanglement after a finite preservation time, as shown below for
various spectral densities.

A simple choice of spectral density is J(ω) = η/[2πc2(ω)], which at zero temperature
yields a linear damping factor as [39],

Q2(t) =
ηt
4

, (23)

where η is a characteristic parameters associated with the reservoir. The genuine multipar-
tite concurrence becomes,

CGM(ρ(t)) = max{0, x e−2(∑N
i=1 Ωi)

2ηt−n− 2
n

(1− x)}, (24)

which reflects the exponential degradation of multiparty correlation and has been plotted
for several mixing parameter and also with the increasing parameter η in Figure 1 for the
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tripartite case (n = 8). As evident from the plot, the state encounters the sudden death
of genuine multipartite entanglement for all the states with x < 1. Further, the sudden
death is more rapid with the increase in the characteristic parameter η, which represents
the interaction strength. The preservation time, i.e., time interval up to which correlation
persists is obtained to be

∆tP =
1

2(∑N
i=1 Ωi)2η

ln
(

nx
(n− 2)(1− x)

)
, (25)

where the mixing parameter x > (n − 2)/2(n − 1). As evident from the above ex-
pression, except for x = 1, the preservation time is finite, and therefore, the initial
states in the region (n− 2)/2(n− 1) < x < 1 will encounter the sudden death of genuine
multipartite entanglement.

(a)

(b)

Figure 1. Genuine multipartite concurrence plotted against time (in seconds) for the spectral density
J(ω) = η/[2πc2(ω)] at zero temperature (for n = 8). (a) For various mixing parameters and a fixed
interaction coefficient η = 0.2, (b) for various interaction coefficients η and a fixed mixing parameter
x = 0.7. Entanglement sudden death is observed for states with x < 1, and it occurs more rapidly
with increasing η.
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Ohmic reservoirs are modeled with the following spectral density [48],

J(ω) =
ηω

c2(ω)
e−

ω
ω0 , (26)

where η is a characteristic parameter of the reservoir and ω0 is a cut-off frequency specific
to the reservoir. The damping factor Q2(t) becomes

Q2(t) = 2η
∫ ∞

0

1
ω

e−
ω

ω0 sin2
(

ωt
2

)
coth

(
βω

2

)
dω, (27)

which in general is difficult to evaluate. We will evaluate the damping factor for the case of
zero, low, and high-temperature regions and study the correlation in these limits. Firstly, at
the zero temperature, the damping factor is obtained to be Q2(t) = [η ln

(
1 + (ω0t)2)]/2.

For this case, genuine multipartite concurrence for tripartite systems (n = 8) is plotted for
various mixing parameters at fixed η and various interaction parameters η at a fixed mixing
parameter, as shown in Figure 2. It is observed in this case that the decay in correlation is
not exponential, which is a consequence of the logarithmic factor of time in the damping
factor. We observe the sudden death of genuine tripartite entanglement for states with
mixing parameter x < 1; however, compared to the linear damping factor case, the sudden
death is achieved much more slowly. The preservation time is evaluated to be

∆tP =
1

ω0

(
exp

(
1

4ηω2
T

ln
(

4x
3(1− x)

))
− 1

) 1
2

, (28)

which is much larger than the case when the damping factor is linear in time.

(a) (b)

Figure 2. Genuine multipartite concurrence plotted against time (in units of (ω0)
−1) for ohmic

spectral density at zero temperature (for n = 8). (a) For various mixing parameters at fixed η (b) for
various interaction parameters η at a fixed mixing parameter x = 0.9. Entanglement sudden death is
observed for x < 1; however, the decay rate is slower in this case than the exponential decay for the
linear damping parameter case.

For a finite but small temperature, the damping factor for the Ohmic case becomes

Q2(t) = η

[
ln
(

β

πt

√
1 + (ω0t)2 sinh(

πt
β
)

)]
. (29)

The genuine multipartite concurrence is plotted with respect to time and inverse
temperature at a fixed mixing parameter x = 0.9, as shown in Figure 3. It is observed that
at all temperatures, the correlation remains almost constant for the time interval 0 < t < Tc,
where Tc is defined as the characteristic time and then for time t > Tc, it decays rapidly to
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zero as the system experiences the sudden death of multipartite correlation. Furthermore,
as the temperature increases, the characteristic time becomes smaller, and the decay rate of
tripartite concurrence gets faster; therefore, correlation sudden death occurs more quickly.

(a)

(b)

Figure 3. (a,b) Genuine multipartite concurrence with inverse temperature, and time (in seconds) for
ohmic reservoir at a fixed mixing parameter x = 0.9 and ω0 = 1. As the temperature increases, the
state experiences the sudden death of correlation sooner.

