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Abstract: Contextuality is often described as a unique feature of the quantum realm, which distin-
guishes it fundamentally from the classical realm. This is not strictly true, and stems from decades
of the misapplication of Kolmogorov probability. Contextuality appears in Kolmogorov theory
(observed in the inability to form joint distributions) and in non-Kolmogorov theory (observed in
the violation of inequalities of correlations). Both forms of contextuality have been observed in
psychological experiments, although the first form has been known for decades but mostly ignored.
The complex dynamics of neural systems (neurobehavioural regulatory systems) and of collective
intelligence systems (social insect colonies) are described. These systems are contextual in the first
sense and possibly in the second as well. Process algebra, based on the Process Theory of Whitehead,
describes systems that are generated, transient, open, interactive, and primarily information-driven,
and seems ideally suited to modeling these systems. It is argued that these dynamical character-
istics give rise to contextuality and non-Kolmogorov probability in spite of these being entirely
classical systems.

Keywords: process; process algebra; contextuality; neurodynamics; collective intelligence; social
insects; information dynamics; salience

1. Introduction

Human beings tend to think in terms of dichotomous categories—up/down, black/
white/, good/evil, conscious/unconscious. Physics is no exception—linear/non-linear,
discrete/continuous, classical/quantum, general relativity/quantum mechanics. Such
dichotomies are frequently discussed in absolute terms as if they are statements about
the nature of reality, the way things are, as opposed to how our minds perceive things
to be. It took many centuries before the two-valued logic of Aristotle was supplemented
by many-valued, modal, and fuzzy logics. Only in the past century has the objective
Newtonian world view been supplemented by the contextual world view of quantum
mechanics. Psychologists and neuroscientists understand that our perception of reality is,
in part, an internal mental construction derived from theories and expectations which are
projected onto the real world and mostly (sometimes) adjusted when the fit is sufficiently
poor [1]. Physicists, too, view the world through the lens of theory—currently, reality is
perceived through the lens of the Hilbert space. Mermin [2], however, has warned against
the dangers of reification, the tendency to see our models of reality as reality.

In the past, these extensions of theoretical frameworks expanded and enhanced our
view of reality. These days, we are told that reality itself does not exist. This seems
excessive [3]. The loss of the traditional view of the object, and of the possibility of non-
invasive, non-disturbing, objective measurement, does not imply the end of reality [4].
Indeed, biologists, psychologists, physicians, and anthropologists, among many others,
have dealt successfully for a long time with the impossibility of pure objectivity. Whitehead
advocated for the introduction of subjectivity into science in his Process Theory [5], which
he referred to as a philosophy of organism. Had more attention been paid to biology [6],
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ideas of subjectivity and contextuality might have been commonplace, and the only surprise
from quantum mechanics might have been that these features apply even to the simplest
of physical phenomena and not merely to the most complex. Biology is the domain of
complexity and emergence [7], but in physics these concepts still play little role, if any,
outside of condensed matter physics [8] True, there have been a few attempts to apply ideas
of emergence to fundamental particles, but they have not received widespread acceptance.

Quantization, non-Kolmogorov probabilities, and contextuality are all said to dis-
tinguish the quantum realm from the classical realm. Quantum mechanics is held to
be the fundamental theory; therefore, the question becomes why the classical world is
best described as continuous, Kolmogorov, and non-contextual. A number of esoteric
explanations have been proposed over the years to explain this discrepancy. Perhaps,
however, a simpler explanation is at hand. Perhaps the problem lies not with quantum
mechanics, but instead resides in our characterization of the classical realm. As with most
other dichotomies, perhaps this one is false as well. Perhaps, at times, the classical realm
can also be discrete, non-Kolmogorov, and contextual. Contextuality at the classical level
was recognized even by Kolmogorov [9] when he formulated the axioms of probability
theory. He stated explicitly that all probability measures needed to be linked to specific
contexts, and the ability to combine such measures across distinct contexts was not a given;
rather, there are precise mathematical conditions that must be met in order for that to be
possible [10]. Unfortunately, this seems to have been forgotten during a century of usage.
Dzhafarov [11] has described this as “contextuality by default” and has written extensively
about this in the psychological literature.

Quantum mechanics has taken the notion of contextuality one step further through the
introduction of the Bell inequality and its myriad variants [12–17]. These inequalities are
formed from sets of correlations and are satisfied whenever the correlations are generated
by systems following the laws of Kolmogorov probability. Quantum mechanics, being non-
Kolmogorov, can violate these inequalities, at least some of the time. Much effort has gone
to understanding the conditions under which such inequalities can be violated, the limits
imposed upon quantum mechanics, and the possibility of supra-quantum correlations.

The conflation of classicality and Kolmogorov probability has led to endless specula-
tion about non-realism, non-locality, multiverses, observer-dependent reality, and so on.
However, Dzhafarov and colleagues have demonstrated that a condition on probabilities
equivalent to these inequalities is violated in decision experiments involving groups [18]
and individuals [19]. Aerts and colleagues have also demonstrated CHSH values in human
cognition which appear to surpass the Cirel’son bound [20]. As Harris [21] points out,
contextual effects are widespread; they have simply been either seen and ignored, or not
even seen. Humans see what they believe, and if researchers do not believe in contextu-
ality at the classical level, then they will not see it, but that does not mean that it does
not exist. Paradoxically, many of our models of complex systems are unduly simplistic.
Take, for example, physical models of neural networks, which describe them as akin to
spin glasses where neurons simply fire (1) or not (0), and thus superficially resemble a
binary computer [22]. Such models fit nicely into existing world views (two valued logic,
binary computers, spin glasses) but they are, at best, cartoon versions of living neurons
and quite misleading as to their dynamics. Biologically inspired models have been much
more successful [23]. The same is true for physical models of collective intelligence sys-
tems [24], although some nuanced biologically relevant models have been remarkably
successful [25–27]. The emerging field of quantum cognition offers new ways of under-
standing neural systems through the application of quantum formalisms (not quantum
dynamics per se) to the description of cognition [28–30].

In the next two sections, there is first a concise review of our current knowledge about
the dynamics of biological neural systems (in particular, neurobehavioural regulatory
systems), and second, a review of biological collective intelligence systems (in particular,
social insect colonies). The next two sections examine evidence for contextuality (at least
contextuality by default) in these systems, and some of the dynamical aspects which might
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underlie such contextuality. The first of these sections is more philosophical; the second
presents a toy model to illustrate one form of contextuality. The Appendices A and B
presents some details of the process algebra which is presented as a framework for de-
scribing and analyzing such systems. Process algebra is generative, contextual, transient,
non-Kolmogorov, and interactive. Process algebra has been shown to reproduce the struc-
ture of non-relativistic quantum mechanics. Process algebra provides a high-level, formal
language which addresses those features of these systems which potentially could give
rise to contextuality, namely, their being processes, i.e., generated, transient, open, and
dominated by interaction and information.

2. Neural and Collective Intelligence Systems
2.1. Neural Systems—Neurobehavioural Regulatory Systems

Prior to discussing the role of contextuality in neurodynamics, it is first necessary to
describe what is currently known about the dynamics of collectives of neurons. Over the
centuries, there have been different metaphors used to understand how the brain gives rise
to objective behaviour and subjective experience. Nowadays, the brain is conceptualized as
a biological computer [31], as a neural network [32], or as a spin glass [22]. Each conception
takes one feature of neuronal architecture and elevates it to a central status: the computer
metaphor interprets neuronal action potentials as binary values; neural networks focus on
the mostly large-scale connectivity; and spin glass models interpret action potentials as
spin states. The loss of detail involved in formulating each of these models is staggering,
and the result in each case provides a caricature of neurodynamics at best.

In spite of more than a century of intense research, our knowledge of neurodynamics
still barely scratches the surface. Nevertheless, it is still vast, and this brief overview cannot
do it justice. It serves to catalogue the various players and their myriad contributions to
the collective dynamics of neurons. This information will be important for understanding
how contextuality arises in the dynamics of such systems.

It is generally agreed that the nervous system plays a central role in the determination
of psychological phenomena, whether objective as in motor behaviour, or subjective as in
thoughts, emotions, memories, perceptions, and so on [33]. It is further agreed that that
the nervous system functions as a biological information processing system [34], although
analogies with digital computers are far from the truth.

