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Abstract: The Casimir effect between type-II superconducting plates in the coexisting phase of a
superconducting phase and a normal phase is investigated. The dependence of the optical con-
ductivity of the superconducting plates on the external magnetic field is described in terms of the
penetration depth of the incident electromagnetic field, and the permittivity along the imaginary axis
is represented by a linear combination of the permittivities for the plasma model and Drude models.
The characteristic frequency in each model is determined using the force parameters for the motion
of the magnetic field vortices. The Casimir force between parallel YBCO plates in the mixed state is
calculated, and the dependence on the applied magnetic field and temperature is considered.
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1. Introduction

The Casimir effect [1], which means that perfectly conductive plates attract each
other due to the quantum fluctuations of the electromagnetic field in a vacuum, is an
interesting macroscopic quantum effect. Based on Casimir’s prediction, Lifshitz presented
the generalized theory of the Casimir effect, which can be applied to dielectric bodies,
including metals, and Lamoreaux [2] verified the Lifshitz theory via precise measurement
of the Casimir force between metallics plates.

The Casimir force depends significantly on the optical properties of objects [3,4].
The Casimir force between various materials, such as perfectly conductive plates [5],
metals [2,6], ferromagnetic materials [7,8], and metamaterials [9] has been investigated. In
addition, superconductors are important materials for understanding the Casimir effect
more effectively because they exhibit marked changes in conductivity and cause variations
in the Casimir energy.

The detection of variations in the Casimir energy based on the change in the optical
properties of superconductors was theoretically investigated by Bimonte et al. [10–12]. In
these investigations, both transitions caused by changes in the temperature and external
magnetic field were considered. Recent developments in the measurements of the Casimir
force verified that the Casimir force exists and obeys Lifshitz’s theory [2,6,13,14]. However,
the measurement of the change in the Casimir energy is difficult, and experiments involving
the phase transition of the superconductor are expected [14,15].

An experimental platform for measuring changes in the Casimir force between super-
conductive plates using a nanophotonic detection system on a chip was proposed [16,17].
Although the effect of phase transition on the Casimir force was not observed because of
difficulties in aligning two superconductors, the measurement of the Casimir force between
superconductive Al films was demonstrated for the first time, thereby enabling many prob-
lems to be solved concerning the Casimir effect between superconductors. For instance, it
was discovered that the Casimir force measured experimentally was much smaller than
the theoretical prediction value for the change in the force arisen by gravitational Casimir
effect [18].

Quantum Rep. 2021, 3, 731–745. https://doi.org/10.3390/quantum3040046 https://www.mdpi.com/journal/quantumrep

https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0000-0002-3013-1189
https://doi.org/10.3390/quantum3040046
https://doi.org/10.3390/quantum3040046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/quantum3040046
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/article/10.3390/quantum3040046?type=check_update&version=1


Quantum Rep. 2021, 3 732

The conductivity of type-I superconductors changes abruptly as the external magnetic
field increases. Initially, the magnetic field is expelled by the Meissner effect. However, the
strong magnetic field above a critical magnetic field Bc, which depends on the material
and temperature, diminishes the superconductivity. In the case of type-I superconductors,
the superconductive region disappears completely above Bc. By contrast, in type-II super-
conductors, the penetrating external magnetic field increases gradually [19,20]. The center
of the magnetic flux is in the normal phase, and the superconductive phase disappears
gradually as the magnetic field increases. The coexisting phase, known as the mixed state
or magnetic vortex state, exists between the lower critical magnetic field Bc1 and upper
critical magnetic field Bc2. The magnetic flux in the superconductor is quantized, and the
defects in the superconductor pin the magnetic flux. The response of a superconductor in
the mixed state to the irradiation of electromagnetic waves is primarily determined by the
motion of the vortices.

