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Abstract: Starting from the geometric description of quantum systems, we propose a novel approach
to time-independent dissipative quantum processes according to which energy is dissipated but the
coherence of the states is preserved. Our proposal consists of extending the standard symplectic
picture of quantum mechanics to a contact manifold and then obtaining dissipation by using ap-
propriate contact Hamiltonian dynamics. We work out the case of finite-level systems for which
it is shown, by means of the corresponding contact master equation, that the resulting dynamics
constitute a viable alternative candidate for the description of this subclass of dissipative quantum
systems. As a concrete application, motivated by recent experimental observations, we describe
quantum decays in a 2-level system as coherent and continuous processes.

Keywords: contact mechanics; geometric quantization; dissipative quantum mechanics

1. Motivation and Previous Works

Dissipative quantum phenomena have been the subject of intense investigation since
the early days of quantum mechanics [1]. The most widely adopted description of dissi-
pative quantum processes is given by the Gorini–Kossakowski–Sudarshan–Lindblad (GKLS)
equation [2–4]. This is because it has been proven that the GKLS equation describes the most
general form of a non-unitary, linear, completely positive and trace-preserving dynamics;
thus, one may ensure that the probabilistic character of quantum mechanics is preserved
at all times. However, in the GKLS equation, in order to obtain a completely positive
evolution, it is necessary to add the so-called jump term, which changes the rank of the
state. As a consequence, the GKLS dynamics fundamentally couples energy dissipation
and rank disipation.

On the other hand, it is possible to model energy dissipation without change in
the rank of ρ by means of a time-dependent Hamiltonian, where the time dependence
describes, in an effective manner, the interaction of the system with the environment. In
this case, the evolution is unitary; therefore, the rank of the state is preserved. For instance,
recent impressive improvements in experimental settings have allowed the observation
that the decays induced by a Rabi oscillator in a 2-level system are coherent and continuous
processes [5] (see also [6] for theoretical analysis).

In this work, we propose an alternative method to describe a class of time-independent
dissipative quantum phenomena by non-unitary evolution-preserving statistical mixing.
This is based on the symplectic formulation of quantum mechanics and due to the analogy
with the geometric description of classical dissipative systems: In classical mechanics,
one can describe a wide class of dissipative systems by referring to the contactification
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of the symplectic phase space and then using contact Hamiltonian systems to define
the dynamics. It has been shown that this approach, when applicable, provides several
positive features, such as relying on canonical variables and producing a generalization
of canonical transformations [7], enabling an extension of both Liouville and Noether’s
theorems to the dissipative case [8–13], and providing a description in terms of variational
principles [14–20] together with a natural route to field theories with dissipation [21].

Analogously, in the geometric description of n-level quantum systems, the pure states
of the corresponding Hilbert spaceH are points on the complex projective space CP(H0),
which is a symplectic manifold, and the Schrödinger dynamics on H is projected onto
Hamiltonian dynamics on such a manifold [22–25]. This is because pure quantum states
in H are actually rays, and the Schrödinger equation is invariant under dilations and
multiplications by a global phase factor; that is, in the standard Schrödinger picture, one
deals with redundant information in order to obtain a linear description. Interestingly,
contact manifolds also appear naturally in this picture. In fact, by quotienting only over
dilations, one obtains the manifold of normalized vectors inH identified as the (2n− 1)-
dimensional unit sphere S2n−1(H) with the standard contact structure. An approach
to describe dissipation in the quantum case by means of contact Hamiltonian flows on
S2n−1(H) has been put forward already in [26].

Contrary to [26], we do not work on S2n−1(H), but we proceed by analogy with the
classical case, i.e., we perform a contactification of CP(H0) and investigate the dissipa-
tive dynamics by means of contact Hamiltonian systems defined on the extended space
CP(H0)×R. We take a different route that is more directly connected with the procedure
of contactification used in classical mechanics.

The structure of this work is as follows: after a brief review of the standard geometric
description of n-level quantum systems in Section 2, we introduce our approach in Section 3,
and we show that, by choosing the contact Hamiltonian appropriately, the dynamics on
CP(H0)×R is projectable onto the proper dynamics on CP(H0), thus preserving the purity
of states while at the same time dissipating the expected value of the energy of the reference
system. In this manner, we obtain a dissipative dynamics on the manifold of physical
quantum states. Then, in Section 4, we consider the corresponding dynamics for the density
operators, which we call the contact master equation, and we prove that the resulting map is
both positive and trace preserving after a brief comparison with other approaches, thus
agreeing with all the prescriptions of standard quantum mechanics. As a consequence, the
proposed contact dynamics is a viable candidate for describing dissipative phenomena
in quantum systems when the purity of the states is preserved. As an illustration of our
formalism, we consider in Section 5 the important case of radiative decay in qubit systems,
finding that our description can effectively model quantum decays (or excitations) as
coherent and continuous processes. Finally, in Section 6, we summarize our results and
highlight future directions.

2. Geometry and Dynamics of Conservative n-Level Quantum Systems

Let us start our study by recalling some aspects of the geometric description of finite-
level quantum systems. For complete reviews, we refer to [22,23,25,27,28], while further
results can be found in [24,26,29,30].

2.1. Kinematics: FromH0 to CP(H0)

It is well-known that, in the Hilbert space, there is a natural action of the Abelian
group C0 = C− { 0 } given by the following.

|ψ〉 7→ λ |ψ〉 = $ ei θ |ψ〉 with $ > 0 , (1)

According to the statistical interpretation of the wave function, it turns out that pure states
are better described by equivalence classes of vectors in H with respect to this action,
i.e., rays in the Hilbert spaceH.
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Let us show how, for finite-dimensional systems, the set of such equivalence classes
can be given by the structure of a manifold: consider an n-level quantum system with
Hilbert spaceH and defineH0 = H− {0}. By selecting an orthonormal basis {|ek〉}k=1,...,n
inH0, one may introduce a Cartesian coordinate system {xk, yk}k=1,...,n onH0 such that for
any element |ψ〉 ∈ H0 one has the following:

|ψ〉 = ψk|ek〉 = (xk + i yk)|ek〉 , (2)

where Einstein’s summation convention over repeated indices is assumed here and in the
following equations. The action defining the equivalence classes of pure quantum states
may be described infinitesimally by means of two commuting linear vector fields given in
Cartesian coordinates as follows:

∆ = xk ∂

∂xk + yk ∂

∂yk and Γ = yk ∂

∂xk − xk ∂

∂yk , (3)

where ∆ is the infinitesimal generator of dilations, while Γ is the infinitesimal generator of
the multiplication by a global phase factor. Now, dilations define a distribution in which
the integral curves foliate the Hilbert space. Let Φ∆ denote such foliation, then the quotient
spaceH0/Φ∆ is the unit sphere.