The main components of the nervous system are neurons, glial cells, and blood vessels.
Neurons were long thought to be the principal information-processing component of the
nervous system. Neurons possess a remarkably varied cell body which can be further sub-
divided into axonal and dendritic components. The axonal component usually consists of
a single long process which terminates in an arborization, akin to the branches of a tree. At
the ends of this arborization are specialized regions called axonal terminals, which provide
the so-called pre-synaptic component of specialized structures called synapses which link
this (upstream) neuron to other (downstream) neurons. The dendritic component also
ends in arborizations which show remarkably diversity. At the ends of these arborizations
are the terminal dendrites or dendritic spines, which possess a wide variety of structures
called receptors which, in turn, form the post-synaptic component of synapses.

The cellular membrane of a neuron is electrically active, and the axons of many
neurons are covered in a myelin sheath whose purpose is to facilitate the propagation
of an electrical “action” potential along the length of the axon from a specialized region
called the trigger zone to the axon terminals. The arrival of an action potential at the
axon terminal often facilitates the release of neurotransmitters from vesicles located in
the presynaptic structure. It is important to note that the release of neurotransmitters is
stochastic and follows a Poisson distribution [35]. Once released, the neurotransmitter
diffuses through an extracellular region, the synaptic cleft, before bonding with one of the
post synaptic receptors. That results in a local alteration in the electrical properties of the
membrane of the downstream neuron. If a large enough depolarization of the membrane
occurs at the axon trigger zone which exceeds a specific threshold value, an action potential
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is initiated. Once initiated, the action potential is an all-or-nothing phenomenon, having a
fixed amplitude, duration, and form. Action potentials vary only in their frequency. There
is, however, another means through which neurons can influence each other. Dendritic
spines can extend back from the downstream to the upstream neuron, and thus directly
assert an influence over the upstream neuron.

Cajal postulated two broad principles informing neural structure: (1) the principle
of dynamic polarization, which states that the electrical activity of the neuron flows from
dendrites to the trigger zone of the axon; and (2) the principle of connectional specificity,
which states that neurons do not connect purely at random but rather only to specific
populations of neurons.

Once formed, large-scale connectivity, which reflects how neurons interact with one-
another through synaptic connections, is largely fixed. However, this belies the fact that
local connectivity—the numbers of axon terminals and vesicles, the numbers and local
geometries of dendritic spines and the numbers and types of receptors, are all dynamic.
Every night, serotonin activity in the brain ceases, resulting in a contraction of dendritic
spines which re-form again in differing geometries each morning [36]. Little attention in
modeling is paid to the fact that these neuronal networks are profoundly dynamic.

Neurons are classified as afferent (meaning towards the central nervous system,
usually from sensory receptors), efferent (meaning away from the central nervous system,
usually to muscle receptors but many other organs as well), or as interneurons (meaning
between neurons). They are classified as unipolar, bipolar, or multipolar, depending upon
the number of processes that emerge from the cell body. They are classified morphologically
by the shape and density of the dendritic arborization, and by the number of axons.

Synapses also come in several forms [33]. Gap junction synapses are electrical and
provide direct bi-directional interactions between neurons. Chemical synapses involve
a chemical intermediary between the upstream and downstream neurons which are sep-
arated by a gap junction. Chemical synapses come in two major forms. Ligand-gated
receptors produce excitatory or inhibitory effects upon the local neuronal membrane when
stimulated by an appropriate neurotransmitter. G-protein-coupled receptors, on the other
hand, serve a modulatory role, altering the response of a neuron to ligand-gated receptor
activation by modulating various membrane parameters such as resistance, length and time
constants, the duration of action potentials, and so on. Ligand-gated receptors contribute
to the production of an action potential, whereas G-protein-coupled receptors change the
dynamics of a neuron. A third type of receptor, tyrosine kinase receptors, plays a role in
gene transcription and metabolic processes, which play a role in disease induction as well
as memory.

A fourth form of interaction which has been little recognized is called ephaptic (or
ephatic) transmission. This has been described in the context of certain disease states such
as those causing demyelinization. It occurs when two axons are sufficiently close together
so that electrical activity in one axon influences the electrical activity in the other. This is
a form of neuronal transmission that is extremely difficult to study, but recent theoretical
work suggests that it might play a greater role in the nervous system than previously
recognized, at least in the dynamics of unmyelinated fibres [37].

Finally, a fifth form of interaction has been recognized. This is volume transmission,
originally associated with somatic influences on neural dynamics such as those arising
from hormones, neuropeptides, cytokines, and interleukins, among many others. In recent
years, however, it has been realized that neurons may also release large quantities of
neurotransmitter directly into the extracellular space rather than delivering it to vesicles
that participate in synaptic interactions. Volume transmission is thought to underlie
phenomena such as mood, attention, arousal [38–40], and to regulate the dynamics of
mesoscopic level cellular assemblies which operate over large spatio-temporal scales [41].
Somatic influences effected through the release of hormones, neuropeptides, and immune
factors all influence neurodynamics through volume transmission. Even gut bacteria
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influence neurodynamics through their production of neurotransmitter precursors as well
as neurotransmitters themselves [42]. These, in turn, are all influenced by the environment.

Receptors frequently come in many different subtypes, and each subtype may result in
a different effect on synaptic function. For example, there are at least 14 different receptor
subtypes for serotonin, 5 for dopamine, 9 for norepinephrine, and so on. Some of these
are ligand-coupled, but most are G-protein-coupled. They may be either excitatory or
inhibitory. It is not possible to ascribe a specific neurophysiological action to any given neu-
rotransmitter. It depends upon the receptor subtype and the target neuronal system. It has
been conjectured that some large-scale features of behaviour, such as temperament traits,
may be due to ensemble interactions among neurobehavioural regulatory systems [43,44]
and reflect various dynamical phases among these systems [45–47]. Moreover, many neu-
ronal systems act through volume transmission, the serotonin, norepinephrine, dopamine,
acetylcholine, and glutamate systems being prominent examples [41]. These authors point
out that commonly used experimental methods for studying neurophysiology at the cellu-
lar level, such as in vitro slices, destroy large-scale connectivity and long-range interactions,
because these involve small numbers of cells which are isolated from one-another through
restrictions of both vascular and extracellular spaces.

The connectivity among neurons is equally vast. Each neuron receives synaptic
contributions from anywhere between 1000 and 1,000,000 presynaptic neurons. Every
neuron serves as a presynaptic neuron for anywhere between 1000 and 10,000 postsynaptic
neurons. The combinatorics is mind boggling. Furthermore, virtually every region of the
brain receives inputs from the neurobehavioral regulatory systems (serotonin, dopamine,
acetylcholine) and project back onto these systems, whereas among cortical neurons there
are widespread connections between and within the cerebral hemispheres. Moreover,
some neural systems play as important a role when inactive as when they are active. The
serotonin system, for example, plays an important role in maintaining the physiological
integrity of individual neurons and becomes inactive during sleep to allow change and
repair processes to act [36]. During this time, dendritic bulbs can retract into the neuronal
membrane, and new dendritic bulbs can form in the awake state, so that the ultrafine scale
network structure is also variable. Activity from these neuroregulatory systems is closely
regulated through multiple feedback processes, and departures from the “middle way”
cause harm.

The brain comprises approximately 30 billion neurons and some 70 million supporting
cells, or glia. Long thought to be merely a connective tissue scaffold for neurons, it is now
apparent that glial cells play a major role in not only the maintenance of neurons, but in
their processing of information, particularly learning and memory [34]. Glial cells respond
to a wide variety of hormones and peptides and play a central role in the regulation of
glutamate dynamics. It is not possible to fully understand the dynamics of neurons without
taking into account the dynamics of the glial system, the body as a whole, and ultimately
the environment which that body inhabits.

Physicists are fond of denying the existence of time, although neural systems treat
time as fundamental and derive much of their functionality from the different time scales
associated with different processes. For example, gap junction synapses are virtually instan-
taneous, ligand-gated synapses act over 0.3–5 milliseconds, G-protein-coupled synapses
act over hundreds of milliseconds to minutes (as may volume transmission), whereas
tyrosine kinase receptors have effects that can last up to weeks. These time scales all sup-
port behaviour at the organism level ranging from milliseconds to hours. Freeman [48,49]
carried out extensive experiments, particularly involving the olfactory system, which
demonstrated an important role for stochastic and chaotic processes, and for dynamical
phase transitions between transient chaotic attractors [23]. Gerstein and Mandelbrot [35],
and Shadlen and Newsome [50] have all provided striking evidence for stochasticity at all
levels of the nervous system.