A more interesting case occurs when the generalized GHZ state under consideration
for the initial density matrix is |ψ〉 = 1√

2
(|00 · · · 01〉+ |11 · · · 10〉). In this case, the non-

zero diagonal elements in the density matrix are ρ(00···01)(11···10) and ρ(11···10)(00···01), and
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using E00···01 = ∑N−1
i=1 Ωi −ΩN = −E11···0, one obtains the evolution of the off-diagonal

elements as,

ρ(00···01)(11···10)(t) =
x
2

exp

(
−i2(

N−1

∑
i=1

Ωi −ΩN)t− 8(
N−1

∑
i=1

Ωi −ΩN)
2Q2(t)

)
. (30)

If all the qubits are equivalent i.e., Ω1 = Ω2 = · · ·ΩN , the state suffers a similar kind of
decoherence as seen earlier, i.e., the region of mixing parameters for which the state remains
tripartite entangled reduces with the increase in time and temperature. Furthermore, for
a given mixing parameter, the amount of correlation decays with the rate depending on
the spectral density under consideration. Interestingly, for the damping factor Q2(t) given
by (23), the preservation time is obtained as,

∆tP =
1

2(∑N−1
i=1 Ωi −ΩN)2η

ln
(

nx
(n− 2)(1− x)

)
. (31)

Considering the two-level systems such that ∑N−1
i=1 Ωi ∼ ΩN , the preservation time

∆tP >> 1. Hence, one can prolong the preservation time and therefore retain the correlation
for a significant time with a certain choice of qubit and initially correlated GHZ-class
Werner state. In the limiting case, there exists an interesting class of inequivalent qubits
such that the sum of energy gap of qubits 1 to N − 1 is the same as that of qubit N i.e.,
∑N−1

i=1 Ωi = ΩN , then

ρ(00···01)(11···10)(t) =
x
2
= constant ∀ β. (32)

Hence, in such a class of qubits, the state suffers no decoherence in the correlations.
Genuine multipartite entanglement remains invariant in time for such inequivalent sets
of three qubits. It is important to note that the persistence of correlation for the above
mentioned constraints on qubit splitting is because the initial state ρ(0) is close to an
equilibrium state, and if the constraint is exactly satisfied, the initial state itself is an
equilibrium state, where the equilibrium state is defined by the fact that it commutes with
the total Hamiltonian, i.e., [ρeq,HT ] = 0. In the other cases, when this constraint is not
satisfied, the initial state is not an equilibrium state, and due to dephasing, it results in
the loss of the off-diagonal terms, hence becoming a diagonal state in the energy basis in
the large time limit. Therefore, it is at the cost of loss in correlation that the state achieves
equilibration when the constraint on qubit splitting is not satisfied. For instance, the
energy gap of a two-level system can be tuned in NMR by modulating the applied external
magnetic field, which by coupling through the magnetic moment results in an energy
gap of order µB. Therefore, it is quite evident that one can physically realize a set of
three qubits such that the initially correlated state is robust in loss of correlations against
environmental decoherence. Such a scenario will be beneficial for quantum tasks requiring
genuine multipartite entanglement.

3.2. W-Class Werner States

In this section, we study the dynamical evolution for the W-class of Werner states.
For explicitness, we limit our discussion to the tripartite case (n = 8); however, the general
conclusions will hold for arbitrary N-qubit systems. Consider the initial density operator
to be of the following form,

ρ(0) = x|W〉〈W|+ (1− x)
I
8

, (33)
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where the state |W〉 = 1√
3
(|001〉+ |010〉+ |100〉) is the symmetric W state, x ∈ [0, 1] is

the mixing parameter, and I is the identity matrix. Using Equation (8), one obtains the
elements of density matrix at later times. The diagonal elements remains constant,

ρ(000)(000)(t) = ρ(011)(011)(t) = ρ(101)(101)(t) = ρ(110)(110)(t) = ρ(111)(111)(t) =
1− x

8
,

ρ(001)(001)(t) = ρ(010)(010)(t) = ρ(100)(100)(t) =
5x + 3

24
,

(34)

whereas the off-diagonal elements evolve as follows,

ρ(001)(010)(t) =
x
3

e−2i(ωB−ωC)t e−4iωA(ωB−ωC)Q1(t) e−8(ωB−ωC)
2Q2(t),

ρ(001)(100)(t) =
x
3

e−2i(ωA−ωC)t e−4iωB(ωA−ωC)Q1(t) e−8(ωA−ωC)
2Q2(t),

ρ(010)(100)(t) =
x
3

e−2i(ωA−ωB)t e−4iωC(ωA−ωB)Q1(t) e−8(ωA−ωB)
2Q2(t) .