S2n−1(H) := {|ψ〉 ∈ H0 | 〈ψ|ψ〉 = 1}. (4)

In the following, an element of S2n−1 is denoted as |ψ), whereas |ψ〉 is a vector in
H0. Now, let Φ∆,Γ be the foliation corresponding to the distribution generated by ∆ and
Γ. Then, the quotient spaceH0/Φ∆,Γ is identified with the complex projective space CP(H0),
defined as follows.

CP(H0) := {λ |ψ〉| λ ∈ C0 } . (5)

Furthermore, there is a one-to-one correspondence between elements of CP(H0) and
rank-one projectors given by the following.

[ψ] 7→ ρψ :=
|ψ〉〈ψ|
〈ψ|ψ〉 . (6)

On CP(H0), it is convenient to work with complex homogeneous coordinates. To intro-
duce such coordinates, let Uj ⊂ CP(H0) denote the open subset where ψj 6= 0. Then, on
Uj, one may introduce the following coordinates.

φj : Uj → Cn−1 : [ψ1, . . . , ψn] 7→
(

z1, . . . , zj−1, zj+1, . . . , zn
)

, with zk =
ψk

ψj . (7)

The set of (Uj, φj), with j = 1, . . . , n, constitutes an atlas for CP(H0). In such coordinates,
the projection fromH0 onto CP(H0) can be explicitly expressed as the following:

π : H0 → CP(H0) : |ψ〉 7→ |ψ] = 1√
1 + |z|2

(
z
1

)
, (8)

where we used the chart φn for the sake of simplicity, and we introduce the following
notations.

z =


z1

z2

...
zn−1

 and |z|2 = z† z . (9)
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To conclude the kinematical analysis of n-level systems, let us recall that CP(H0)
is a Kähler manifold [25,28,31]; in fact, considering the homogeneous coordinates in
Equation (8), one can introduce the 1-form of the following.

θFS =
h̄
i

1√
1 + |z|2

( z̄k , 1 )

[
1√

1 + |z|2

(
dzk

0

)
+

(
zk

1

)
d

(
1√

1 + |z|2

)]
=

h̄
2 i

z̄k dzk − zk dz̄k
1 + |z|2 . (10)

Then, the symplectic form ωFS on CP(H0) is given by the exterior derivative ωFS = dθFS,
which reads as follows.

ωFS =
−i h̄

(1 + |z|2)2

[
(1 + |z|2)dz̄k ∧ dzk − 1

2
(z̄l dzl + zl dz̄l) ∧ (z̄k dzk − zk dz̄k)

]
. (11)

Moreover, as proven by Wootters in [32], a natural notion of distance between quan-
tum states is given by the Fubini–Study metric on CP(H0), which has the following
form [25,27,28,31]:

gFS =
−h̄

(1+|z|2)2

[
(1 + |z|2)dz̄k ⊗S dzk + 1

2 (z̄k dzk − zk dz̄k)⊗ (z̄l dzl − zl dz̄l)− 1
2 (z̄k dzk + zk dz̄k)⊗ (z̄l dzl + zl dz̄l)

]
, (12)

where dz̄k ⊗S dzk = dz̄k dzk + dzk dz̄k. On the other hand, the (1, 1)-tensor of the following:

JFS =
1
i

(
dzk ⊗ ∂

∂zk − dz̄k ⊗
∂

∂z̄k

)
(13)

defines a complex structure on CP(H0), such that the quadruple (CP(H0), ωFS, gFS, JFS) is a
Kähler manifold [25,27,28,31].

2.2. Dynamics: Symplectic Hamiltonian Systems on CP(H0)

Having defined the canonical projection π fromH0 to CP(H0), one may project the
dynamics of the system as follows: First, we recall that the Schrödinger dynamics may
be viewed as a classical Hamiltonian system on H0 with the symplectic structure given
by the imaginary part of the Hermitian scalar product and the generating Hamiltonian
function being the expectation value eH = 〈ψ|H|ψ〉 of the Hamiltonian operator H. The
corresponding Hamiltonian vector field then reads as follows:

XH =
i
h̄

ψ̄j H j
k

∂

∂ψ̄k
− i

h̄
Hk

j ψj ∂

∂ψk , (14)

where H j
k is the entry of H [25]. Now, because [XH, ∆] = [XH, Γ] = 0, i.e., ∆ and Γ are

symmetries of the Schrödinger dynamics, it is possible to project XH onto the dynamics
on CP(H0) [25,28,33]. It turns out that the projected dynamics XeH is again a Hamiltonian
vector field with respect to the symplectic structure ωFS, with generating Hamiltonian
function eH ∈ F(CP(H0)), where here and in the following F(M) stands for the smooth
functions on M for any smooth manifold M; that is, it satisfies the following.

ωFS(XeH , · ) = d eH . (15)

In order to express Equation (15) in complex homogeneous coordinates on CP(H0),
we start by writing the expectation value of the observable H in coordinates such as the
following:

eH = [ψ|H|ψ] = 1
1 + |z|2 ( z† , 1 )

 H1 V

V† H2

 z

1

 =
1

1 + |z|2
(

z†H1z + z†V+V†z + H2

)
, (16)
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where H1 is an (n− 1)× (n− 1)–dimensional matrix, V is an (n− 1)–dimensional column
vector and H2 a real quantity. Thus, by using Equations (11) and (15), we obtain the
following:

XeH = Xzk
∂

∂zk + Xz̄k

∂

∂z̄k
, (17)

where the component Xz̄k is the complex conjugate of Xzk , and the following is the case.