At the behavioural level, it has long been known that behaviour is not reproduced as
a fixed pattern elicited by some stimulus; instead, behaviour is generated anew, “on the
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fly”, each and every time it is elicited. Different neurons, different muscle fibres, different
sequencing, and different timing all distinguish one instance of a specific behaviour from
another, even if superficially these behaviours all appear to be the same or express the same
functionality [43,44,51]. Moreover, it is now apparent that internal “representations” of the
external world such as internal maps and memories are using different neurons at different
times, even though functionality at the macroscopic level appears to be preserved [52–54].
Neurons appear to be fungible. They can be recruited to carry out different tasks, to make
different contributions at different times in different environmental contexts. There is
no fixed relationship between individual neurons and individual acts of behaviour, any
more than there is a fixed relationship between neurotransmitter or hormone and specific
behaviours. There are correlations at the macro, but not at the micro level.

Even this simple overview should make it abundantly apparent that simplistic models
such as feed-forward neural networks, spin glass neural network models, coupled oscilla-
tors, and so on, fail to come close to capturing the true complexity of neural dynamics.

2.2. Collective Intelligence Systems—Social Insects

Collective intelligence is often used as a euphemism for any form of collective be-
haviour such as that exhibited by crowds, mobs, swarms, or schools. It may also refer to
various forms of multi-agent programming in computer science and engineering. Here,
however, collective intelligence strictly refers to the appearance of ecologically salient,
intelligent behaviour by a collective of individual agents in the absence of any central
authority [55–57]. Collective intelligence is an emergent phenomenon. The collective
behaves in ways that are not possible for the individual agents which form the collective.
Its dynamics are not a simple scaling-up or extrapolation from the dynamics of the agents.
The quintessential example of a collective intelligence is a social insect colony, particularly
an ant colony, and that will serve as the focus of this section.

Social insects have been present on Earth for between 100 and 200 million years. They
are highly successful species from an evolutionary perspective. Some species, such as
termites, have constructed vast interconnected cities [58]. Ants appears everywhere except
for the coldest climates.

Ants live in colonies with populations ranging from a few hundred to several million
workers. The members of a colony are exclusively female—male workers (drones) appear
only when the colony is about to reproduce. Each colony has a single queen whose task
is to deposit the eggs that become the workers. The queen is not a central authority. Her
entire life is spent within the nest laying eggs. The workers tend to the egg, larvae, and
pupae, construct and maintain the nest, forage for food, and defend the nest, all without
any central direction. The queen determines when the colony should reproduce, and at
that time will produce one or more queen eggs and those for male drones.

The members of an ant colony are distinguished morphologically, forming distinct
castes. In some species, morphology (caste) determines role [59]. In others, workers
may perform different roles, although each is performed exclusively for an extended
period of time. The main roles are queen, drone, midden worker, forager or scout, and
soldier. In some species, transitions between roles are reversible, but in others, they are
irreversible [60,61].

The brain of a typical worker consists of about one million neurons. The body of a
worker possesses a wide variety of receptors for different kinds of sensory information. The
antennae receive olfactory signals from other workers and their environment. These signals
include trail-marking pheromones, alarm signals, affiliation markers (which distinguish
members of the colony from others), food, and so on. They possess receptors for vibra-
tion and for touch. They possess glands which exude affiliation markers, trail-marking
pheromones, and various signals such as alarm signals [60,61]. Larvae and pupae also
secrete different signals at different stages of their development to inform workers as to
their needs [61]. These different chemicals are definite signals, not merely generic metabolic
products such as nutrients. Responses to alarm pheromones, for example, may be consis-
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tent within a species, but vary among species. In response to an alarm pheromone, the
workers of Acanthomyops claviger become aroused and converge, whereas workers of Lasius
alienus scatter widely [60]. This is important, because it means that these various chemical
agents have informational specificity which is linked to each individual species. There is no
one-size-fits-all property such as energy or entropy which determines their interpretation.
They are indeed signals, and they require a specific agent for their interpretation.

The body of a typical worker is asymmetric in the rostral–caudal direction. Roughly,
the sensory apparatus is situated rostrally, whereas the secretory apparatus is situated
caudally. Workers interact with one-another in a wide variety of ways. They may send
chemical signals to each another, some of which are deposited on sensory receptors by direct
touch (akin to synaptic transmission), whereas others are secreted into the environment
and arrive through either diffusion (volume transmission) or direct contact with an object
in the environment (akin to gap junctions). They may also interact through direct body
contact, which often involves rubbing (akin to ephaptic transmission), and which stimulates
different forms of behaviour such as tandem running, carrying (of themselves, pupae,
corpses, or food pellets), defense, foraging, or changes in task allocation. These interactions
are complex and depend not merely on the presence of contact, but on the orientation of the
workers, their internal states, their current tasks, and the current state of the colony [59–61].

Colonies live in nests, and these come in a myriad of forms. Some colonies live
underground, some live on the surface, and some live in trees [59]. Nests may be formed
from materials in the environment such as topsoil, forming underground tunnels or surface
mounds. The mounds of termites are spectacular. Some nests are formed from the bodies of
the workers themselves. Some colonies form more or less permanent nests, whereas others
are temporary, with emigration necessitated by environmental damage or foraging needs.
The army ant, Eciton burchelli, has evolved a remarkable cyclical pattern in which a colony
alternates between a statory phase, during which time the nest has a fixed location and
each day the workers carry out radially directed raids into the neighbouring environment,
with the angle between daily raids offset by 123 degrees, so that they sweep the area, and
a [58] nomadic phase, in which the entire colony packs up and moves each day until a new
statory site is reached.

The behaviour of a colony depends upon the number of workers contributing to it,
an aspect termed mass action. Consider the army ant, Lasius alienus, for example: the
foraging pattern of a single worker appears to be completely random, although in some
species the return to the nest is remarkably direct [60]. As the number of workers increases,
the colony may organize into milling behaviour, which, if vigorous, has been described
as an ant tornado. With further increases in numbers, one may see the formation of
organized columns of ants, which gives rise to the army descriptor, and which appear
during migrations. Foraging is also highly organized into a shape somewhat resembling a
mushroom, with a single column emanating from the nest which subsequently subdivides
into numerous branches linked by transverse paths, thus forming a head. These foraging
raids maintain their orientation to within a few degrees [58].

The cliff-dwelling ant, Temnothorax albipennis, is highly adapted to carrying out nest
emigrations due to the high frequency with which its nest loses its structural integrity.
The manner in which such colonies select sites for nest construction has been extensively
studied by Nigel Franks and colleagues [62,63]. They have been able to demonstrate that
colonies are able to distinguish between sites based on a number of characteristics such as
entrance width, room height, and amount of light. Given a choice of sites with varying
characteristics, a colony appears capable of making a choice using a weighted additive
decision strategy, one which is difficult for humans to utilize [62]. Individual workers are
unable to do so themselves. Pratt and colleagues [64,65] have shown that under some
circumstances, colonies exhibit features of rational decision making which individual
workers do not. In particular, they showed that colonies of Temnothorax rugatulus could
avoid the decoy effect in making decisions even though individual workers appeared to
fall prey to it. Prior experience, and thus perhaps a form of learning, has been shown
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to influence decision making, sometimes leading to non-rational decisions at the colony
level [66].

Colonies appear to adapt their decision-making strategy depending upon various
parameters such as the ecological salience of the decision, the functional status of the colony,
and environmental factors such as time, accuracy, resource use, and distance to target.
For example, decision making changes depending upon the relative distances between
targets [67]. Strategies change when there are trade-offs between different parameters.
Different levels of ecological salience (food search under starvation versus plenty, mate
selection, and nest selection) result in different decision-making strategies being employed,
from weighted additive down to just “good enough” [62]. Thus, the strategies which
are utilized by a collective intelligence should not be thought of as stored, represented,
or embodied by the collective intelligence, but instead should be viewed as emergent
phenomena, generated “on the fly” by the agents of the collective in interactions among
themselves and with the environment in which they are embedded. This environmental
dependency has been termed nonrepresentational contextual dependence [55].