The vortices (quantum magnetic flux) [21,22] form a lattice structure, and the prop-
agating electromagnetic wave through the superconductor affects the vortices via the
Lorentz force. In addition, the vortices interact with each other. The optical properties of
superconductors are often expressed in terms of the penetration depth of the magnetic field.
In the Meissner state, the magnetic field decays exponentially with the London penetration
depth. The penetration depth depends on the magnetic field. In addition, in the type-II
superconductor, the number of vortices increases with the external magnetic field. The
dependence of the Casimir force between superconductive plates on the magnetic field
can be calculated if the penetration depth can be expressed as a function of the external
magnetic field. Recently, Villarreal and Caballero-Benitez theoretically investigated the
Casimir force between high-Tc superconductors in the Meissner state [23,24].

Type-I superconductors, such as aluminum, are suitable for verifying the Casimir
energy change because the electric properties of type-I superconductors are well under-
stood. In contrast, many type-II superconductors, such as high-Tc superconductors, are
anisotropic, and the mechanism of superconductivity is not sufficiently understood. Al-
though many unknown factors remain in high-Tc superconductors, there are unique prop-
erties that are not found in type-I superconductors. The electric properties of type-II
superconductors in the mixed state strongly depend on the dynamics of the vortices. The
Casimir effect is usually determined by electric interactions with the quantum fluctua-
tion of a vacuum. However, the Casimir effect between type-II superconductors under
the external magnetic field cannot be understood without considering the interactions
between the magnetic flux and the quantum fluctuation of the vacuum. Thus, measuring
the Casimir force between the superconductors can provide findings on the interaction
between vacuum quantum fluctuation and quantum magnetic flux.

In this study, we focused on the dependence of the Casimir force between high-Tc
superconductors in the mixed state on the applied magnetic field. In particular,
YBCO(YBa2Cu3O7) is chosen as an example because YBCO is a typical type-II super-
conductor, and the reflection data in the mixed state were measured [25]. Furthermore,
the dependence of the reflectance on the external magnetic field can be understood in the
dissipation in terms of vortex motion.

The remainder of this paper is organized as follows. In Section 2, we briefly explain the
Lifshitz theory for the Casimir force. In Section 3, we introduce the formula established by
Coffey and Clem for the penetration depth of a superconductor in the mixed state [26–28].
For simplicity, we consider the contribution of oscillating vortices but disregard the flux
creep. In Section 4, the permittivity along the imaginary axis, which is required in the
Lifshitz formula [29], derived from the penetration depth is presented. In addition, the
dependence of permittivity on the magnetic field is explained. In Section 5, the calculation
of the dependence of the Casimir force on the external magnetic filed is presented. In
the conclusion section, we summarize the relationship between the Casimir force and the
material properties of superconductors in the mixed state.
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2. Casimir Force between Parallel Plates

We consider two parallel semi-infinite superconductive plates. The separation distance
between the plates is a, and an external magnetic field B is applied vertical to the surface of
the plates. The Casimir force exerted on the plates per area can be obtained by calculating
the derivative of the Casimir energy with respect to a. The Casimir energy can be obtained
by regularizing the zero-point energy of the electromagnetic field between the plates. The
electromagnetic field between the plates is characterized by the angular frequency ω, wave
vector k = (k⊥, kz), where k⊥ is defined as the wave vector parallel to the surface and
polarization σ (transverse magnetic mode (TM) and transverse electric mode (TE)), as
shown in Figure 1.

Figure 1. Light propagation in (a) TM mode and (b) TE mode from a vacuum to a superconductor.
The yz-plane is the plane of incidence. The external magnetic field B0 is perpendicular to the surface
of the superconductor. The magnetic field of the light Blight in TM mode is perpendicular to the plane
of incidence. Conversely, the electric field of the light is perpendicular to the plane of incidence, and
the magnetic field exits at the yz plane.

For the TM mode, the magnetic field of the incident light Blight is parallel to the surface
of the superconductor. Thus, Blight is orthogonal to the external magnetic field B regardless
of the incident angle θvacuum. Concerning the TE mode, Blight is parallel to the plane of
incidence, and the angle between Blight and B is π/2− θvacuum.