Xzk =
i
h̄

(
zk V̄l zl − |H1|kl zl + H2 zk −Vk

)
. (18)

Therefore, the integral curves of this Hamiltonian vector field are solutions to the Hamilto-
nian equations of motion:

żk = − i
h̄
(1 + |z|2)

(
∂eH

∂z̄k
+ zk z̄l

∂eH

∂z̄l

)
=

i
h̄

(
zk V̄l zl − |H1|kl zl + H2 zk −Vk

)
, (19)

which is also called the matrix Riccati equation [34]. Hence, the matrix Riccati equation is
simply the coordinate expression of the projection of the Schrödinger equation onto the
complex projective space.

In addition, one may use the symplectic structure to introduce a Poisson bracket on
CP(H0) [25,28]: given the expectation values eA and eB associated with the observables A
and B, one defines the following.

{eA, eB}ωFS = ωFS(XeA , XeB) . (20)

In complex homogeneous coordinates this bracket reads as follows.

{eA, eB}ωFS = −
i
h̄
(1 + |z|2)

[(
∂eA

∂zk
∂eB

∂z̄k
− ∂eA

∂z̄k

∂eB

∂zk

)
+

(
zk ∂eA

∂zk z̄l
∂eB

∂z̄l
− z̄l

∂eA

∂z̄l
zk ∂eB

∂zk

)]
. (21)

Furthermore, after some calculation, it is possible to prove that the Poisson bracket satisfies
{eA, eB}ωFS = e 1

i h̄ [A,B], where [A, B] = A B− B A. Therefore, one has a clear connection
between the Poisson bracket and the quantum commutator. In particular, considering the
Hamiltonian of the system H with expectation value eH, the evolution of the expectation
value eA of an arbitrary observable A is given by the following.

deA

dt
= {eA, eH}ωFS = e 1

i h̄ [A,H] . (22)

This result implies immediately that, in the time-independent case, eH is a first integral
of the flow, i.e., the expectation value of the Hamiltonian is conserved. In addition, the
expectation value of any observable commuting with H is a first integral too.

Proceeding in parallel with the above construction of Hamiltonian vector fields and of
the Poisson bracket by means of the symplectic structure, we are going to define now the
gradient vector fields YeH and the Jordan bracket by using the Fubini–Study metric.

Gradient vector fields are defined as follows:

gFS(YeH , · ) = d eH . (23)

and it is direct to verify that
JFS(XeH) = YeH , (24)

with JFS given in (13). Therefore, by employing Equations (17) and (18), one finds the
explicit coordinate expression for the gradient vector field, which reads as follows.

YeH =
1
h̄

[
zk V̄l zl − |H1|kl zl + H2 zk −Vk

] ∂

∂zk +
1
h̄

[
z̄l V l z̄k − z̄l |H1|lk + H2 z̄k − V̄k

] ∂

∂z̄k
. (25)
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On the other hand, the Jordan bracket between the expectation values eA and eB is
defined as follows:

{eA, eB}gFS = gFS(YeA , YeB) , (26)

and in the coordinates, we have the following.

{eA, eB}gFS = −
1
h̄
(1 + z̄l zl)

[(
∂eA

∂zk
∂eB

∂z̄k
+

∂eA

∂z̄k

∂eB

∂zk

)
+

(
zk ∂eA

∂zk z̄l
∂eB

∂z̄l
+ z̄l

∂eA

∂z̄l
zk ∂eB

∂zk

)]
. (27)

Finally, the Jordan bracket is connected with the dispersion and the correlation of
the observables. That is, for every couple of observables A and B, their uncertainties and
correlations are given by the following:

σ2
A = eA2 − e2

A = − h̄
2
{eA, eA}gFS (28)

and
σAB =

1
2

e[A,B]+ − eA eB = − h̄
2
{eA, eB}gFS , (29)

with [A, B]+ = AB + BA being the anti-commutator. Thus, the Riemannian metric on
CP(H0) takes into account part of the probabilistic character of quantum mechanics [35].

Example: The Conservative Qubit

As an example, let us consider a qubit in which CP(H0) is two-dimensional, and each
point is given by [ψ1, ψ2]. For this case, the complex projective space may be thought of as
the unit sphere:

S2 = {(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3)2 = 1} . (30)

One may use the homogeneous coordinates on CP(H0) to induce coordinates on S2 as
follows: take each coordinate patch Uj ∈ CP(H0) where ψj 6= 0, j = 1, 2 and introduce the
homogeneous coordinates on U1 (resp. U2) as defined above. Thus, we have the following.

φ1 : [ψ1, ψ2] 7→ z =
ψ1

ψ2

(
resp. φ2 : [ψ1, ψ2] 7→ ζ =

ψ2

ψ1

)
. (31)

Then, by writing z = zR + i zI and using the stereographic projection from the north pole of
the sphere, one obtains the corresponding point (x1, x2, x3) ∈ S2 by the following.

x1 =
2zR

1 + |z|2 , x2 =
2zI

1 + |z|2 , x3 =
−1 + |z|2
1 + |z|2 . (32)

For this example, let us consider the Hamiltonian operator as the matrix.

Hq =

 H1 V

V H2

 , (33)

Thus, the expectation value of Hq is given by the following:

eHq = [ψ|Hq|ψ] =
1

1 + |z|2 ( z̄ , 1 )

 H1 V

V H2

 z

1

 =
1

1 + |z|2
[

H1|z|2 + z̄V + Vz + H2

]
, (34)

and Hamilton’s Equation (19) reduces to the following.

ż =
i
h̄

[
Vz2 − (H1 − H2)z−V

]
. (35)
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To provide a qualitative description of the behavior of this nonlinear system, one first
realizes that the critical points of the flow are located at the following.

z± =
(H1 − H2)±

√
(H1 − H2)2 + 4|V|2
2V

, (36)

They are both centers. The phase portrait in the complex plane is depicted in Figure 1a,
while the corresponding vector field on S2 obtained by means of (32) is displayed in
Figure 1b.