At the colony level of decision making, it would appear as though the colony is able
to compare different nest sites and choose based upon the differences in site characteristics
using one of several different decision-making strategies. Robinson, Feinerman, and
Franks [67] showed that this did not appear to be due to the individual ants comparing the
different sites, but rather to the individual ants obeying a form of threshold rule. Individual
ants make a judgment based upon whether or not the option exceeds some threshold, and
the colony as a whole then adopts an option when the numbers of individual workers
choosing that option surpasses a so-called quorum threshold. A low quorum threshold
means that fewer scouts suffice; thus, more individualistic judgments dominate. A high
quorum threshold requires more search and more consensus [63,68,69]. The individual
thresholds appear to be highly heterogenous, which provides the colony with a decision-
making advantage under conditions in which the individual choices are suboptimal [70].
These colonies are capable of using a wide variety of strategies in response to different
environmental conditions [71–74].

This is the case for nest emigration in Temnothorax albipennis. In nest emigration,
individual scouts explore the local environment. If a site exceeding their individual
threshold is found, they return to the nest, laying a trail pheromone along the return trail.
When they encounter other workers, they will touch the worker in a specific manner in
order to elicit a response called tandem running, in which they both return to the chosen
site. The new worker, assuming its threshold is exceeded, then returns to the nest as does
the original worker and the process is repeated, each time resulting in more trail pheromone
and more recruitment. If a quorum threshold is exceeded, then the colony as a whole shifts
its activity, with movement shifting towards the new site and the initiation of carrying
behaviour—of eggs, larvae, pupae, queen, other workers, and so on. It is important to note
that this whole process unfolds only in a statistical sense. At any given time, workers are
going back and forth between the nest and other sites. Workers may carry nest occupants
to the new site, but they can just as easily carry them back to the original nest. This is
very apparent in the migrations of Eciton burchelli colonies. In any given emigration, the
workers that participate in the exploration, the workers that initiate the emigration, and the
workers that participate in the emigration, are all chosen at random, and will be different
each and every time. Each emigration is generated “on the fly”, with new workers, new
distributions of tasks, and new timings, although viewed at the colony levels, there are
fairly consistent patterns. Rayleigh–Bénard convection cells provide a physical example
where there appears to be stable structure at the macroscopic level with chaos ensuing at
the microscopic level.

Stigmergy is another important feature of collective intelligence dynamics. It is
defined as “the inducement to work by the products of work”. It is most apparent in nest
construction by termites and wasps. The nests of such social insect colonies are not entirely
random, but possesses symmetries, structure, and form. Construction of these structures
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occurs in the absence of an architect. There is no blueprint within the minds of individual
workers, nor is there a foreman directing workers to different locations to perform different
tasks. Again, these structures are generated “on the fly”. The selection of a particular
worker to carry out a particular task is entirely random. Individual workers are fungible.
Each time a nest is constructed, it is constructed anew, with different workers, and the final
structure will be different from any previous structure. Nevertheless, there will be common
features and similarities in the form of the nests, and these features tend to be distinctive
for each different species. Individual workers are induced to carry out particular tasks
depending upon the state and form of the structure produced up to that point. As the
workers act, the structure becomes modified in particular ways, and these modifications
elicit further distinctive behaviours from the workers. Over time, the structure forms and
transforms, until eventually a stable final structure is created. At that point, workers shift
their activity to nest maintenance and repair.

2.3. Commonalities between Neural and Collective Intelligence Systems

By now, it should be apparent that neurobehavioural regulatory systems and collective
intelligence systems possess a level of complexity in their dynamics which far exceeds
that of simple Newtonian objects, or indeed that of nearly any physical model currently
under investigation. It was suggested in 2009 [56] that nonrepresentational contextual
dependence was a defining characteristic of collective intelligence systems. The question is
whether contextuality, as manifested by collective intelligence and neural systems, has any
relationship with contextuality as understood within the physical literature.

The neurobehavioural regulatory systems and social insect colonies were presented as
examples precisely because they possess a remarkable number of dynamical features in
common. First of all, in both cases, these systems consist of a collective of agents, neurons
and glia in the case of the neurobehavioural regulatory systems, and workers in the case of
social insect colonies. Their behaviour of interest is global in nature, which pertains to the
system as a whole, and cannot be reduced to the actions of any single individual member of
the collective. In both cases, there is no central authority to which one can refer to explain
the dynamics of the collective. There is no CEO, no organizer, no planner. There are no
codified rules, no scripts, blueprints, or instructions which shape the behaviour of the
individual agents. The agents, whether neurons or ants, which participate in any collective
behaviour are fungible—they are not necessarily the same in each instance; indeed, they
may not even remain the same throughout the duration of the collective behaviour. These
collective behaviours are not stored in some fashion within the structure of the system.
Instead, they are generated “on the fly”, de novo, each and every time they are elicited by
their environment. Whether retrieving a long-term memory, or selecting a site for a new
nest, the participants and actions which give rise to the collective behaviour are determined
in the moment. The collective behaviour is generated, not elicited.

These systems are profoundly open systems. They exchange structural and energetic
resources with their environments. More importantly, they exchange information. The
environment provides information which is necessary to elicit, constrain and shape the
activities of these systems, and the systems, in turn, act upon their environments, imparting
information and altering their environments so as to create complex feedback relationships
that then further shape future behaviour. This openness is not simply a complication—it is
an essential contributor to the generation of behaviour by these systems. As a consequence,
this open nature renders the environment a determining context in the generation of
behaviour. It is not possible to treat the environment merely as an initial or boundary
condition. The environment, its resources, and its geography all influence the possible
behaviours that these systems can exhibit. However, these systems also act upon their
environments in myriad ways, thus shaping their own contexts, altering the boundary
conditions, and thus the possibilities for future behaviour.

There are deeper parallels between neurobehavioural regulatory systems and collec-
tive intelligence systems. The environment of the neurobehavioural regulatory system
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consists of the matrix of glial cells, blood vessels, volume distribution of hormones, neu-
ropeptides, and neurotransmitters, together with signals from sensory systems and other
brain regions. This environment can be modified through central neuronal action on the
regulation of hormones, the release of neuropeptides, the volume distribution of neuro-
transmitters, receptor and membrane properties through G-protein-coupled receptors,
large-scale movements of the body which alter the sensory inputs, and fine-scale alter-
ations in dendritic architecture, receptor distribution and types through morphological
and genetic activities. The environment for a collective intelligence consists of the physical
environment—the distribution of resources needed by the colony to function, the presence
of competitors and predators, the volume distribution of emitted pheromones, and the
spatial distribution and orientation of individual workers which impacts whether they
interact, and how.

Neurons interact with one-another through five main channels: ligand-gated synapses,
G-protein-coupled synapses, gap junctions, ephaptic transmission, and volume transmis-
sion. The workers in collective intelligence systems such as ant colonies also interact
through five main channels: ligand-gated receptors (olfaction), various alarm signals (akin
to G-protein-coupled systems) which alter the dynamics of the worker, touch (akin to gap
junctions), patterned behaviour (akin to ephaptic transmission), and the volume transmis-
sion of pheromones. Both neurobehavioural regulatory systems and collective intelligence
systems use a mix of local and global means for transmitting important information. In
neurobehavioural regulatory systems, local information is transmitted via gap junctions,
axo-dendritic synapses, and ephaptic connections. Global information is passed through
the volume transmission of hormones, neuropeptides, and immunoregulatory peptides.
Local information is passed within collective intelligence systems through somatic odor-
ants and various forms of touch. Global information is passed through pheromones and
diffusible signals such as alarm signals.

Both neurobehavioural regulatory systems and collective intelligence systems make
global decisions based upon some form of collective action. In the case of social insect
colonies, a shift in behaviour at the colony level, for example, the commencement of
emigration to a new nest site, does not take place until a quorum of workers in favour of
one site is formed. Each worker makes its own choice for a new nest site, and these choices
may differ over a range of sites. Having made its choice, each worker returns to the nest
to recruit other workers to their chosen site. These subsequent workers are free to choose
that site or explore the space and choose a different site. However, over time, an increasing
number of workers will be attracted to these sites. Once a quorum for one site is achieved,
there is a shift in the internal dynamics of the nest and emigration to that site commences.
Freeman argued for a similar phenomenon in neural systems, which he termed mass
action [48]. It has long been known that individual neurons release neurotransmitters
stochastically, and that the timing of spikes of a single neuron under repeated presentation
of the same stimulus is also stochastic. However, a large number of neurons responding
to the same stimulus will produce a noisy approximation to a more or less stable wave
form. Moreover, an individual neuron initiates an action potential only after a sufficient
number of neurons stimulate the receptors of the neuron within a very short time frame; in
other words, they arrive more or less simultaneously. A pre-synaptic neuron may vote for
(excitation) or against (inhibition), but if the balance sufficiently favours acceptance, then
the post-synaptic neuron produces an action potential.