The electromagnetic field between the plates must satisfy the following dispersion
relations:

GTM(ω, k⊥) ≡
(

ε(ω)q− K
ε(ω)q + K

)−2

e2aq − 1 = 0, (1)

GTE(ω, k⊥) ≡
(

q− K
q + K

)−2
e2aq − 1 = 0, (2)

where q(ω, k⊥) =
√

k2
⊥ −ω2/c2 and K(ω, k⊥) =

√
k2
⊥ − ε(ω)ω2/c2. The dependence of

permittivity ε(ω) on the temperature and magnetic field is discussed in the next section.
By summing up the photon energy over all combinations of (ω, k⊥) satisfying the

dispersion relations and regularizing the energy, the Casimir force per area at temperature
T can be expressed by the Lifshitz formula [3,4] as follows:

P(a, T) = − kBT
π

∞

∑
l=0

′
∫ ∞

0
qlk⊥dk⊥

(
GTM(iξl , k⊥)−1 + GTE(iξl , k⊥)−1

)
, (3)

where ξl ≡ 2πkBTl/h̄, (l = 0, 1, . . .) is the Matsubara frequency and ql = q(iξl , k⊥). The
prime o the summation symbol denotes that 1/2 should be inserted if l = 0. The material
dependence on the Casimir force is determined by the permittivity along the imaginary
axis. To evaluate the Casimir force, it is convenient to set the unit frequency to ξ1, which
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is the lowest positive Matsubara frequency. In addition, by defining the dimensionless
wavenumber as y = ck⊥/ξ1, the Lifshitz formula can be rewritten as

P(α, T) = − kBT
π

(
ξ1

c

)3 ∞

∑
l=0

′
∫ ∞

0
y
√

y2 + l2dy
{

g−1
TM (l, y) + g−1

TE (l, y)
}

, (4)

gσ(l, y) = r2
σ(l, y)e2α

√
y2+l2

, σ ∈ {TE, TM}. (5)

Here, α ≡ a/(c/ξ1) is the distance between the plates that is normalized by the unit
length c/ξ1, and the reflection coefficients are represented as

rTM(l, y) =
εl
√

y2 + l2 −
√

y2 + εl l2

εl
√

y2 + l2 +
√

y2 + εl l2
, (6)

rTE(l, y) =

√
y2 + l2 −

√
y2 + εl l2√

y2 + l2 +
√

y2 + εl l2
, (7)

where εl = ε(iξl) [4]. It is noteworthy that εl l2 is not always zero at l = 0. If limω→0 ω2ε(ω)
converges to a positive value ω2

p, then the reflection coefficients at l = 0 are rTM(0, y) = 1 and

rTE(0, y) =
y−

√
y2 + ω2

p

y +
√

y2 + ω2
p

. (8)

The unit frequency ξ1 at 1 K is 8.2×1011 rad/s, and its wavelength is 58 µm. This char-
acteristic length decreases as the temperature increases. At the phase transition temperature
of YBCO (88.2 K), the wavelength decreases to 0.65 µm.

Many high-Tc superconductors are uniaxial materials, and the Casimir effect due
to the anisotropy of dielectric properties is considered using the following reflection
coefficients [4,30]:

rTM(l, y) =

√
εxlεzl

√
y2 + l2 −

√
y2 + εzl l2

√
εxlεzl

√
y2 + l2 +

√
y2 + εzl l2

, (9)

rTE(l, y) =

√
y2 + l2 −

√
y2 + εxl l2√

y2 + l2 +
√

y2 + εxl l2
. (10)

where εxl and εzl are permittivity in the xy-plane and along the z-axis, respectively. In this
study, we use these formulas to consider the anisotropy of dielectric properties caused by
the magnetic flux.

3. Permittivity of Superconductor in the Mixed State
3.1. Relationship between Conductivity and Permittivity

The optical properties required to calculate the Casimir force using the Lifshitz theory
are the permittivities at arbitrary Matsubara frequencies along the imaginary axis. As
shown below, the permittivity along the imaginary axis is obtained using the Hilbert
transform of the imaginary part of the permittivity along the real frequency axis. Therefore,
an imaginary part of the permittivity for arbitrary frequencies is necessary. However,
the experimentally obtained optical data of the superconductor are limited; therefore, we
introduce model functions.