- 4 - 2 0 2 4

- 4

- 2

0

2

4

zR

z
I

Figure 1. (a) Phase portrait of the Hamiltonian vector field (35) on the plane C. (b) The same vector
field on the sphere S2 using the map (32). In both cases, the values of the parameters are H1 = 4,
H2 = 2 and V = 1 + i.

Another important quantity that may be easily calculated by means of Equation (28)
is the uncertainty of the energy given by the following.

σ2
Hq =

1
(1 + |z|2)2 |Vz̄2 − (H1 − H2)z̄−V|2 . (37)

Clearly this is a positive quantity that only vanishes at the singular points z±.

3. Contact Geometry and Dynamics of Dissipative n-Level Quantum Systems

In this section, we consider a particular class of dissipative quantum systems, which
are those that admit a contact Hamiltonian description (see also [7,11,12,21,26,36–39] for
detailed discussions on the strengths and limitations of this approach both in the classical
and quantum settings).

3.1. Kinematics: From CP(H0) to CP(H0)×R
In order to introduce dissipation, we will work on the contactification of CP(H0).

Therefore, let us first recall some basic facts of contact geometry [40,41].
A (2n + 1)-dimensional manifold M is said to be an exact contact manifold if it is

endowed with a global differentiable 1-form η such that η ∧ (dη)n 6= 0 everywhere on
M. Then, η is called the contact form, and the contact structure on M is given by the (non-
integrable) distribution of hyperplanes D = ker(η). In order to introduce a contact mani-
fold for finite-dimensional quantum mechanical systems, we perform a contactification of
the space of pure quantum states CP(H0). Indeed, since CP(H0) is an exact symplectic
manifold, one can consider the extended space CP(H0)×R, which carries a natural contact
structure given as the kernel of the following contact form:

η = dS− θFS , (38)
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where S is the global coordinate function on the fiber R, where S has unit of action, and we
use a slight abuse of notation by indicating as θFS the pullback of this 1-form on CP(H0) by
means of the natural projection from CP(H0)×R onto the first argument. Let us observe
that it is possible to define a Sasakian structure on CP(H0)×R starting from the Kähler
structure on CP(H0) [40,42]. However, we do not need such structure in the following;
therefore, we defer its analysis to a future contribution.

3.2. Dynamics: Contact Hamiltonian Systems on CP(H0)×R
The contact form allows one to associate a Hamiltonian vector field XH with every

smooth function H ∈ F(CP(H0)×R), defined by the following:

− iXH
dη = dH − (£ξH )η and iXH

η = −H . (39)

In this case, H is called the contact Hamiltonian function. Now, we proceed to compute the
coordinate expression of XH , which may be written as the following in general:

XH = Xzk
∂

∂zk + Xz̄k

∂

∂z̄k
+ XS

∂

∂S
, (40)

where the component Xz̄k is the complex conjugate of Xzk . Using Equations (38) and (39),
one finds that the components of the contact Hamiltonian vector field in these coordinates
are as follows:

Xzk = −
i
h̄
(1 + |z|2)

(
∂H

∂z̄k
+ zk z̄l

∂H

∂z̄l

)
+

zk

2
(1 + |z|2)∂H

∂S
, (41)

XS = −H − 1
2
(1 + |z|2)

(
z̄k

∂H

∂z̄k
+ zk ∂H

∂zk

)
, (42)

which implies that the integral curves are solutions to the system of the differential equations.

żk = − i
h̄
(1 + |z|2)

(
∂H

∂z̄k
+ zk z̄l

∂H

∂z̄l

)
+

zk

2
(1 + |z|2)∂H

∂S
,

˙̄zk =
i
h̄
(1 + |z|2)

(
∂H

∂zk
+ z̄k zl ∂H

∂zl

)
+

z̄k
2
(1 + |z|2)∂H

∂S
,

Ṡ = −H − 1
2
(1 + |z|2)

(
z̄k

∂H

∂z̄k
+ zk ∂H

∂zk

)
. (43)

From Equations (41) and (42), we can compute the evolution of any arbitrary real
function F ∈ F(CP(H0)×R) to obtain the following:

dF

dt
= XH [F ] = −H £ξF + Λ(dF , dH ) , (44)

where the bivector Λ is given by the following.

Λ = (1 + |z|2)
[
− i

h̄

(
∂

∂zk ∧
∂

∂z̄k
+ zk ∂

∂zk ∧ z̄l
∂

∂z̄l

)
+

1
2

∂

∂S
∧
(

zk ∂

∂zk + z̄k
∂

∂z̄k

)]
. (45)

Since we are interested in characterizing dissipative systems that dissipate the energy
of some declared reference Hamiltonian system in this work, we shall henceforth assume
that the contact Hamiltonian H may be written as follows:

H = eH + f (S) , (46)

where the first term eH is the expectation value of the Hamiltonian operator H of the
conservative reference system given in Equation (16), while the second term f (S) is an
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instrumental perturbation which will be taken to be linear in order to result in projectable
dynamics so that the projected dynamics can be observed as an effective description of
some dissipative dynamics. Therefore, considering the expectation value eA ∈ F(CP(H0))
of an arbitrary observable A of the reference system, from Equation (44) we obtain the
following:

deA

dt
= {eA, eH}ωFS +

1
2
(1 + |z|2)

(
zk ∂eA

∂zk + z̄k
∂eA

∂z̄k

)
f ′(S) , (47)

where { · , · }ωFS is the Poisson bracket given in Equation (21). Hence, it should be clear that
the expectation value of the energy eH is not necessarily preserved along the trajectories of
the contact Hamiltonian system.

Finally we remark that, from Equations (43), the contact dynamics XH ∈ X(CP(H0)×
R) is projectable onto a vector field X ∈ X(CP(H0)) if and only if the contact Hamiltonian
function H is linear in S. This is because the equations for the variables zk that characterize
the state of the reference system defined on CP(H0) are decoupled from the equation for
the additional variable S only in this case. It is for this reason that we will focus on this
case only, leaving a detailed analysis of the general case to future investigations.