In the case of both the collective intelligence and the neurobehavioural regulatory
system, there is a threshold which must be achieved (quorum threshold for social insects,
firing threshold for neurons). If the stimulus is sub-threshold, the subsequent activity of
the system is unaffected. If the threshold is met or exceeded, then the system undergoes a
transition to a new dynamic. Another aspect of decision making is that once the decision
has been made, it is irreversible. It is possible to disrupt the decision, but not reverse it.
Thresholds provide these systems with a mixture of continuous and discrete dynamics.
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One major difference between neurobehavioural regulatory systems and collective
intelligence systems is that the agents of a collective intelligence are generally free to
physically move through their environment, whereas the neurons in a neurobehavioural
regulatory system are fixed in space and explore a virtual environment through local
connectivity changes and alterations in their own local dynamics (somewhat akin to
changes in task allocation). In many other respects, collective intelligence systems and
neurobehavioural regulatory systems share a range of dynamical mechanisms. Collective
intelligence systems are much smaller in terms of the number of agents and much more
accessible to experimental study; therefore, it is suggested that the study of collective
intelligence systems is worthwhile, not just in their own right, but also for the insights
they might provide into the functionality and roles of various dynamical mechanisms in
determining the behaviour of neurobehavioural regulatory systems.

The number of common features between neurobehavioural regulatory systems and
collective intelligence systems is striking. Is this coincidental? Or could these characteristics
provide the fundamental capabilities necessary for the expression of intelligence in a bio-
logical system (or any system)? Fundamentally, both neurobehavioural regulatory systems
and collective intelligence systems are examples of process. Their dynamics are charac-
terized by generativity, becoming, transience, openness, fungibility, context dependency,
and information, all characteristics of process. This suggests framing the descriptions
of both neurobehavioural regulatory systems and collective intelligence systems within
the formal language of the process algebra, based upon Whitehead’s Process Theory (see
Appendix A).

3. Generativity, Interactions and Contextuality

Contextual effects have been recognized in biopsychosocial sciences for a long time.
Rarely, however, are they explicitly denoted and considered in the analysis of experiments.
Kolmogorov’s caution about the necessity to link probability distributions to their con-
texts [9] has mostly been ignored. In psychology, it has taken decades to move beyond
the almost dogmatic devotion to the Normal distribution, and the recognition that many
situations possess a very different probability structure, particularly power law distribu-
tions [75]. In physics, the appearance of contextual effects took physicists by surprise, so
entrenched were ideas of Newtonian objects and objectivity. The earliest awareness of
contextuality arises from the non-commutativity, in general, of self-adjoint operators, which
in the von Neumann formulation, represent measurements. It was recognized that it was
impossible to simultaneously measure the eigenvalues corresponding to non-commuting
operators. Thus, it becomes impossible to attribute a complete set of measurement eigen-
values to a quantum system. From von Neumann’s initial proof of the non-existence of
dispersion-free measures (discussed in [12]), there followed a series of non-commutativity
results [76–78], and their later simplification by Mermin [79], showing the impossibility
of finding a joint probability distribution for all possible observables. The wave function
became contextually dependent, leading to endless discussions concerning the apparent
non-reality of quantum measurements, or at least the observer dependence of such mea-
surements. This is the first understanding of contextuality, namely, that the context under
which a measurement is performed affects which measurements can be observed and what
values can be obtained. From this, one is led to the Copenhagen interpretation of quantum
mechanics and to Wheeler’s famous dictum [80], that “no elementary phenomenon is a
phenomenon until it is an observed phenomenon”; in other words, the system has no
inherent properties until a measurement takes place.

The second form of contextuality again stems from EPR and involves the Bell in-
equalities [12–17]. Following experimental evidence of their violation in certain quantum
mechanical situations, these inequalities and their violation have come to represent contex-
tuality to many physicists today. Each of these inequalities is derived by assuming that
the system can be described by a set of “hidden variables” whose dynamics obeys the
structure of Kolmogorov probability. In particular, the hidden variables and component
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systems are assumed to be statistically independent and that probabilities obey the classical
Kolmogorov sum rule. From this, one can obtain an inequality involving certain expecta-
tion values of measurements which must be satisfied if the underlying assumptions are
satisfied. Probabilities in quantum mechanics follow from the Born rule, and the sum rule
in this case includes interference terms which do not appear in the Kolmogorov sum rule;
therefore, by definition, they are non-Kolmogorov. Moreover, it should be no surprise that
quantum mechanics violates the Bell inequalities because the usual situation studied, that
of entanglement, by definition involves systems that are not statistically independent but
are, in fact, highly correlated. It has always seemed odd that one would expect a model of
independent systems to yield a full description of dependent or correlated systems.

The study of these inequalities has created something of an academic industry. So
deeply ingrained is the conflation of classicality and Kolmogorov probability, that quantum
mechanics is described as manifesting a supra-classical probability. More modestly, and
more accurately, it should be described a manifesting a non-Kolmogorov probability. In fact,
Dzhafarov and colleagues have studied contextuality within the framework of Kolmogorov
probability in order to apply these ideas to psychological experiments. They formulated
inequalities analogous to the Bell inequalities, but more importantly, introduced the idea of
inconsistent couplings in the structure of the probability structure [11,81,82]. These ideas are
presented in condensed form in Appendix B. Most importantly, they have demonstrated in
at least two psychological experiments—one social and thus somewhat similar to collective
intelligence [18], and one individual [19]—the presence of contextuality comparable to
that observed in quantum mechanics. A complementary approach is that of Khrennikov,
who developed an extension of Kolmogorov probability theory that he called contextual
probability theory, which involves modifications of the sum rule for probabilities in a
manner analogous to the development of non-Euclidean geometry [83–85].

This section focuses on contextuality by default, the first type of contextuality, in
neurobehavioural regulatory systems and collective intelligence systems. The demon-
stration of a stronger form of contextuality by Dzhafarov in psychological experiments
makes it likely that this strong contextuality will also be observed in the neurobehavioural
regulatory systems (because psychological processes supervene upon such systems), and
so likely in collective intelligence systems as well, although the current state of theory and
experiment does not permit this to be explicitly demonstrated. Nevertheless, it is hoped
that the discussion in this paper will motivate others to explore these questions further,
both theoretically and experimentally.

Consider a simplified model of a collective intelligence systems: first of all, each
system consists of a large collection of individual agents, neurons in the case of NBRS, ants
in the case of CIS. These agents are described by processes, Ai, each of which comprises
myriad subprocesses describing such entities as dendrites, receptors, and axon terminals,
and so on for neurons; or antennae, sensory receptors, odorant glands, tactile sensitive
surfaces, and so on for ants, down as many levels of description as one likes. Synapses are
locations for interactions between neurons and can be viewed as processes in their own
right. Each synapse is denoted by sij where i,j refer to the neurons that take part in the
synapse. We can expand the neural process to Ai(sij,sik,sil, . . . ). Given two neurons that
participate in a ligand-gated synapse, we can write Ai(sij, sik, sil, . . . ) � Aj(sji, sjm, sjn, . . . )
= Ai(sij � sji, sik, sil, . . . ) � Aj(sji � sij, sjm, sjn, . . . ). We can also write this as Ai(sij � sji, sik,
sil, . . . ), Aj(sji � sij, sjm, sjn, . . . ) and allow the synapses to carry the interaction. A similar
notation can be used for gap junctions. The neural-level interaction denotation must persist
in the case of a G-protein-coupled receptor on account of the fact that the action alters the
neuronal dynamics, and hence can induce effects outside of the receptor per se. Volume
transmission requires the introduction of a global process, P, which expresses the diffusion
dynamics of the volume transmitter. Each neuron potentially will possess receptors, p,
for the volume transmitter, and some neurons will also possess releaser sites, r, for the
volume transmitter. Interaction with the volume transmitter process will, in the general
case, look like Ai(sij, sik, sil, . . . ,p,r) � P = Ai(sij sik, sil, . . . p � P,r � P) � P. The presence of
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a volume transmitter offers a possibility for a second contextuality type effect, because the
coupling through the volume transmitter can enable an increase in correlations between
neurons that are physically distant from each another. A similar pattern holds for collective
intelligence systems. Therefore, there are “non-local” influences between the agents of
these systems even though these influences remain causal.

