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Abstract: We analyze possible connections between quantum-inspired classifications and support
vector machines. Quantum state discrimination and optimal quantum measurement are useful
tools for classification problems. In order to use these tools, feature vectors have to be encoded in
quantum states represented by density operators. Classification algorithms inspired by quantum state
discrimination and implemented on classic computers have been recently proposed. We focus on
the implementation of a known quantum-inspired classifier based on Helstrom state discrimination
showing its connection with support vector machines and how to make the classification more
efficient in terms of space and time acting on quantum encoding. In some cases, traditional methods
provide better results. Moreover, we discuss the quantum-inspired nearest mean classification.

Keywords: quantum state discrimination; optimal quantum measurement; support vector machine;

machine learning

1. Introduction

Support vector machines are becoming popular in a wide variety of applications [1].
They are supervised learning models with associated algorithms (such as sub-gradient
descent and coordinate descent) that analyze data for classification [2]. A support vector
machine (SVM, for short) learns by examples to assign labels to feature vectors. An object
with a feature vector is treated through a kernel function as a point in a larger space and
the goal is to find the maximum-margin separating hyperplanes that allow one to partition
the space and divide the points into classes to which labels are assigned. The logic behind
the kernel function of an SVM and the kernel methods in general turns out to be rather
similar to what is seen in quantum computing when one performs an encoding of classical
data into quantum states. In fact, quantum computing provides implicit computations
in high-dimensional Hilbert spaces by means of the physical manipulation of quantum
systems, as well as kernel methods provide implicit computation in a higher dimensional
feature space by means of the efficient representation of inputs. The interpretation of
quantum encodings as feature maps with relevance in quantum machine learning is well-
established [3,4], and it is one of the crucial points of this work. In addition to the general
connection between kernel methods and quantum computing, there are the expressive
quantum approaches to SVM in terms of implementations of this model on quantum
computers. For instance, in [5], the authors propose a discretized SVM whose training
is performed applying the Grover algorithm. The celebrated proposal of quantum SVM
by Rebentrost, Mohseni and Lloyd [6] is based on data retrieval from a quantum random
access memory, the quantum phase estimation algorithm and the SWAP test. The resulting
quantum algorithm allows a direct implementation of polynomial kernels in terms of tensor
products of the quantum states encoding the training vectors. Furthermore, a quantum
implementation of SVM on a quantum annealer has been recently proposed [7].

Quantum structures can be used to devise novel machine learning algorithms that do
not require quantum hardware in the sense that the mathematical formalism of quantum
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mechanics is applied to deal with data that are managed by classical computers. The
so-called quantum-inspired machine learning is based on particular kinds of information
storing and processing defined by means of objects from the quantum formalism that do
not necessarily represent physical quantum systems. In the context of quantum-inspired
machine learning, SVM has been studied [8], and the present work focuses on a quantum-
inspired classification algorithm that turns out to be similar to an SVM.

The general idea of classification algorithms based on discrimination of quantum
states is also supported by recent experimental works on quantum state classification based
on classical machine learning methods, such as the proposals in [9-13], for instance. In [14],
the authors demonstrate a machine learning approach to construct a classifier of quantum
states training a neural network. In [15], convolutional neural networks and principal
component analysis are applied to classify polarization patterns in quantum optics.

An interesting quantum-inspired binary classification algorithm has been introduced
in [16] in terms of a nearest mean classifier based on trace distance between density opera-
tors encoding feature vectors. To handle multi-class with this binary classifier, there are
different techniques: one against one, which constructs a classifier for each pair of classes, one
against all, which builds one per class, hierarchical classification, which creates a tree, where
the leaves correspond with the classes. Another quantum-inspired supervised machine
learning algorithm for multi-class classification based on so-called pretty good measurement
has been proposed in [17], generalizing the Helstrom quantum state discrimination [18]
that can be used for binary classification. Classification accuracy of this quantum-inspired
multi-class classifier can be improved by increasing the number of copies of the quantum
state that encodes the feature vector, at the cost of increasing the computational space
and time.