Example: The Dissipative Qubit

As an example, let us introduce dissipation in the qubit system described in the
previous section. To perform this, we consider the following contact Hamiltonian:

H = eH − γ S , (48)

where eH is the expectation value of the Hamiltonian of the conservative qubit (Equation (34)),
and γ is a positive real constant that quantifies the strength of the coupling between the
conservative system and the environment.

The Hamiltonian equations of motion (43) associated with the contact Hamiltonian (48) is
read as follows.

ż =
i
h̄

[
V̄z2 − (H1 − H2)z−V

]
− γ

2
z(1 + |z|2) (49)

Ṡ = −H − 1
2

[
1− |z|2
1 + |z|2

]
(V̄z + Vz̄) +

|z|2
1 + |z|2 (H2 − H1) . (50)

We observe that, as expected, Equation (49) provides an effective equation of motion for
the variable z, describing the state of the reference system, which is decoupled from the
equation for the additional variable S.

As in the conservative case, we may now study the qualitative behavior of the dissipa-
tive qubit, focusing only on Equation (49). For the sake of simplicity, we consider here an
example the particular case H1 = H2. The critical points zs satisfythe following.

i
h̄

[
V̄z2

s −V
]
− γ

2
zs(1 + |zs|2) = 0 . (51)

To find solutions to this algebraic equation, first we assume that |zs| = 1 in order to obtain
the reduced second-order equation of the following:

Vz2
s + i h̄ γzs −V = 0, (52)

with the following solutions:

z(1,2)
s =

−ih̄γ±
√

∆−
2 V

, (53)

where ∆− := 4|V|2 − h̄2γ2 ≥ 0. A direct computation shows that |z(j)
s | = 1 for j = 1, 2 if

and only if ∆− ≥ 0; therefore, these two critical points exist only in such case. When they
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exist, in the conservative limit γ→ 0, one recovers the analogous solutions in Equation (36)
for the case H1 = H2. Additionally, in the dissipative qubit, one finds the following critical
point:

z(3)s = −2iV
h̄γ

, (54)

which always exists.
To continue the qualitative study of the dynamics, we observe that the eigenvalues of

the linearized system at the critical points z(1)s and z(2)s are always the same and they are
given by the following.

λ
(1,2)
± = −γ

2
± i

√
∆−
h̄2 −

γ2

4
, (55)

While at the critical point z(3)s , we have the following eigenvalues:

λ
(3)
± = − h̄2γ2 ± 4|V|2

2h̄2γ
, (56)

which are always real. From this linearization, it is possible to conclude that there is a
bifurcation depending on the value of γ:

(i) For γ such that ∆− < 0, we have only the critical point z(3)s , which is a stable node;

(ii) For γ such that ∆− = 0, we have two critical points z(1)s = z(2)s and z(3)s , and both are
non-hyperbolic (eigenvalues {0,−γ});

(iii) For γ such that ∆− > 0, we have three different critical points with the following

behavior: z(3)s is always a saddle; the behavior of z(1)s and z(2)s depends on the term
∆−
h̄2 − γ2

4 . If this is positive, then the critical points are stable foci. On the other hand, if
this term is non-positive, then they are stable nodes.

Note that even in this simple example, we obtain very interesting dynamical behavior.
Moreover, we remark that these types of critical points cannot be obtained in the case of a
conservative (unitary) evolution.

By way of example, we have depicted the phase portrait for a choice of γ such that

∆− > 0 and ∆−
h̄2 − γ2

4 > 0 in Figure 2. As observed in first panel in Figure 2, we have two
stable foci and a saddle. However, recalling that this chart covers only the part of the Bloch
sphere S2 excluding the north pole, we also depict the corresponding vector field on S2 in
the second panel in Figure 2 from which it is clear that there is an additional critical point
at the north pole, which is an unstable node.

Finally, taking into account the definition of the uncertainty of the energy operator
σ2

Hq
= 〈H2

q〉 − 〈Hq〉2, one has the following.

σ2
Hq =

1
(1 + |z|2)2 |Vz̄2 − (H1 − H2)z̄−V|2 . (57)

We stress that, although the functional forms of (37) and (57) are the same, they
are different functions of time since, in the two cases, z(t) evolves according to different
dynamical equations.
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Figure 2. Phase portrait of the dissipative qubit with H1 = H2 both in the complex plane and on S2. The parameters chosen
for this representation are the following: V = 1 + i and γ = 1. One may observe the two stable foci and the saddle point
both in the plane and in S2 together with the unstable node at the north pole of the sphere, which cannot be observed in this
chart on the plane. More details in the main text.

4. The Contact Master Equation

So far we have considered dissipative quantum evolutions by using contact Hamilto-
nian systems defined on the manifold CP(H0)×R. However, the most common descrip-
tion of dissipative quantum systems is by means of density operators; therefore, we shall
adapt our approach to pure states considered as rank-one projectors in this section.

Given a unital C∗-algebra A, a state ρ on A is a continuous linear function in the dual
A∗ of A such that for all observables a ∈ A, one has the following:

ρ(a) ∈ R , ρ(aa†) ≥ 0 , and ρ(I) = 1 , (58)

where I ∈ A is the identity, and an observable a ∈ A is a self-adjoint element. In particular,
for finite-dimensional systems, we may restrict our attention to the C∗-algebra of n× n
complex matrices, i.e., we may consider An = Mn(C) with n ≥ 2. Thus, the space of states
S of An is identified as the following:

S :=
{

ρ ∈ D∗n ⊂ A∗n | ρ(aa†) ≥ 0 , for all a ∈ Dn , ρ(I) = 1
}

, (59)

where Dn ⊂ An denotes the space of observables. The pairing map µ : Dn × S → R is
the evaluation of the state ρ on the self-adjoint element a, and it is given explicitly by the
following:

µ(a, ρ) 7→ ρ(a) := Tr{ρ a} , (60)

which corresponds to the mean value for the outcome of the measurement of the observable
a when the system is in the state ρ. Furthermore, since there is a one-to-one correspondence
between elements in D∗n and Dn, it follows that the space S may be decomposed as the
following:

S =
n⊔

k=1

Sk , (61)

where Sk = {ρ ∈ S| rk(ρ) = k}. It is proven in References [30,43] that every Sk is a homogeneous
space for the Lie group SL(An); thus, every Sk admits the structure of a differential manifold.