Each interaction potentially induces a change in the state of the involved processes,
and in some cases, changes the process itself. In process algebra, this is expressed in the
concatenation of processes which represents the changes in processes over time. These
transitions may be externally driven through interactions with the environment, or they
may be internally driven due to interactions among subprocesses. In the case of both
neurobehavioural regulatory systems and collective intelligence systems, these transitions
may be at least transiently irreversible (and in some cases, such as the triggering of trap-jaw
ants, permanently irreversible). The state of a process remains constant unless an interaction
takes place which induces a transition. We can denote the duration of persistence of a
process P by (n)P, where n is the number of generations over which the process P persists (or
remains active). If a transition takes place at step n, we can denote this as (n)P(0)R, and over
the persistence of R, this becomes (n)P(m)R. The persistence of the concatenation is thus n +
m. The irreversibility of these transitions ensures that concatenation is a non-commutative
operation, which lays the foundation for contextual effects of a deeper kind.

Irreversible transitions are of paramount importance in these systems because they
enable decisions to be made by individual agents and to ensure that the consequences of
these decisions persist for a sufficient time so as to enable a transition to take place at the
collective level. This irreversibility also has the consequence that the behaviour of these
systems cannot be represented by a single probability distribution. A decision cannot be
represented merely as a fluctuation, but rather induces a transition to a new probability
distribution. This irreversibility implies that these systems are history-dependent, and
different histories will give rise to different probabilities for subsequent behaviour. The
generativity inherent in these systems enables these probabilities to be generated on the fly
in response to changing contexts. There is no need to find some optimal one-size-fits-all
distribution. Instead, the system can optimize locally with respect to individual contexts.

There is no reason to believe that there should be a single joint probability from which
all of these context distinct probabilities may be derived. To see this, consider a toy model of
a Pogonomyrmex barbatus colony. Workers can be broadly divided into two groups: midden
workers that remain within the nest and carry out caring for nest mates and maintaining the
wellbeing of the nest, and patrollers, that forage outside the nest, returning when a suitable
food source has been located in order to recruit more patrollers. They do so by inducing
midden workers to shift their task, a transition which is irreversible, at least over the course
of a single day. This role transition may reset overnight, enabling the colony to revert to
a low-energy-expenditure state until the next rich food source is encountered. Patrolling
is energy-intensive; thus, a colony can conserve energy in low-resource environments by
allocating lower numbers of patrollers and then reallocating workers when conditions
warrant.

Consider the following situation: the colony is allowed to behave freely in the absence
of a food source. The colony splits into two task groups: midden workers that remain
within the nest, and patrollers that remain outside the nest searching for food. During this
phase of observation, midden workers are tagged with a small “m”, whereas patrollers are
tagged with a small “p”. The colony is allowed to remain in this state for some time, t. Next,
food is introduced into the environment. Context 1 consists of the period from the end
of the tagging until the first patrollers return to the nest, which marks the start of context
2. This persists until the patrollers leave the next. In reality, patrollers will come and go,
but for simplicity, it is assumed that a fixed percentage, r, of patrollers returns to the nest
and remains until a fixed percentage, k, of midden workers are induced to switch task to
become patrollers. It is further assumed that all of the patrollers leave the nest more or less
simultaneously. That moment marks the end of context 2 and the beginning of context 3.
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Context 3 lasts until the next group of patrollers return to the nest. The period from this
point until the beginning of context 4 provides an additional context, but the probability
structure is more complicated, and for simplicity of presentation will be ignored. Context 4
begins when all of the patrollers return to the nest at the end of the day. Each context is
initiated by a transition within the dynamics of the colony. Therefore, during each context,
the colony process can be considered to be fixed. If we denote the process associated with
context i by Pi, then we can describe the history of the colony as (a)P1 (b)P2 (c)P3 (d)P* (e)P4,
where a,b,c,d,e are random times reflecting the durations of each context. Note that the
timing of these contexts is intrinsic to the colony dynamics. The observer chooses which
context to examine, but they do not cause the context to appear. The observer does not
create reality by their act of observation, nor do they create measurements; they simply
sample the colony and perform a measurement. There are no non-objective or subjective
features here; this reality is classical. Nevertheless, contexts matter.

During each context, one or more random variables can be measured. An ant is
selected at random, and one of three questions is asked: (M/P) Is this ant a midden worker
(1) or patroller (−1)?; (S/D) Did this ant change its allocated task (1) or does it continue
in the same task (−1)?; (I/O) Was this ant inside the nest (1) or outside (−1)? If m is the
number of midden workers and p is the number of patrollers at the start of the observations,
then we obtain the following distributions of workers (S, same; D, different; I, inside; O,
outside):

Context 1
I O

S m p
D 0 0

Context 2
I O

S m − km + rp p − rp
D Km 0

Context 3
I O

S m − km p
D 0 km

Context 4
I O

S m − km + p 0
D km 0

For context 1, the marginal (non-normalized) distributions associated with each of the
questions are: M/P = (m, p), S/D = (m + p, 0), I/O = (m, p). For context 2, we have M/P =
(m − km, p + km), S/D = (m − km + p, km), I/O = (m + rp, p − rp). For context 3, we have
M/P = (m − km, p + km), S/D = (m − km + p, km), I/O = (m − km, p + km). For context 4,
we have M/P = (m − km, p + km), S/D = (m − km + p, km), I/O = (m + p, 0). It is obvious
that these joint distributions are all distinct. Moreover, it is also easy to show that the joint
distributions for contexts 1 and 4 are given by the product of the marginal distributions for
S/D and I/O, but this is not true of contexts 2 and 3. The two random variables, S/D and
I/O, exhibit statistical independence in contexts 1 and 4, but not in contexts 2 and 3, as a
consequence of the transiently irreversible interactions that take place between patrol and
midden workers.
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The evolution of the colony throughout the period of observation is governed by a non-
stationary probability structure. Nevertheless, this probability structure is characterized by
five periods of transience, during each of which the probability is stationary. The generative
and fungible nature of the colony dynamics allows for these periods of transiently stable
behaviour to emerge, the contextual dependence arising due to the effect of the (relatively)
irreversible transitions triggered by interactions between the colony and the environment
(detection of food), and within the colony (between patrollers and midden workers during
recruitment). Overnight, the colony reverts to its original state, enabling these processes to
repeat. These dynamical features give rise to contextual effects, preventing the existence of
a single joint distribution and to varying degrees of statistical independence/dependence,
which may lead to deeper contextuality effects. Indeed, transience plays a fundamental
role in the dynamics of these complex systems [86].

Further analysis is needed to determine whether or not the probabilities across these
four or related contexts can violate the CHSH inequality and exhibit inconsistent coupling.
Preliminary work suggests not, at least in terms of observations of individual attributes.
This is different from the quantum mechanical situation and consistent with the ideas of
Maruyama [87]. However, there are many other aspects to the dynamics of a collective
intelligence which are not reflected within this model, and which may lead to the kinds of
entanglements of agent dynamics which result in inconsistent coupling. Experiments with
natural systems will eventually be necessary to confirm any formal analysis. The fact that
Dzhafarov and colleagues have seen evidence at the psychological level for this form of
contextuality makes it likely that it will be observed at the level of the neurobehavioural
regulatory or cortical systems, and from the discussion above, it is expected that an
analogue will also be observed in at least some collective intelligence systems. It is hoped
that the process algebra, which reflects more of the dynamics of these systems, particularly
their generativity and transience, will prove useful in addressing these questions.