The real part of conductivity σ1(ω) of superconductors below the transition tempera-
ture Tc is often expressed using the two-flow model as follows:

σ1(ω) = Dδ(ω) + σ1,n(ω), (11)
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where δ(ω) is a delta function with a peak at ω = 0 and σ1,n(ω) is the contribution from
the fluid in the normal phase. We determine the coefficient D using the sum rule of the
oscillator strength. According to the sum rule [31,32], the real part is correlated to the
imaginary part of conductivity σ2 as follows:

2
π

∫ ∞

0
σ1(ω)dω = lim

ω→∞
ωσ2(ω). (12)

In the London theory framework, the imaginary part of the conductivity in the super-
conductive state is expressed using the London penetration depth (SI unit) as

σ2(ω) =
1

µ0λ2
Lω

, (13)

where µ0 is the permeability of vacuum. Accordingly, the coefficient D is given by

D =
π

µ0λ2
L

. (14)

Using the Kramers–Kronig relation, the permittivity along the imaginary axis is
expressed as

ε(iξ) = 1 +
2

πε0

∫ ∞

0

σ1(ω)

ω2 + ξ2 dω, (15)

where ε0 is the permittivity of the vacuum. Consequently, the contribution of the supercon-
ductive fluid to the permittivity along the imaginary frequency is expressed as

ε(iξ) = 1 +
c2

λ2
Lξ2

. (16)

This implies that the permittivity in the Meissner state obeys the plasma model with
plasma frequency ωp0 = c/λL. According to the theory by Villarreal and Caballero-Benitez
for the Casimir force between YBCO plates in the superconductive state without magnetic
field, the dielectric function is expressed as follows:

εs(ω, T) = ε∞ +
iπω2

ps(T)
2ω

δ(ω)−
ω2

ps(T)
ω2

−
Sirω2

ir
ω2 −ω2

ir + iγirω
−

6

∑
j=1

Sjω
2
j

ω2 −ω2
j + iγjω

. (17)

The parameters in Equation (17) are given in Ref. [23]. Although YBCO has anisotropy
for the dielectric permittivity even in the absence of a magnetic field, we consider only the
anisotropy arising from vortices.

3.2. Permittivity along the Imaginary Axis

The conductivity of metallic superconductors that obey the BCS theory can be ana-
lytically expressed in terms of the electron density, energy gap, and residual relaxation
time [11]. In the case of high-Tc superconductors, it is convenient to derive the conduc-
tivity from the penetration depth. The complex conductivity can be obtained from the
penetration depth λ using the following expression:

σ(ω) =
i

µ0ωλ2 . (18)
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The real and imaginary part of the conductivity are respectively expressed as

σ1(ω) =
2

µ0ω

λ1λ2

|λ|4 , (19)

σ2(ω) =
1

µ0ω

λ2
1 − λ2

2
|λ|4 , (20)

where λ1 and λ2 are the real and imaginary parts of the penetration depth, respectively [28].
We calculate the permittivity of the superconductor in the mixed state along the

imaginary axis in a manner similar to that described in Section 3.1 for the incidence of light
in the TM mode. Coffey and Clem studied the dynamics of the magnetic vortices in the
mixed state induced by the radiation of electromagnetic waves [26–28] and derived the
equation of motion for vortices using the viscous drag coefficient η and the coefficient of
restoring force per unit length of the magnetic vortex κ. The resulting complex penetration
depth of the superconductor, in which the contribution of the shaking vortices is considered,
is given by

λ =

√
Bφ0

µ0(κ − iωη)
+ λ2

L, (21)

where φ0 is the magnetic flux quantum, which is defined as h/2e (see details in Appendix A).
Using Equations (19) and (20), the components of the complex conductivity for ω > 0 are
expressed as

σ1(ω) =
1

µ0λ2
L

α2 − β2

α(ω2 + α2)
, (22)

σ2(ω) =
1

µ0λ2
Lω

(
1 +

β2 − α2

ω2 + α2

)
. (23)

Here, α and β, which are the real and imaginary parts of λ2, respectively, are defined by

α =
κ

η
+

Bφ0

µ0ηλ2
L

, (24)