Here, we are only interested in pure states, i.e., rank-one projectors in S1. Then, as
we have already mentioned in Section 2, there is a one-to-one correspondence between
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states |ψ] ∈ CP(H0) and rank-one projectors ρ ∈ S1 given by the relation (6). Thus, in
homogeneous coordinates, we have the following.

|ψ] = 1√
1 + |z|2

(
z
1

)
, then ρψ = |ψ][ψ| = 1

1 + |z|2

(
zz† z
z† 1

)
. (62)

Now, starting from the expression for the density matrix in the second equation in
Equation (62) and taking into account the equations of motion (43), one may deduce
the equation of motion for ρ, which takes the following general form.

ρ̇ =
i
h̄

 zj ∂H
∂zk − z̄k

∂H
∂z̄j

− ∂H
∂z̄j − zjzl ∂H

∂zl

∂H
∂zk + z̄k z̄l

∂H
∂z̄l

−zl ∂H
∂zl + z̄l

∂H
∂z̄l

+
∂H

∂S


zj z̄k

1+|z|2
zj

2
1−|z|2
1+|z|2

z̄k
2

1−|z|2
1+|z|2 − |z|2

1+|z|2

 . (63)

We first observe from the above equation that Tr{ ρ̇ } = 0 independently of the choice
of the contact Hamiltonian. Therefore, the trace of ρ is preserved along the evolution,
which is a fundamental statistical condition for any admissible quantum evolution.

Remarkably, the evolution (63) can be written using two brackets, which is similar to
the structure of the metriplectic and GENERIC formalisms [44–48] (although an approach
to dissipative quantum systems directly based on the analogy with the GENERIC equation
results in a different type of master equation; see [49,50]). Indeed, we have the following
(see Appendix A for the proof):

ρ̇ =
i
h̄
[ ρ , H ] +

∂H

∂S
[ρ, A(z)]+ , (64)

where the dissipative bracket [· , ·]+ is the anti-commutator, and we have defined the
dissipative potential to be the Hermitian operator A(z) given by the following:

A(z) =

 A w(z)

w†(z) A(z)

 , (65)

where A is an arbitrary (n − 1) × (n − 1)-dimensional Hermitian matrix, and w is the
(n− 1)-dimensional column vector given by the following.

w(z) =
1

1 + |z|2
[(

1 + |z|2
)
I− zz†

][1
2

(
1 + |z|2

)
I−

(
z† A z

)
I−A

]
z. (66)

A(z) is the real quantity.
A(z) = z† A z− |z|2 . (67)

Let us remark that in Equation (64) there is a conservative part given by the standard
von Neumann equation in addition to a contact perturbation introducing dissipation in
conservative reference dynamics. Moreover, in general, Equation (64) is coupled to the
equation of motion for the variable S given by the following.

Ṡ = −H − 1
2
(1 + |z|2)

(
z̄k

∂H

∂z̄k
+ zk ∂H

∂zk

)
, (68)

They decouple if and only if the contact Hamiltonian H is linear in S. In such case,
one obtains from Equation (64) a Markovian equation for ρ, which we call the contact
master equation. Note that Markovianity in this case should be understood as satisfying the
Chapman–Kolmogorov law for dynamical evolution. This is the case we will address in
the following, leaving a detailed study of the general case for future investigations.
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Let us now compare the contact master Equation (64) with the GKLS equation normally
employed to describe dissipative phenomena in quantum systems. For the GKLS equation,
we have the following:

ρ̇ =
i
h̄
[ ρ , H ]− 1

2 ∑
j

[
ρ , V†

j Vj

]
+
+ ∑

j
VjρV†

j , (69)

where Vj and ∑j VjV†
j are bounded operators. First of all, we note that, by comparing the

GKLS evolution in Equation (69) with the contact evolution in Equation (64), it is clear
that the absence in the latter of the “jump term” ∑j VjρV†

j (also known as the Choi–Kraus
term [2]). This is expected because this term is the one responsible for the change of rank of
the density matrix, and the contact evolution considered here preserves the purity of the
states. However, while in the GKLS equation the jump term is needed in order to enforce
conservation of the trace and the complete-positivity of the map, we observe that it is no
longer needed in the contact evolution, for these two properties are both automatically
satisfied (at least for pure states). Hence, we observe that the contact master equation
provides a (nonlinear) description of coherent dissipative phenomena.

Furthermore, one may also compare the contact master equation with other descrip-
tions normally employed to describe dissipative systems. For instance, one may consider
the description of an optical MASER (Microwave Amplification by Stimulated Emission of
Radiation) [51,52]. Considering, for simplicity, the case of a 2-state system, one introduces
the non-normalized density matrix:

ρ =

 ψ1ψ̄1 ψ1ψ̄2

ψ2ψ̄1 ψ2ψ̄2

 , (70)

in which the equation of motion reads as follows:

ρ̇ =
i
h̄
[ ρ , H ]− 1

2
[ρ , Γ]+ , (71)

where H is a time-dependent Hermitian operator, and Γ is a diagonal operator with entries
γ1, γ2 > 0 that describe phenomenologically the radiative decays of the eigenstates of H to
the ground state. Let us observe that the positivity of Γ implies that Tr{ρ̇} < 0; therefore,
the evolution is not trace-preserving. We conclude that the pathologies of Equation (71)
can be removed with at least two methods: On the one side, one can introduce the jump
term Γ ρ Γ to obtain an equation of GKLS type, but this results in introducing dissipation
of the rank; on the other side, the contact master equation provides an alternative option,
one that fixes the pathologies of Equation (71) while preserving the coherence of the states.
However, this comes at the price of introducing nonlinearities.