The obvious place to look is at the level of collective decision making, which is not
merely a statistical averaging over individual attributes and actions, but is an emergent
expression of complex interactions between the individual workers and their environment.
One possibility is to search for violations of transitivity in paired choice preferences.
Transitivity over choices is expected for a perfectly rational agent. This means that if
the agent prefers A over B, B over C, and C over D, then it should also prefer A over
D. However, neither individual workers, social insect colonies, nor human beings, are
perfectly rational. A personal example illustrates the possibility. My preference between
two items is made based on two criteria: taste and propensity to cause gastroesophageal
reflux. If the difference in propensity to cause reflux differs by less than 50%, I will select
by taste. If the difference in propensity is greater than 50%, then I will choose the item
with the lower propensity. Consider the following foods described by a pair (taste (0–100),
propensity (0–100)): Double-fudge chocolate ice cream (DFC) (100,100), Fudge chocolate
(FC) (75,75), Chocolate (C) (50,50), and Pistachio (P) (25,25). By my criteria, I will make the
following choices if presented with pairs of items: DFC > FC, FC > C, C > P, but I will also
choose P > DFC, and thus violate transitivity. The reason for the violation is that decisions
are not based upon single attributes but rather on multiple attributes which compete rather
than cooperate. This is a frequent scenario whenever social insects must make decisions,
such as in nest emigration.

If I am perfectly consistent in these choices, then it is easy to construct an experiment
in which paired choices are presented, assigning a value of 1 or −1 to either choice, and
then forming the CHSH formula for the expectation values for the four pairs above, which
will yield its maximal value of 4. Although idealized, this argument does suggest that a
fruitful place to look for contextuality is collective decision making among social insects.

One point that seems repeatedly to be missed in discussions of entanglement, quan-
tum probability, and Bell’s inequalities is the fact that entangled particles are not statistically
independent. Statistically independent processes have joint probabilities given by simple
products. They are independent. Period. Entangled particles are not statistically indepen-
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dent. Their joint probability is given by a quantum state such as 1/2|0 > |1> + 1/2|1 >
|0>, which is not a product such as 1/2(|0> + |1>) + 1/2(|0> + |1>). It does not matter
that in a Bell experiment the two observers Alice and Bob believe that the particles they are
observing are statistically independent—they are not. In the derivation of Bell’s theorem
and all such inequalities, it is also assumed when developing the classical hidden variable
case that the particles involved are statistically independent (as are the hidden variables).
However, entangled particles are not independent. Moreover, within the process alge-
bra framework, the actual occasions that form the foundation for a fundamental particle
are not statistically independent—instead, the local process strengths are informationally
entangled and therefore statistically dependent.

Both collective intelligence systems and neurobehavioural regulatory systems involve
large numbers of agents whose dynamics are complexly intertwined. Thus, they appear
to be ideal candidates for the search for stricter forms of contextuality such as those
determined by violations of the Bell-type inequalities. Collective intelligence systems seem
ideal due to their accessibility and ease of experimental manipulation. Time will tell if
quantum-mechanical-type contextuality will be observed in these systems.

4. Conclusions

The prevailing view regarding contextuality and the violation of the Bell inequalities,
particularly the CHSH inequality, is that it is a uniquely defining feature of the quantum
realm. Classical phenomena are distinguished by being constrained by the limitations of
Kolmogorov probability, and so should never give rise to correlations capable of violating
the CHSH inequality. Quantum phenomena, on the other hand, follow Born probability,
and thus can give rise to correlations which can violate the CHSH inequality. However,
quantum phenomena are themselves said to be constrained; therefore, their degree of
violation of the CHSH inequality is bound by the so-called Cirel’son bound. The region
between the Cirel’son bound and the maximum value, which can be achieved by the
CHSH inequality, appears to be a no-man’s zone, which no naturally occurring phenomena
can ever achieve, somewhat akin to the situation in the theory of computation and the
Turing limit. However, as noted previously, recent studies in human cognition have
demonstrated violations of the CHSH inequality in a manner consistent with quantum
mechanical violations [18,19], and even with violations of the Cirel’son bound [20]. Thus,
violation of CHSH per se is no longer a defining characteristic of quantum systems, but
there is still debate as to its significance ontologically. Some authors [11,81–85] argue that
the fundamental problem lies in a misapplication of Kolmogorov probability theory at
the classical level, thus failing to take contextuality into account. This, in turn, leads to
a misunderstanding of the implications of contextuality, such as non-locality and non-
realism [4]. Others argue that although the CHSH inequality may be violated in both
classical and quantum systems, the reasons for these violations differ, and the classical and
quantum realms remain fundamentally distinct [87].

Human cognition may be relatively easy to study at the psychological level, but an
attempt to understand it at a deep dynamical level, which is necessary in order to un-
derstand the origins of contextuality and CHSH violations, is extraordinarily difficult. It
would be useful if simpler systems could be found whose dynamics are more amenable
to experimental manipulation and analysis. A comparison of neurobehavioral regulatory
systems and collective intelligence systems reveals a broad range of dynamical similarities,
which suggests that collective intelligence systems might yield insights into the relation-
ship between dynamics at the individual (lower, neuronal) level and that at the collective
(higher, psychological) level which would aid in understanding the reasons behind con-
textuality and CHSH violations in decision making. Collective decision making has been
studied in detail within the collective intelligence community, particularly involving social
insects. Social insect colonies, the archetypal example of collective intelligence, are highly
amenable to experimental study. Thus, a demonstration of contextuality in the decision
making of social insect colonies would provide a setting in which to study mechanisms
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of contextuality at the classical level, which may offer insights into the sources of contex-
tuality in neurobehavioural regulatory systems and, ultimately, human decision making.
An understanding of classical contextuality may, in turn, lead to a better understanding
of quantum contextuality. At the very least, it demonstrates that acausal (superluminal)
non-locality is not necessary for contextuality or the violation of the CHSH inequality.

Moving the comparison between the neurobehavioural regulatory systems and collec-
tive intelligence from metaphorical to a rigorous dynamical/structural one requires the
development of new theoretical, mathematical, philosophical, and experimental method-
ologies. Sulis [55–57] reviewed the experimental literature on collective intelligence as
manifested in the behaviour of social insect colonies. On the philosophical side, Minati [88]
provides an excellent overview of systems theoretical ideas related to collective dynamics
and suggests an approach based in constructivism. Trofimova [44,89] developed a related
approach called functional constructivism and has proposed a formal language for its
description and analysis. Sulis [90,91] developed a parallel approach based upon the
idea of process and has proposed a process algebra for its description and analysis (see
Appendix A for details). This has been applied to the case of non-relativistic quantum
mechanics and is now being extended to collective intelligence systems. The hope is that
by using a common language which can describe both classical and quantum systems, the
mathematical duality in their descriptions, which leads to a conceptual duality in their
proposed ontologies, may be eliminated, and the two domains can be coherently unified
within a single conceptual and formal framework.
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Appendix A

Appendix A.1. Process Theory

The core ideas of Whitehead’s Process Theory [5] have been presented elsewhere [14,
90–94], but are summarized here concisely for reference. Described as a philosophy of or-
ganism, Whitehead proposed a metaphysics in which reality consisted of an ever-changing
flux of phenomena organized into coherence by some form of underlying subjectivity. The
subjectivity in Whitehead’s theory is termed “prehension”, which loosely refers to the
incorporation of prior information into the newly emerging elements of reality.

Whitehead called these most primitive elements of reality “actual occasions”. Accord-
ing to Whitehead, a process consists of a sequence of events having a coherent temporal
structure in which relationships between events are considered more fundamental than
the events themselves. Becoming is a fundamental aspect process, whereas being and
substance arise from the actions of process. In process theory, entities are considered to
be generated as opposed to simply existing. Whitehead’s actual occasions are transient
entities: they come into being, exist long enough to pass on whatever information they
represent, and then fade away. There is a subjective, meaning-laden thread linking these
events. The entities that make up our observable reality are emergent from these actual
occasions.

Processes generate the actual occasions that constitute space–time, and as such may
be considered to exist outside of space and time. The idea that quantum phenomena might
possess features which exist outside of space–time has been suggested by Bancal and Gisin
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and colleagues [16], and by Aerts and Sozzo and their colleagues [95]. They can exist either
in a state of activity, in which they generate actual occasions, or they can exist in a state of
inactivity, in which they are merely potentialities for a future state of activity. Transitions
between these states depend upon the flux of actual occasions in the moment and the
interactions among the currently active processes.

Alterations in the characteristics of processes occur through interactions among pro-
cesses, dependent upon their compatibility [96] and triggered by the appearance of specific
actual occasions.