β =

√
κ

η
α. (25)

Using α and β, the penetration length is rewritten as

λ = λL

√
α2 − β2

β2 − iαω
+ 1. (26)

Similar to Equation (11), the conductivity for ω ≥ 0 can be expressed by adding a DC
term as

σ1(ω) = Dδ(ω) +
1

µ0λ2
L

α2 − β2

α(ω2 + α2)
. (27)

The summation of σ1 over the frequency is

∫ ∞

0
σ1(ω)dω =

D
2
+

π(α2 − β2)

2µ0λ2
Lα2

. (28)
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Since limω→∞ ωσ2(ω) = 1/µ0λ2
L, using Equations (12) and (28), the sum rule [31,32]

yields

D =
πβ2

µ0λ2
Lα2

. (29)

The vortices do not displace along the z-axis. Thus, we determine the permittivity for
the TM mode along the imaginary axis of the superconductor in the mixed state as

εx(iξ) = 1 +
ω2

p

ξ2 +
ω2

D

ξ(ξ + α)
, (30)

εz(iξ) = 1 +
ω2

p0

ξ2 . (31)

The second and third terms of (30) represent the permittivites of the plasma and
the Drude models, respectively. The plasma frequencies ωp and ωD are respectively ex-
pressed as

ωp =
c

λL

(
β

α

)
, (32)

ωD =
c

λL

√
1−

(
β

α

)2
. (33)

We consider the dependence of ωp and ωD of YBCO on the temperature and magni-
tude as examples. The external magnetic field is applied vertically to the ab-plane. The
dependences of λL, η, and κ on the reduced temperature t = T/Tc and the magnetic field,
provided in Ref. [28,33,34], are as follows:

λL(t, B) =
λ0√

1− t4
√

1− B
Bc2(t)

, (34)

η(t) =
φ0Bc2(t)

ρ(t)
, (35)

κ(t) = κ0

[
1−

(
Tct
Tc2

)2
]2

, (36)

where λ0, κ0, and Tc2 are parameters determined by experiments. The parameters of the
YBCO are summarized in Table 1 [28].

Table 1. Parameters for vortex dynamics [28].

Tc 88.2 K
Tc2 87 K
λ0 140 nm
Bc2,0 112 T
κ0 2.1 × 104 N/m2

c0 2.0 × 10−7 Ω m
c1 9.7 × 10−7 Ω m/K
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The functions of the upper critical magnetic field Bc2(t) and the resistivity in the
normal state ρ(t) [34] are defined as

Bc2(t) =
Bc2,0(1− t2)

1 + t2 , (37)

ρ(t) = c1t + c0. (38)

The magnetic dependence of the penetration depth arises from that of f0 and λL.
Although the obtained Formulas (30) and (31) for permittivity are valid for Bc1 < B < Bc2,
where the lower critical magnetic field Bc1 is approximately 0.25 T for YBCO [33], we have
the values in the absent of the magnetic field, ωp = c/λL and ωD = 0 , by setting it to be
B = 0. Figure 2 shows the permittivity of the superconductor in the mixed state along the
imaginary axis at t = 0.1 for B = 0 and 10 T. We find that the permittivity decreases below
approximately 1012 rad/s when a strong external magnetic field is applied.

B = 0 T

B = 10 T

8 10 12 14 16
0

2

4

6

8

10

12

14

log10 (rad/s)

lo
g
1
0
ϵ x
(i
ξ)

Figure 2. Permittivity parallel to the surface of YBCO in the mixed state at T = 8.82 K (t = 0.1) along
imaginary axis in a log–log scale.

The plasma frequencies and α depend on the external magnetic field. Figure 3a,b show
the dependence of plasma frequencies ωp and ωD at t = 0.1 and 0.5, respectively.

T/Tc = 0.1

T/Tc = 0.5

(a)

0 10 20 30 40 50
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ω
p
(1
0
1
4
ra
d
/s
)

T/Tc = 0.1

T/Tc = 0.5

(b)

0 20 40 60 80 100
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20

B (T)

ω
D
(1
0
1
4
ra
d
/s
)

Figure 3. Dependence of frequencies (a) ωp (plasma model) and (b) ωD (Drude model) on magnetic
field at t = 0.1 (solid line) and 0.5 (dashed line).