5. Application: Radiative Decay

The simplest dissipative quantum phenomenon that one can describe by the contact
evolution is the radiative decay of a 2-level atom with levels |1〉 and |2〉. To show this, let
us consider as the conservative system the following Hamiltonian:

H =

 H1 0

0 H2

 (72)

where H1 and H2 are the energies of the states, with H1 > H2. Then, the decay of the
particle may be modelled by the contact Hamiltonian:

H = eH − γ S (73)
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where eH represents the expectation value of the Hamiltonian (72), and the constant
damping factor γ > 0 describes phenomenologically the radiative decay from the state |1〉
to |2〉. The corresponding contact Hamiltonian equations of motion can be obtained from
Equation (43) and read as follows.

ż = − i
h̄
(H1 − H2)z−

γ

2
z(1 + |z|2) , (74)

Ṡ = −H − |z|2
1 + |z|2 (H1 − H2) , (75)

In other words, we have a decoupled system of differential equations as expected;
therefore, we can focus on the first equation only, for which its solution can be given
explicitly by the following:

z(t) =
eiϕ0

√
eγt+2κ0 − 1

e−
i
h̄ (H1−H2)t, (76)

where the phase ϕ0 and the real constant κ0 are defined by the initial condition z(0) = z0.
Let us recall that because the homogeneous coordinates z ∈ CP(H0) have been mapped
to the sphere via the stereographic projection, in order to consider the state with energy
H1 as the initial condition, one has to consider z0 as the “point at infinity” in the plane,
corresponding to the north pole of the sphere. In Equation (76), this corresponds to taking
κ0 → 0.

As an illustration, we depict the behaviour of the solutions of Equation (76) in Figure 3. In
Figure 3a, we show the phase portrait in homogeneous coordinates in the plane corre-
sponding to the stereographic projection from the north pole of the sphere. Here, we have
a stable focus at the origin; consequently, all nearby solutions evolve towards the origin.
On the other hand, considering the coordinates obtained by stereographic projection from
the south pole, one has an unstable focus at the origin, as shown in Figure 3b. Finally, both
charts form an atlas for the Bloch sphere S2, and the behaviors of the vector field on such
sphere are displayed in Figure 3c. All this is in agreement with our physical interpretation
because the north pole corresponds to the excited state with energy H1 and the south pole
to the state with lower energy H2, i.e., we are dissipating energy until the system finally
decays in the lower state.

To observe clearly the continuous dissipation of the energy, one may compute the
evolution of the expectation value of the conservative Hamiltonian operator (72) by using
the solution (76) to obtain the following.

eH(t) =
1

1 + |z(t)|2
[

H1|z(t)|2 + H2

]
= H2 + (H1 − H2)e−(γt+2κ0) . (77)

Then, it is not difficult to prove that for the initial condition κ0 → 0 we have eH(t = 0) = H1
and limt→+∞ eH(t) = H2 , thus describing the radiative decay from the excited to the
ground state. In Figure 4a, we display the continuous transition between these states,
for which its speed depends on the value of γ. Furthermore, we remark that one may
equivalently describe excitations within this model by simply exchanging γ → −γ and
then having the transition from the lower state H2 to the excited state H1.
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Figure 3. Phase portrait of the vector field associated with the quantum decay from the higher energy
H1 = 4 to the lower energy H2 = 2 with damping parameter γ = 1. In (a) the vector field is plotted
using the chart φ1 with coordinates z ∈ C defined in Equation (32). In (b) this vector field is plotted
using the chart φ2 with coordinates ζ = 1/z defined in Equation (32). Finally in (c) the vector field is
plotted in the Bloch sphere.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Figure 4. (a) Continuous transition from the state with energy H1 = 4 to the state H2 = 2 with
damping parameter γ = 1. (b) Time evolution of the uncertainty of the energy operator with the
same parameters.

One may also compute the uncertainty of the energy operator σ2
H = 〈H2〉− 〈H〉2, namely

the following:

σ2
H =

|z(t)|2
(1 + |z(t)|2)2 (H1 − H2)

2 =
[
1− e−(γt+2κ0)

]
e−γt−2κ0(H1 − H2)

2 , (78)

Its evolution is plotted in Figure 4b. From this figure, one may observe that the
uncertainty of the energy starts at zero, then increases up to the maximum value 1

4 (H1 −
H2)

2 at t = 1
γ ln 2. After this maximum, the curve decreases asymptotically to zero. Since

σ2
H is the statistical fluctuation around the expectation value, it follows that a measurement

of eH with complete certainty is only possible in principle at the initial and final times.
Another relevant quantity is the probability of a transition between the states, de-

noted by P(t) and given by P(t) = | [ψ0|ψt] |2, where |ψ0] is the initial state and |ψt]
corresponds to the evolved normalized state at time t. Using (62), we obtain that P(t) is
given by the following:

P(t) =
|z(t)|2

1 + |z(t)|2 , (79)
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where we considered the initial condition κ0 → 0 in this expression. Moreover, by means
of Equation (47), we can compute the rate of dissipation of this probability, which is
dP
dt = −γP , meaning that one has an exponential decay P(t) = e−γt for the probability

of a transition.
We remark again at this point that radiative decays are usually represented as sudden

“jumps” and not as continuous transitions. However, recent experimental and theoretical
investigations [5,6] have shown that it is possible to observe quantum jumps as continuous
processes that preserve the coherence of the state. Here, we have observed in this example
that the contact master equation yields another possibility to model quantum decays (or
excitations) as coherent and continuous processes.

6. Conclusions and Perspectives

In this work, we have put forward a novel approach to the description of dissipative
quantum systems based on the geometric approach to quantum mechanics and on the
analogy with the description of classical dissipative systems based on contact Hamiltonian
dynamics. Of special importance is the fact that the obtained evolution dissipates the
expectation value of the energy of the reference system while preserving the purity of the
states. In this manner, it yields a method to describe coherent dissipative dynamics, which
inevitably escapes more standard approaches such as the GKSL equation. Among the
possible applications, we have considered here, in particular, the important case of radiative
decay for a 2-level system, both because of its theoretical importance in understanding
quantum mechanics and because of recent experiments that point to an explanation in
terms of the existence of coherent quantum trajectories for these systems [5,6].