The formal representation of the process in process algebra has been described in detail
elsewhere [90–94], and so will merely be summarized here. Process algebra rests upon
the realization that mathematical structures can be generated with the use of combinatorial
games (in particular, Ehrenfeucht–Fraïssé games) [97–99], together with the fact that the
Hilbert space of NRQM is a reproducing kernel Hilbert space [100]. Given a reproducing
kernel Hilbert space H(X) with base space X, one can find a discrete subspace Y of X
(sampling subspace), and a Hilbert space H(Y) on Y, such that each function in H(Y) can be
lifted to a function in H(X) via interpolation. Interpolation means that if Ψ(z) is a function
in H(X), then for each y ∈ Y there exists an interpolation function Ψy(z) on H(X), such that
Ψ(z) = ∑

y∈Y
Ψ(y)Ψy(z).

One can use either Whittaker–Shannon–Kotel’nikov sinc interpolation theory (for Y
being a discrete lattice), or Fechtinger–Gröchenik interpolation theory may be used in-
stead [100] (for non-uniform spaces satisfying the Beurling density [101]). Processes can be
modeled heuristically as (epistemologically equivalent [90,92]) combinatorial games, which
generates a discrete space of primitive events from which the larger events emerge via
interpolation. The discrete subsets Y are considered to be fundamental, X is an interpretation
selected by an observer, the elements of H(Y) are the ontological state (wave) functions, and
the elements of H(X) are derived (emergent) through an (arbitrary) interpolation procedure.
The important point is that the elements of the space Y are created in distinct generations,
and the value of the function at each point is determined by propagating information
from prior elements by means of a causal propagator, K. Thus, Ψ(y) = Σi K(y,i) Ψ(i), where
the sum is over immediately prior elements i. Probabilities are given by the Born rule,
Ψ*(y)Ψ(y) = Σij K(y,i)K(y,j) Ψ*(i)Ψ(j), which clearly has a non-Kolmogorov structure.

The discrete subsets are called causal tapestries and their individual points are called
informons. A detailed description of informons is given in [90–94], and the interested reader
is referred there because the details are not essential to the discussion in this paper.

A fundamental tenet of this model is that a process does not change state unless
in interaction with other compatible processes. The concept of compatibility between
interacting complex systems was first proposed by Trofimova [96]. Compatibility Ξ(P,M)
is conjectured to be a function of fixed factors (e.g., mass, charge, coupling constants)
and of the local compatibilities. The probability of an interaction taking place Π(P,M) is
conjectured to be a function of the compatibility, Π(P,M) = χ(Ξ(P,M). The precise form of
these functions depends upon the particular case, but it can be expected to depend, in part,
on the local process strength Ψ*(y)Ψ(y).

Appendix A.2. Process Algebra

Process algebra is the formal language for describing interactions between processes.
There are additional technical aspects such as the process covering map and the

configuration space covering map, whose details can be found elsewhere [90–94]
An important concept is that of epistemological equivalence. Epistemological equivalence

of two processes, P and Q, means that their global Hilbert space interpretations, ΨP(z),
ΨQ(z), respectively, are equal, i.e., ΨP(z) = ΨQ(z).

If two processes are epistemologically equivalent, then the specifics of generation do
not matter. They generate the same emergent state functions and therefore will yield the
same predictions. This is useful because processes can be modeled heuristically based
upon mathematical convenience, just so long as they are epistemologically equivalent to
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any real processes. In particular, one can use processes based upon combinatorial games
which have particularly valuable characteristics [97–99].

Processes may influence one another in two different ways. The first (coupling) involves
the generation of individual informons, their relative timing, as well as the sources of
information which enter their generation. Coupling results in epistemologically equivalent
processes; thus, properties are unaltered. The second (interaction) involves the activation or
inactivation of individual processes and the creation of new processes. Epistemological
equivalence is broken, and properties are altered.

Two processes, P1, P2, may be independent, meaning that neither constrains the
actions of the other in any way. This relationship is denoted simply by the comma “,”.
Compound processes (R > 1) can be formed from primitive processes (R = 1) by various
coupling operations. A coupling affects timing and information flow. Two processes may
generate informons concurrently (products) during each round, or sequentially (sums), with
only one process generating informons during a given round. Information from either or
both processes may enter into the generation of a given informon (free), or information
incorporated into an informon by a process may only come from informons previously
generated by that process (exclusive). This leads to four possible operators:

1. Free sequential (free sum): P1⊕̂P2;
2. Exclusive sequential (exclusive sum): P1 ⊕ P2;
3. Free concurrent (free product): P1⊗̂P2;
4. Exclusive concurrent (exclusive product): P1 ⊗ P2.

The operation of concatenation is used to denote processes that act in successive
generation cycles. Thus, P1 · P2 (or simply P1P2) indicates that P1 acts during the first
generation cycle, whereas P2 acts during the second generation cycle.

Interactions break epistemological equivalence, and can do so in myriad ways. Inter-
actions between processes may activate an inactive process or inactivate an active process.
In addition, an interaction among processes P1, P2, . . . , Pn may generate a new process,
P, which can be described in functional form as F(P1, P2, . . . , Pn) = P. If Θ(P1, P2, . . . ,
Pn) describes a coupling among P1, P2, . . . , Pn, then the functional relationship may be
described using the operation of concatenation, as Θ(P1, P2, . . . , Pn) P.

There are potentially so many different types of interactions; therefore, a set of generic
operators comparable to those above are used to indicate the presence of an interaction
with the specifics to be spelled out if known. Thus, there are:

1. Free sequential (free interactive sum);
2. Exclusive sequential (exclusive interactive sum);
3. Free concurrent (free interactive product);
4. Exclusive concurrent (exclusive product).

Independence, sums, and products are commutative, associative, and distributive
operations. Concatenation is non-commutative and non-associative in general. The zero
process, O, is the process that does nothing.

The basic rules for applying these operations in combining processes are the following:
(1) The free sum is only used for single systems and combining states which possess

identical property sets (pure states);
(2) The exclusive sum is used for single systems and combining states which possess

distinct property sets (mixed states);
(3) The free product is used for multiple systems which possess distinct characters

(scalar, spinorial, vectorial, and so on) such as coupling a boson and a fermion. It is unclear
whether two bosons might couple via a free product;

(4) The exclusive product is used for multiple systems which possess the same charac-
ter, such as coupling two bosons or two fermions.
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Appendix B

Taken from [4]. Dzhafarov, Zhang and Kujala provide a concise summary of the
Contextuality by Default model in [82]. Following the notation in that paper, each random
variable is associated with the quantity, q, being measured and the context, a, within which
the measurement is made, and denoted, Ra

q. Consider two measurements, q,q′, and two
contexts, a,b. For a fixed context, a, the pair Ra

q, Ra
q′ is termed bunch, representing the

collection of measurements associated with a specific context. It is reasonable to believe
that such a pair is jointly distributed. For a fixed measurement, q, the pair Ra

q, Rb
q is termed

a connection for q.
The most basic form of contextuality occurs when no joint distribution can be found

for a connection. In such a case, they are said to be inconsistently connected. This is the
situation of Contextuality by Default. Dzhafarov considers this to be the most trivial form
of contextuality because it is so ubiquitous. Dzhafarov has developed a more restricted
notion of contextuality, in line with contextuality in physics. He considers couplings
between bunches. For example, given two bunches, Ra

q, Ra
q′ and Rb

q, Rb
q′ , a coupling is a

set of jointly distributed random variables (A,B,X,Y), subject to certain constraints, such
that (A,B) is distributed as Ra

q, Ra
q′ and (X,Y) is distributed as Rb

q, Rb
q′ . The constraints

involve A,X and B,Y, which correspond to measurements of q and q′, respectively. A
measurement, q, is considered to be context-independent if, among all couplings (A,B,X,Y),
we have Pr(A 6= X) = 0. It can be shown that such a coupling may not exist even if the
system is consistently connected.

Now, considering all couplings (A,X) for just the connection Ra
q, Rb

q′ , the minimal
value m′ can be found for Pr(A 6= X). Then, considering the global coupling (A,B,X,Y), the
minimal value m for Pr(A 6= X) can again be found. If m = m′, the system is non-contextual,
and if m > m′, then the system is contextual. This form of contextuality is analogous to that
found in physics and gives rise to similar types of inequalities.
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