In this paper, we analyze possible connections between support vector machines and
quantum-inspired classifications using a geometric approach. In particular, considering
a quantum encoding of classical data in terms of Bloch vectors of density operators, we
observe that the execution of the Helstrom classifier is analogous to an SVM with a linear
kernel. In Section 2, we give a short introduction to some quantum fundamentals that
are relevant in the present work, such as the Bloch representation for quantum states.
Moreover, we review the application of Helstrom state discrimination for binary classi-
fication. In Section 3, we analyze quantum state discrimination for binary classification
encoding data into Bloch vectors, some empirical results in this regard and the code in
Mathematica are presented in Appendix A. In particular, we highlight the SVM-like be-
havior of the Helstrom classification for a two-feature dataset considering the encoding
in a bi-dimensional Hilbert space and an encoding into a space of enlarged dimension. In
Section 4, we discuss the general strategy of implementing a nearest mean classifier based
on an operator distance between quantum states such as trace distance and Bures distance.
In Section 5, we present some numerical results obtained by the implementation of the
Helstrom classifier. In Section 6, we draw some final comments.

2. Basics

The set of density matrices on the (finite-dimensional) Hilbert space H is given by
S(H) = {p € BY(H) : trp = 1}, where B*(H) is the set of positive semidefinite opera-
tors on H. The set G(H) is convex and its extreme elements, the pure states, are rank-1
orthogonal projectors. A pure state has general form p = |¢) (|, and it can then be directly
identified with the unit vector |i) € H up to a phase factor.

The bases of the real space of Hermitian matrices on C? can be used to decompose
density matrices associated with states of a quantum system described in a d-dimensional
Hilbert space. A fundamental basis for qubits (dim H = 2) is formed by the three Pauli
matrices and the 2 x 2 identity matrix. In this case, any density matrix can be represented
by a three-dimensional vector, the Bloch vector, that lies within the unit ball in R3 whose
boundary is the Bloch sphere. The points on the spherical surface are in bijective correspon-
dence with the pure states. In higher dimensions, the set of quantum states is a convex



Quantum Rep. 2021, 3 484

body with a much more complicated geometry and it is no longer simply represented
as a unit ball. In general, for any j, k,/ such that 1 < j < d2—-1,0<k<1<d-—1,the
generalized Pauli matrices o; on C? can be defined as follows:

(] et (] - e

oy = { =il ) (el |+l ) (| 95 < <a(a— 1) and j = LEDPOD 4 -2y, (1)
2 I-1|_k
D) (Zkzo‘ﬂ>

where % denotes the canonical basis of C?. The generalized Pauli ma-
=1/ fk=0,.,d-1

. d(d-1) . . d(d-1) : . . .
particular, =—— matrices are symmetric, —— matrices are antisymmetric, d — 1 matrices
are diagonal. Together with the d x d identity matrix I;, the generalized Pauli matrices
form an orthogonal (the orthogonality is with respect to the Hilbert-Schmidt product
(A, B)ys = tr(ATB)) basis of the real space of d x d Hermitian matrices.

Let p be a density operator on C?. The expansion of p with respect to the orthogonal
basis {I,07:1<j<d>—1}is:

1 d(d—1) %=t
p=(mr T L o)

where b](p) =,/ ﬁtr(p 0j) € R. The coordinates bl = (bip), ceey bé’?_l) represent the

Bloch vector associated to p with respect to the basis {Id, 0j 1<) < dz — 1}, which lies
within the hypersphere of radius 1. For d > 2, the points contained in the unit hypersphere

in R*~1 arenotin bijective correspondence with quantum states on C? such as in the case of
a single qubit. However, any vector within the closed ball of radius % gives rise to a density
operator. From the physical viewpoint, the Bloch vector has real components that can be
expressed as expectation values of measurable quantities. For d = 3, the generalized Pauli
matrices are the Gell-Mann matrices and the Bloch vector can be expressed as expectation
values of spin 1 operators.

A complex vector can be encoded into a density matrix. For instance, a quantum
encoding (the amplitude encoding) is given by:

. B 1 n—1 1
C 9xn—>x>—||x|2_|_l<iz(:)xl|z>+|n>> €H, (2)

where {|i)}i—0,, is the computational basis of the (1 + 1)-dimensional Hilbert space H,
identified as the standard basis of C"*!. The map defined in (2) encodes x into the pure
state px = |x) (x|, the additional component of |x) stores the norm of x. Generally speaking,
a quantum encoding is any procedure to encode classical information (e.g., a list of symbols)
into quantum states. In this paper, we consider encodings of vectors in C" and R" into
density matrices on a Hilbert space H whose dimension depends on .

