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Abstract: We show that the entropy per quantum vortex per layer in superconductors in external
magnetic fields is bounded by the universal value kBln 2, which explains puzzling results of recent
experiments on the Nernst effect.
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1. Introduction

The Nernst effect [1,2] is the emergence of a transverse electric field produced by a
longitudinal thermal gradient in the presence of a magnetic field and measures the flow
of transverse entropy induced by a longitudinal particle motion. The Nernst effect has
attracted a great deal of attention after the discovery of a sizable Nernst coefficient in high-
temperature cuprate superconductors due to fluctuating Cooper pairs and mobile vortices
simultaneously carrying entropy and magnetic flux. The high interest in the Nernst effect is
amplified by the fact that measurements of the Nernst signal can provide information about
material parameters inaccessible by other means, for example, the upper critical field Hc2,
which often cannot be directly measured because of its large value [3]. The Nernst signal
has a maximum as a function of temperature and magnetic field and a tail into the normal
state. Recent experiments [4] revealed that, in the fluctuation region, the Nernst effect has
the magnitude expected by theory. However, the peak amplitude of the Nernst signal is
unexpectedly about the same in different superconductors despite the broad variance in
basic superconducting parameters, and it corresponds to the universal value of an entropy
per vortex per layer ≈kB ln 2 [4] (see also [5]).

Here, we demonstrate that this remarkable finding is an immediate consequence of the
dynamical symmetry of a superconducting ground state under the algebra(
W1+∞ ⊗W1+∞

)
/Û(1), where W1+∞ is the algebra of quantum area preserving diffeomor-

phisms [6–8] (see [9] for a review).

2. Methods

Dynamical symmetries are very powerful tools for deriving the structure of a classical
configuration space or a quantum Hilbert space and the properties of their excitations
once the relevant symmetry governing them are identified, as in the paradigmatic example
of the flavor SU(3) symmetry of strong interaction. Uniform ground states with a gap—
like the Cooper pair condensate in superconductors—are incompressible in the limit of a
large gap, where density waves are suppressed. Note that although in a d-wave high-Tc
superconductor, one could expect the gapless nodal modes to promote charge density
waves (CDW), the maximum Nernst signal is observed in the region where superconduc-
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tivity dominates [4] and the competing CDW order does not develop. Hence, Cooper pair
condensate incompressibility is preserved there as well.

The dynamical symmetry of a gapped system (in the limit of the large gap), classifying
all possible configurations at the classical level, or states at the quantum level, is that of
volume-preserving diffeomorphisms. In the presence of an applied external magnetic field,
or for thin films, the dynamical symmetry reduces to area-preserving diffeomorphisms
(in the plane orthogonal to the magnetic field if this is present). An area-preserving
diffeomorphism transforms, for example, a circular region of the plane into a deformed
region of the same area, and it is thus the relevant symmetry for incompressible fluids, for
which deformations of the constant area of a droplet are the only allowed transformations.

The 2D case is particularly interesting since the algebra of area-preserving diffeo-
morphisms is a well-known extension of the 2D conformal algebra [10]. An example of
the volume-preserving transformations should immediately come to mind from classical
mechanics: the canonical transformations preserve the volume of phase space. When
the system is 1D, the phase space is 2D, and canonical transformations preserve its area.
It turns out that at the classical level, the area-preserving diffeomorphisms can always be
represented as canonical transformations of a two-dimensional phase space. In the gapped
systems, there is always a fundamental length associated with the gap. For quantum Hall
systems, it is the magnetic length `H =

√
h̄c/eB, where h̄ = h/2π, h is the Planck constant,

c is the light velocity, −e is the electron charge, and B is the magnetic field. In supercon-
ductors, it is `¸ = O(ξ), where ξ is the coherence length. From now on, we normalize all
lengths by this fundamental length `¸, endowing the plane with coordinates z and z̄ with a
Poisson bracket

{ f , g} = ±i (∂ f ∂̄g− ∂̄ f ∂g) , (1)

so that z represents a coordinate, and z̄ its conjugate momentum (or the other way around).
One describes the area-preserving diffeomorphisms as canonical transformations δz = {L, z}
and δz̄ = {L, z̄} with generating functions L(z, z̄). The basis of generators Ln,m = zn z̄m

satisfies what one calls the classical w∞ algebra [9]{
Ln,m,Lk,l

}
= ∓i (mk− nl) Ln+k−1,m+l−1 , (2)

which is obtained simply by repeatedly using the Poisson bracket (1) on the generators.
The operators Lnm with n > 0 and m > 0 form two closed sub-algebras, the two chiral
sectors of the classical w∞ algebra, related by complex conjugation. Generators with both n
and m being negative are called descendants and are obtained as products of generators in
the two fundamental chiral sectors. Finally, generators with n = 0 and m = 0 form two
Abelian subalgebras. For systems which do not break parity, like the present one, we use
different signs in the definition of the Poisson bracket (1) for the two chiral sectors. A parity
transformation involves complex conjugation and exchange of the two chiral sectors so
that the symmetry algebra (2) is left invariant.