(35)

As observed from the above expressions, the magnitude of each off-diagonal element
has a decaying exponential factor Q2(t), the explicit form of which depends on the choice
of spectral density, which is accompanied by the energy difference between the qubits.
Interestingly, when all the three qubits are equivalent, i.e., ωA = ωB = ωC, there is no
damping in the magnitude of the off-diagonal terms. Therefore, the state remains invariant
in time, and the correlations are robust against environmental decoherence. This is in
striking contrast to the case when the initial state is the GHZ-class Werner state, where to
prolong the decay in correlation, one requires three inequivalent qubits.

The decoherence of a state as measured through von-Neumann entropy is defined in
terms of time evolved density matrix as

D(t) = −Tr(ρ(t) log ρ(t)). (36)

For a specific case when the qubit A and B are identical, i.e, ωA = ωB and ωA−ωC = ∆,
one obtains the decoherence as

D(t) = −3(1− x)
4

log
(

1− x
8

)
− λ+ log(λ+)− λ− log(λ−), (37)

where
λ± =

1 + 3x
8
± x

6

√
1 + 2 exp(−16∆2Q2(t)). (38)

The relative entropy of coherence defined through the metric relative entropy on the
state of space has been shown to be a bonafide measure of coherence [49],

CRel(ρ) = S(ρd)− S(ρ), (39)

where the density matrix ρd is obtained by removing all the off-diagonal elements from ρ,
and S(ρ) is the entropy corresponding to the state ρ and given by,

S(ρ) = −∑
i

λi log(λi), (40)

with λi being the eigenvalues of ρ. Evolution of the relative entropy of coherence for the
W-class Werner state is obtained through the following expression,

CRel(ρ) =
1− x

8
log
(

1− x
8

)
− 5x + 3

8
log
(

5x + 3
24

)
− λ+ log(λ+)− λ− log(λ−) (41)

where λ± is obtained as above for a specific choice of qubits.
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In Figure 4, we plot the decoherence for the damping factor linear in time, given
by (23) for various mixing parameters at a fixed interaction coefficient. It is observed
that the von-Neumann entropy saturates after some time at a value depending on the
mixing parameter. Furthermore, as seen from the plot for decoherence with changing
interaction parameter at a fixed mixing parameter, the entropy saturates to the maximum
value rapidly with the increase in η, implying a speedup in decoherence. It is important to
note that similar behavior will be observed for different choices of spectral density, since
that damping factor is a positive and increasing function, and the only thing differing
will be the rate of decoherence. Further, as explained earlier, the choice of qubits plays a
significant role in the robustness against decoherence; the more the frequency of the qubits
is similar to each other, the more the system is robust against environmental decoherence.

(a)

(b)

Figure 4. Decoherence as measured by von-Neumann entropy for damping factor linear in time (in
seconds) (a) for different mixing parameters at a fixed interaction strength η = 0.2, (b) for different
interaction strengths at a fixed mixing parameter x = 0.9. It is observed that for different mixing
parameters, the entropy saturates after some time, and the rate at which it is achieved increases with
the increase in η.
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4. Conclusions

In conclusion, we found an exact expression for a time-evolved density matrix for an
N-qubit system in a common heat bath through a thermal reservoir modeled as an infinite
quantum harmonic oscillator and a bilinear non-dissipative interaction Hamiltonian. Using
this, we studied the dynamics of the underlying multipartite correlation for various N-
qubit systems. In particular, we studied the evolution of genuine multipartite concurrence
for various GHZ-class Werner states, and we showed that for an asymmetric GHZ-class
Werner state, an inequivalent choice of qubits obeying a sum of frequency rule results in
the robustness of the correlation against environmental decoherence. We also found the
preservation time of genuine multipartite concurrence for several spectral densities and
showed that the sudden death of multipartite correlation occurs for states with mixedness
parameter x < 1, wherein the rate of decay depends on the specific reservoir under
consideration. Furthermore, we studied the decoherence in the W-class Werner state
through von-Neumann entropy and showed that the correlations show robustness against
environmental decoherence for N equivalent qubits. The studied behavior of genuine
quantum correlations in a dephasing environment will be useful in implementing quantum
tasks in such scenarios. Furthermore, with a straightforward extension to qubits placed in
separate environments, one can study various thermodynamic aspects, which are affected
by the behavior of correlations in the presence of a dephasing environment. In particular, it
would be interesting to see the transient behavior of thermodynamics quantities and their
variation for different values of N for an N-qubit system, and especially for the choice of
the GHZ-class Werner state, which resists dephasing.
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