The plasma frequency ωp decreases rapidly as the external magnetic field increases.
By contrast, ωD increases rapidly and then decreases gradually as the external magnetic
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field increases. Figure 4 shows that ωD decreases as the temperature increases. Thus,
the reflection coefficients also decrease near the phase transition temperature. To obtain
accurate reflection coefficients near the critical point, the flux creep, which is disregarded in
this study, must be considered. In addition, the contribution of the permittivity described
by the Lorentz model (as expressed in Equation (17)), which will be discussed later, must
be taken into account.

B = 10 T

B = 25 T

0 20 40 60 80

0

5

10

15

20

T (K)

D
(1
0
1
4
ra
d
/s
)

Figure 4. Temperature dependence of frequency ωD (Drude model).

In the case of the TE mode, the magnetic field propagating in a superconductor is
not orthogonal to the external magnetic field, except for the angle of incidence θvaccum = 0.
According to the generalized theory by Coffey and Clem for the propagation of an electro-
magnetic wave in a superconductor with an oblique applied static magnetic field [35], α
defined in Equation (24) for the TE mode is replaced with

α =
κ

η
+

Bφ0 cos2 θsc

µ0ηλ2
L

. (39)

Accordingly, the permittivity depends on the refracting angle θsc. However, the
contribution of the TE mode is smaller than that of the TM mode for small separation
distances. For example, the ratio of the TE mode’s contribution to the TM mode at T = 50 K
and B = 25 T is approximately 0.37 at 1 µm in the calculation presented in the next section.
The ratio is reduced to 0.02 at 0.1 µm. In addition, the contribution of large θsc is small.
To explain this, it should be emphasized that the angle θsc is not the angle of incidence.
According to Snell’s law, the relationship between the refracting angle and the angle
of incidence θin of the incident light that propagates from a vacuum to a material with
permittivity ε(ω) is expressed as sin−1 θin/

√
ε(ω). Thus, if the permittivity is large, the

refracting angle is small. The approximation that sets θsc as 0, which is the basis of the
surface impedance approach, is often used in the calculation of the Casimir force between
metals [36]. At large frequencies, i.e., large l, the refracting angle becomes large. However,
the contribution of large frequencies in the summation in Equation (4) is usually small. For
these reasons, we use the approximation θsc = 0 in the following calculations.

4. Effect of External Magnetic Field on Casimir Force between Superconductive Plates

We consider the Casimir force between the YBCO plates in the mixed state. The
contribution of the superconductive phase of permittivity is described using the plasma
model. As the external magnetic field increases, the volume in the superconductive phase
decreases, resulting in a decrease in plasma frequency ωp. By contrast, the number of
magnetic flux increases, and the contribution, which is expressed by the Drude model to
the permittivity, increases. Hence, the reflection coefficient is altered by increasing the
external magnetic field, thereby causing a change in the Casimir force.
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To show the dependence of the Casimir force on the magnetic field, it is useful to
introduce the Casimir force normalized by that between perfectly conducting plates, PC(a),
which is expressed as:

PC(a) = − π2h̄c
240a4 . (40)

Figure 5a shows the normalized Casimir force ηC ≡ P(a, T)/PC(a) at a fixed separation
distance a = 1 µm for a magnetic field between 1 and 60 T.

T = 10 K

T = 20 K

T = 30 K

(a)
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Figure 5. (Color online) Dependence of normalized Casimir force between YBCO plates in the mixed
state on (a) magnetic field, (b) separation distance, and (c) temperature.