The quantum version of this infinite-dimensional algebra is obtained by the usual
substitution of Poisson brackets by quantum commutators: i{, } → [, ]. Let us denote the
quantum version of Li−n,i by Vi

n, and let us first discuss one single chiral sector of the
quantum algebra by restricting to positive values of i. This gives the algebra W∞,

[Vi
n, V j

m] = (jn− im) Vi+j−1
n+m + q(i, j, n, m) Vi+j−3

n+m + · · ·
+δijδn+m,0 c d(i, n) , (3)

where the structure constants q and d are polynomials of their arguments and the dots
denote a finite number of similar terms involving the operators Vi+j−1−2k

n+m . The first term
in the r.h.s. of Equation (3) is the classical term (2). The remaining terms are quantum
operator corrections, with the exception of the last c-number term, which represents a
quantum anomaly with the central charge c. All the quantum operator corrections are
uniquely determined by the closure of the algebra; only the integer central charge c is a free
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parameter. If we admit also the value i = 0, we obtain the full algebra W1+∞, including the
Abelian subalgebra quantum generators V0

n . The quantization of the full classical algebra
w∞, involving generators in the two chiral sectors, the two Abelian subalgebras, and all
their products, is then obtained as the direct product of two copies W1+∞ and W1+∞ of
opposite chirality. The exact form of the polynomials q and d are not relevant for what
follows, and we thus omit them for simplicity.

3. Results

Let us first consider, for simplicity, a single chiral sector and give some examples.
The generators Vi

n are characterized by an integer conformal (scaling) dimension
h = i + 1 ≥ 1 and a mode index n, −∞ < n < +∞. The operators V0

n satisfy the
Abelian Kac–Moody algebra (see [10] for a review), Û(1), which is the quantum extension
of the usual U(1) by a c-number central charge, while the operators V1

n are the generators
of conformal transformations, satisfying the Virasoro algebra [10]

[V0
n , V0

m] = n c δn+m,0 ,

[V1
n , V0

m] = −m V0
n+m ,

[V1
n , V1

m] = (n−m)V1
n+m +

c
12

n(n2 − 1)δn+m,0 . (4)

The operators V0
n and V1

n are the charge and angular momentum modes in the chiral
sector under consideration.

Exactly as in the familiar representation theory of the rotation group SU(2), a multiplet
is a representation of the symmetry algebra. This is formed by the highest weight state,
which is annihilated by all lowering operators, for example Sz = −1, and further states
obtained by applying on it the raising operators, for example Sz = 0 and Sz = +1.
The only difference here is that the symmetry algebra is infinite-dimensional, and thus
there are infinite “spin" operators labeled by i and infinite lowering and raising operators
labeled by ±n. The incompressible quantum ground state is thus a highest-weight state
|Ω〉W satisfying

Vi
n|Ω〉W = 0 , ∀ n > 0 , i ≥ 0 ,

Vi
0|Ω〉W = 0 , i ≥ 0 . (5)

The particle-hole excitations are obtained by applying generators with negative mode
index (the raising operators) to |Ω〉W . Due to incompressibility, these gapless excitations
are edge excitations. This is not the only possibility, however. There can be other highest-
weight representations of W1+∞ for which the operators Vi

0 do not vanish. These are
identified with the possible bulk excitations, with quantum numbers encoded in Vi

0 and
each with its tower of gapless edge excitations. As in the case of SU(2), the highest-weight
representations can be composed. The rules to do so are called fusion rules in this infinite-
dimensional case [10]. Finally, there are operators V(z) that interpolate between different
highest-weight representations. These operators, called vertex operators, can be thought to
insert a given excitation at z when applied on the ground state [10].

This representation theory of W1+∞ has been applied to classify incompressible quan-
tum fluids corresponding to the observed hierarchy of quantum Hall plateaus [11–13].
In the case of superconductors [14], in which there is no parity-breaking magnetic field, we
start with the direct product of two copies of the symmetry algebra of opposite chirality,
W1+∞ ⊗W1+∞. However, the charge operators V0

n + V0n spanning the charge Kac–Moody
algebra Û(1)charge have to be modulated out from this symmetry group since the charge is
condensed and does not represent a good quantum number. The dual group Û(1)vortex,
spanned by the operators V0

n −V0n, represents vortices with their tower of edge excitations,
V0

0 −V00 being the vortex number. Actually, this entails that a single axial W1+∞ remains
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as the full symmetry group, with its Û(1) Kac–Moody algebra encoding the Abelian
vortices [14].