At this point, there is a number of interesting questions open for future investigations.
In particular, in this effort, we have considered the additional variable S as a “means
to an end”, that is, as an effective tool that we have employed in order to produce a
dissipative dynamics on the reference system in a geometric manner. However, the term
γS as we have used it has the dimensions of an energy, and similar terms appear in the
thermodynamic literature as the actual interchange of heat between the reference system
and the environment [53,54]. Therefore, a deeper connection with an energy conservation
principle may be responsible for our construction.

Still, concerning the variable S, in this work we have dealt only with contact Hamilto-
nian functions that are linear in S. This is because we can decouple the dynamics of S from
that of the quantum states and obtain an evolution that is purely quantum in the sense that
it does not depend on other variables.

However, we have remarked that the evolution corresponding to the most general
contact Hamiltonian still preserves the trace of the density operator. This is interesting
because, in such case, one expects to obtain a non-Markovian evolution mapping pure
states into pure states.

Another interesting problem is the extension of the present approach to infinite
dimensional quantum systems. Solving this problem in all its generality is not an easy task;
however, one may be restricted to the problem of looking for the immersion of a contact
manifold into the Hilbert space such that the evolution of the states is parametrized by the
contact evolution.

Furthermore, given the importance of the Schrödinger dynamics in the description
of quantum systems, one may wonder whether there is a Schrödinger-like equation as-
sociated with the contact evolution introduced here. Indeed, for some particular cases, it
is possible to construct a Schrödinger equation; for instance, one may reproduce the con-
tact evolution (49) by means of the projection (8) starting from the nonlinear Schrödinger
equations:

ih̄

 ψ̇1

ψ̇2

 =

 H1 V

V̄ H2

 ψ1

ψ2

+
γ

2


1 ψ1

ψ2

− ψ̄1

ψ̄2 1


 ψ1

ψ2

 , (80)
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or

ih̄

 ψ̇1

ψ̇2

 =

 H1 V

V̄ H2

 ψ1

ψ2

+
γ

2

 −1/2 0

− ψ̄1

ψ̄2 1/2


 ψ1

ψ2

 . (81)

It is not difficult to see that, in both equations, the normalization and the phase are not
invariant, and they are involved in the evolution, which introduces nonlinearities in
the equations.

Finally, a major motivation for our work and for further investigation is the applica-
tions of formalism and a deeper comparison with existing approaches. In the present work,
we have deliberately only scratched the surface of some applications, but we expect that,
as it happened in the classical case, further systems may be analyzed from this perspective,
and new tantalizing results may possibly be found.
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Appendix A. Proof of the Contact Master Equation Form

In this appendix, we show that the contact master equation in Equation (63) can be
written as in Equation (64). To perform this, let us assume that there exists an operator
A(z) of the following form:

A(z) =

 A w(z)

w†(z) A(z)

 , (A1)

where A is an arbitrary (n− 1)× (n− 1)-dimensional Hermitian matrix, w(z) is an (n− 1)-
dimensional column vector and A(z) is a real number. Our goal is to prove that the
anticommutator [ρ, A(z)]+ of this operator and the density operator ρ is given by the
following:

[ρ, A(z)]+ =
1

1 + |z|2

 zz† z
2 (1− |z|2)

z†

2 (1− |z|2) −|z|2

 , (A2)

where the density matrix is of the following form.

ρ =
1

1 + |z|2

 zz† z

z† 1

 . (A3)

A direct computation of the anticommutator yields the following:

[ρ, A(z)]+ =
1

1 + |z|2


[
zz†,A

]
+ + zw†(z) + w(z)z† (zz† + I)w(z) + (A+ A(z) I)z

w†(z)(zz† + I) + z†(A+ A(z) I) z†w(z) + w†(z)z + 2A(z)

 , (A4)
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where I represents the (n− 1)× (n− 1)-dimensional identity matrix. Equating the right
hand sides of Equations (A2) and (A4) provides the following system of equations.[

zz†,A
]
+
+ zw†(z) + w(z)z† = zz† , (A5)

(zz† + I)w(z) + (A+ A(z) I)z =
z
2
(1− |z|2) , (A6)

w†(z)(zz† + I) + z†(A+ A(z) I) = z†

2
(1− |z|2), (A7)

z†w(z) + w†(z)z + 2A(z) = −|z|2. (A8)

Let us impose the following conditions:

A† = A, A∗(z) = A(z), (A9)

which guarantee that (A7) is the conjugate transpose of (A6), i.e., Equation (A7) is no longer inde-
pendent.

We now solve for w(z) from Equation (A6) and obtain the following:

w(z) =
(
I− zz†

1 + |z|2

)(
1
2
(1− |z|2) I− A(z) I−A

)
z, (A10)

where the inverse of the matrix I+ zz† is given by the following.

(
I+ zz†

)−1
= I− zz†

1 + |z|2 . (A11)

We then insert (A10) into (A8) and solve for A(z) and obtain the following.

A(z) = z† A z− |z|2 . (A12)

Equation (A12) allows us to express w(z) given in (A10) in terms of the matrix A as
follows.

w(z) =
(
I− zz†

1 + |z|2

)(
1
2
(1 + |z|2) I− (z† A z)I−A

)
z . (A13)

So far, we have obtained expressions for A(z) and w(z) and Equations (A12) and (A13)
respectively, for which Equations (A6)–(A8) are satisfied. The remaining Equation (A5) is
trivially satisfied by using the following condition.

zw†(z) + w(z)z = −[z z†,A]+ + z z†, (A14)

When the above is inserted into (A5), we yield the following.[
zz†,A

]
+
+ zw†(z) + w(z)z =

[
zz†,A

]
+
− [z z†,A]+ + z z† = z z†. (A15)

As a result, Equation (A5) is trivially satisfied, without any further requirements on the
Hermitian matrix A. To summarize, we have the operator A(z) in (A1), with A being any
Hermitian matrix, and A(z) and w(z) given in (A12) and (A13), respectively, satisfies (A2),
thus concluding the proof.
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