At higher temperatures, the normalized Casimir force decreases rapidly as the mag-
netic field increases. Near absolute zero, the normalized Casimir force between metallic
plates, whose permittivity is described mainly by the plasma model with plasma frequency
ωp, can be approximated as

ηC ≈ 1− 16c
3ωpa

, (41)

for large separations.
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Although an increase in plasma frequency ωD strengthens the Casimir force, the
decrease in plasma frequency ωp is more significant in the magnetic field range of the
calculation. Accordingly, the normalized Casimir force decreases monotonically owing
to the external magnetic field. Combining Equations (1), (2), (9), (10), (30) and (31), we
calculated the Casimir force. Figure 5b shows the dependence of ηC on the separation
distance a. As expected (based on Equation (41)), the normalized Casimir force decreases
as the external magnetic field increases for any separation distance. Figure 5c shows the
temperature dependence of the normalized Casimir force. If the permittivity is independent
of temperature, then the Casimir force usually increases as the temperature increases owing
to the additional contributions of thermal radiation. However, the normalized Casimir
force decreases, as shown in Figure 5c. Plasma frequency ωD decreases as the temperature
increases, as shown in Figure 4, and this change affects the Casimir force more significantly
than the thermal radiation.

Plasma frequency ωD decreases rapidly as the temperature approaches the phase tran-
sition temperature. Thus, several contributions to the permittivity that were disregarded,
such as the contribution described by the Lorentz model presented as the third term in
Equation (17), must be considered. However, if the additional terms are independent
of the temperature and magnetic field, then the dependence of the Casimir force on the
magnetic field and temperature is qualitatively unchanged. A comparison of the temper-
ature dependence of the Casimir force of the YBCO plate with and without the Lorentz
term is shown in Figure 6. The Casimir force is increased by adding a Lorentz term. In
particular, the decrease due to the increase in temperature is suppressed by the addition of
the Lorentz term.

with Lorentz terms

without Lorentz terms

10 20 30 40 50 60 70
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Figure 6. Comparison between normalized Casimir force acting on the superconductive plates with
and without terms based on the Lorentz model.

5. Conclusions

The penetration depth of the magnetic field is one of the most important parameters
for characterizing the superconducting state. We expressed the conductivity of supercon-
ductors in terms of penetration depth and obtained the permittivity along the imaginary
frequency using the Kramers–Kronig relation. The permittivity was expressed as a combina-
tion of functions that are typically used in the plasma and Drude models. Each contribution
changed depending on the applied magnetic field and temperature. The ratio of parameters
α and β defined in (24) and (25) governed the change in the plasma frequency. The ratio
β/α is expressed as (1 + f0/κλ2

L)
−1/2. In particular, at T = 0, the ratio was approximately

(1 + cBB)−1/2 near B = 0, where cB = φ0/µ0κ0λ2
0. The value of cB for YBCO is 4 T−1. It is

noteworthy that the ratio is independent of the viscous drag coefficient, which affects the
relaxation time.

The superconductivity term in the conductivity was expressed using a delta function,
and the plasma frequency of the permittivity was determined from the coefficient of
the delta function using the sum rule. As the external magnetic field increased, the
conductivity of the superconductive component decreased and the plasma frequency
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decreased. Meanwhile, the contribution in the normal phase, which is associated with the
motion of the magnetic flux quantum increased. The motion of the magnetic fluxes was
determined by solving an interacting oscillator model with viscous drag, and its amplitude
was expressed in terms of the viscous drag and restoring force coefficient, which was
regarded as a spring constant. Subsequently, the penetration depth was determined from
the amplitude of the oscillator, and the material dependence of the plasma frequencies was
determined from the spring constant.

If the spring constant is small, then the plasma frequency will be sensitive to the
external magnetic field. The spring constant of a polycrystalline superconductor is reported
to be 103 to 104 smaller than that of a single crystal [33]. Hence, the magnetic dependence of
the Casimir force between polycrystalline superconductors might differ from that presented
here. In addition, the spring constant decrease as the temperature increase. In particular,
the spring constant changes significantly near the critical temperature. Accordingly, the
Casimir force changes significantly near the critical temperature.

The material dependence of the relaxation parameter in the Drude model was deter-
mined based on the electrical resistivity in the normal phase. The temperature dependence
of the electrical resistivity was obtained by extrapolating the experimental data below the
transition temperature [34]. The extrapolated value at absolute zero is large in comparison
with those of metallic superconductors and almost equal to the conductivity of lead at
20 ◦C; thus, the relaxation parameter also affects the change in the Casimir force.