Let us now consider a quantum vortex at holomorphic coordinates (z, z̄) or, equiva-
lently, at (x = (z + z̄)/

√
2, y = (z− z̄)/i

√
2). This is described by a wave function Φ(z, z̄),

which is the direct product of two chiral wave functions, Φ(z, z̄) = ψL(z)ψR(z̄), each of
which corresponds to a highest-weight state in its chiral symmetry sector. We can thus
focus on each of these sectors separately. As we have derived, the incompressibility implies
that two coordinates z and z̄ corresponding to the generators V0

−1 = z and V1
1 = z̄ do not

commute as a consequence of the symmetry algebra,

[z, z̄] =
[
V0
−1, V1

1

]
= 1 , (6)

or, equivalently,
[x, y] = −i , (7)

Incompressibility leads to a phase-space reduction in each chiral sector, the coordinate
space itself becomes a phase space, and the two coordinates do not commute. In the
presence of the magnetic field, this is tantamount to the well-known non-commutativity
of the magnetic translations or of the guiding centres of charged particles in the first
Landau level. Finite magnetic translations form nothing else but the group of the area-
preserving diffeomorphisms on the torus. Note, however, that an external magnetic
field is just one possible mechanism leading to an incompressible quantum fluid. Other
mechanisms can exist that lead to the same non-commutativity as a consequence of their
dynamical symmetry [15]. In the case of superconductors, the condensate is the origin of
the non-commutativity. While in the magnetic case, the area that appears on the right-
hand side of the non-normalized coordinate commutator is the square of the magnetic
length, for superconductors it is the square of the superconducting correlation length ξ.
For small values of the magnetic field, the gap relevant for incompressibility remains the
superconducting gap, and the dynamical symmetry is preserved. This happens when the
magnetic length is larger than the correlation length, eB/h̄c < 1/ξ2, which can be rewritten
as B < Φ0/2πξ2 = Bcr2, with Φ0 the flux quantum and Bcr2 the upper critical field of the
type II superconductor.

The immediate consequence of this non-commutativity is that the vortex wave func-
tion is a direct product of chiral wave functions of only one of the coordinates x and
y, while the other is realized as a momentum. The choice of which is a true coordinate
and which is the conjugate momentum is called a choice of polarization in field theory.
For example, we can choose the vortex wave function as Φ(y) and realize x as x = −id/dy.
Both possibilities are legitimate, and the polarization choice does not influence physical
quantities. The really important point is that, as in standard quantum mechanics, due to
incompressibility we have a generalized Heisenberg uncertainty relation between true
coordinate and momentum,

∆x∆y ≥ `2
¸ = O

(
ξ2
)

, (8)

where we have used standard lengths to best expose the physical content of this equation.
This means that the position of the quantum vortex in the plane cannot be specified more
precisely than the area of O(ξ2). As in the standard quantum statistical mechanics, the
2D phase space decomposes into the fundamental cells of “area” h̄ with each such cell
containing no more than one fundamental quantum degree of freedom, and here the
actual plane decomposes into the real cells of the area Afund = O(ξ2), each capable of
accommodating at best one quantum vortex. Note that these cells do not have to be regular;
it is only the area which is important. When all the cells are occupied, one cannot squeeze
another vortex into the system since this would violate the condition (8).

Let us consider the possible distribution of quantum vortices. To that end, we divide
the sample area A into N = A/Afund cells, which can each accommodate exactly one
quantum vortex in a maximally squeezed configuration. An upper bound for the number
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of possible configurations can be easily found by assuming that each such cell has two
possible states: it is either occupied by a vortex or not. This would correspond to the
number of available configurations 2N with N = A/Afund the number of fundamental
cells fitting in the sample, corresponding to an entropy bound S = NkBln 2. This bound
becomes exact when the number of vortices reaches the maximum value N, that is, when
all cells are occupied. In a maximally squeezed configuration, each cell is occupied, and
each quantum vortex thus carries the universal entropy kBln 2, in full accord with the
Nernst effect measurements [4]. Note that we have not used any information other than the
presence of a gap in an effective 2D system. The universal bound is simply a consequence
of the incompressibility of the superconducting ground state and is common to all possible
superconductors, independently of the details of their material parameters.

As soon as the applied magnetic field has created enough quantum vortices to com-
pletely fill up the available cells in a given sample, the further vortex accommodation upon
further small increase of the magnetic field becomes impossible. As a consequence, super-
conductivity breaks down. This is thus an alternative characterization of the upper critical
field in type II superconductors. The universal entropy limit per vortex is reached precisely
at this value of the applied field in a full accord with the experimental observation [4].

4. Discussion and Conclusions

We would like to stress that our derivation for the gapped systems does not preclude
the possibility of other, gapless systems having quasiparticles with entropies of O(kB).
A gap is a sufficient condition for the universal entropy bound in effective 2D systems but
not a necessary one.

Finally, let us note that this result can be interpreted in terms of information theory.
A maximally squeezed vortex is a fundamental bit. Therefore, a vortex “erased" from the
sample by the transverse Nernst current takes away exactly the entropy kBln 2 according to
the Landauer bound formula [16].
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