The modulation of the Casimir force by changing the material properties has attracted
attention [37]. An examples is the Casimir force between a gold sphere and Si membrane
by irradiating laser pulses [38]. The plasma frequency is proportional to the square root
of the charge carrier concentration. Thus, the increase in electrons and holes created by
irradiation results in the plasma frequency and enhances the Casimir force. As another
example, the change in the optical transparency of Ni-Mg films by exposure of hydrogen
was used in the modification of the Casimir force [39]. By measuring the change in the
Casimir force, we may gain a deeper understanding of both the Casimir force and material
properties. For superconductors, optical conductors have not been sufficiently investigated
for electromagnetic waves with frequencies higher than those of microwaves. Hence,
by measuring the Casimir force exerted on the superconductor (particularly for small
separation distances), which depend on the conductivity at higher frequencies, the optical
properties of the superconductor can be considered.
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Appendix A. Derivation of the Penetration Depth

The penetration depth of a superconductor in the mixed state for light whose magnetic
field is orthogonal to the external magnetic field, is derived on the basis of the theory
developed by Coffey and Clem [35]. Without loss of generality, we can assume that the
propagating magnetic field is parallel to the x-axis, as shown in Figure 1a. We express the
current parallel to the y-axis, Jy, in two ways. First, the magnetic field exponentially decays
owing to the Meissner effect, and the amplitude at time τ is expressed using a complex
penetration depth λz as
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h(z, τ) = h0e−
z

λz e−iωτex, (A1)

where eξ (ξ ∈ {x, y, z}) is the unit vector along the ξ-axis. Using Ampere’s law, the current
along the y-axis is induced, and its density is given by

Jy(z, τ) = − h0

λz
e−

z
λz e−iωτey. (A2)

The vortex experiences the Lorentz force:

F(z, τ) = Jy(z, τ)× φ0ez. (A3)

The direction of the Lorentz force is parallel to the x-axis. If the inertial force is
negligible, then the equation motion of the vortex is given by

ηu̇ + κu = F(z, τ) · ex, (A4)

where u is the displacement of the vortex along the x-axis, η and κ are the viscous drag
coefficient, and the coefficient of the restoring force per unit length of the magnetic vortex,
respectively. By solving the equation of motion, the vortex displacement is expressed as

u(z, τ) =
h0φ0

λz(κ − iωη)
e−

z
λz e−iωτ . (A5)

The motion of the vortex induces an electric field E = B× v, where v is the velocity
of the vortex. From Faraday’s law, given by ∂B/∂τ = −∇× E, the temporal change in the
magnetic field due to the motion-induced electric field is given by

∂B
∂τ

= −∇× (B× v). (A6)

The vortex density changes owing to the motion caused by the Lorentz force. Accord-
ingly, the magnetic flux density also changes, and it can be expressed as a summation of
the external magnetic flux density B0 and the additional magnetic flux density bv, which
oscillates with frequency ω. Substituting B0 + bv into B and integrating with respect to
time yields

bv = −∇× (B0 × u(z, τ)ex). (A7)

As a result, the induced magnetic and electric fields are respectively given by

bv(z, τ) = −B0
∂u(z, τ)

∂z
ex, (A8)

E(z, τ) = iωµ0h0λxe−
z

λz e−iωτey, (A9)

where B0 = |B0|.
According to Faraday’s law, a magnetic flux density that originates in the motion-

induced electric field b(x, τ) = i∇× E/ω is generated. Two magnetic flux densities, b and
bv, are connected to the current density by the London equation

∇× J = − 1
µ0λ2

L
(b(x, τ)− bv(z, τ)). (A10)

By integrating both sides of Equation (A10) with respect to z, we have the current
density parallel to the y-axis, which is the second expression,

Jy = − 1
µ0λ2

L

(
i
ω

E + B0u(z, τ)

)
. (A11)
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By combining Equations (A2) and (A11), the following relationship between λz and
λL is obtained:

λ2
z = λ2

L +
B0φ0

µ0(κ − iωη)
. (A12)

This is how the penetration depth in Equation (21) was derived.
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