In [17], there is the proposal of a quantum-inspired classification algorithm based
on a generalization of the Helstrom measurement, the so-called Pretty Good measurement,
for quantum state discrimination. Let us focus on the case of binary classification of
n-dimensional complex feature vectors; the algorithm is based on the following three
ingredients: (1) a quantum encoding of the feature vectors C" 3 x — px € S(H); (2) the
construction of the quantum centroids of the two classes C; and C; of training points:

Pi = @ Z Ox i=1,2; 3)
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(3) application of the Helstrom discrimination on the two quantum centroids in order to
assign a label to a new data instance.

Let us briefly introduce the notion of quantum state discrimination that is central
in the present work. Given a set of arbitrary quantum states with respective a priori
probabilities R = {(p1, p1), -, (0N, pPN) }, in general there is no measurement process that
discriminates the states without errors. More formally, there does not exist a collection of
effects E = {E;};—1,..,n C B (H) such that le\i 1 Ei = I satisfying the following property:
tr(E;jp;) = 0 wheni # jforalli,j = 1,.., N. In some particular cases, the states can be ex-
actly discriminated, for example if we have a set of orthogonal pure states {|¢1), ..., |¢n) },
we can discriminate them without errors by means of the corresponding von Neumann
measurement { ;) (¢;| }i—1 . N. Returning to the general set R, the probability of a success-
ful state discrimination performing the measurement E is:

N
Pe(R) = ) pitr(E;p;). 4)
i=1

An interesting and useful task is finding the optimal measurement that maximizes the
probability (4). In [18], the author presents a complete characterization of the optimal
measurement E,p; for R = {(p1,p1), (02,p2)}. Eopt can be constructed as follows: Let
N 1= p1p1 — pap2 be the Helstrom observable whose positive and negative eigenvalues are,
respectively, collected in the sets D and D_. Consider the two orthogonal projectors:

Pi:= Y P, ©)

AED L

where P, projects onto the eigenspace of A. The measurement E, ¢ : = {P;, P_ } maximizes
the probability (4) that attains the Helstrom bound hy,(p1, p2) = pitr(P+p1) + patr(P—p2).
Helstrom quantum state discrimination can be used to implement a binary classifier [17].
Let {(x1,¥1), .., (XM, ym) } be a training set with y; € {1,2} Vi =1, ..., M. Once a quantum
encoding C" 3 x — px € &(H) has been selected, one can construct the quantum centroids
p1 and pp as in (3) of the two classes C1, = {x; : y; = 1,2}. Let { P{, P_} be the Helstrom
measurement defined by the set R = {(p1, p1), (02, p2) }, where the probabilities attached

. C
to the centroids are p1, = %

for the discrimination of the two quantum centroids to assign the label y to a new data
instance x, encoded into the state py, as follows:

The Helstrom classifier applies the optimal measurement

[ 1 if tr(Pypx) > tr(P_px)
y(x) = { 2 otherwise ©)

A strategy to increase the accuracy in classification is given by the construction of the tensor
product of k copies of the quantum centroids p%‘ enlarging the Hilbert space where data

are encoded. The corresponding Helstrom measurement is { P, P®¥}, and the Helstrom
bound satisfies [17]:

my(of*,05%) <y (", 05 ) ke, @)

Enlarging the Hilbert space of the quantum encoding, one increases the Helstrom bound
obtaining a more accurate classifier. The computational cost is evident; however, in the
next section, we observe that in the case of real input vectors, the space can be enlarged,
saving time and space by means of the encoding into Bloch vectors.

3. Geometric Approach to Quantum-Inspired Classifications

In [17], a real vector x € R¥~1 is encoded, as shown above, in a projector operator
px of a Hilbert space C? represented by an d x d real symmetric matrix, where d > 2.
For simplicity, we consider an input vector [x1, x] € R? and the corresponding projector
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operator p[y, ,, On C3. By easy computations, one can see that the Bloch vector of Olx1,%]
has null components:

1 X3+ x5 —2
p12) = o [2113,2x1,242,0,0,0, 5% — 3, L2, 8
1+ x% T x% 142 1 2 1 2 \/g ( )

Instead of using a matrix with nine real elements, memory occupation can be improved by
considering only the non-zero components of the Bloch vector. In general, the technique
of removing the components that are zero or repeated several times allows reducing the
space and the calculation time considering only the significant values that allow to carry
out the classification.

Quantum-inspired classifications are similar to support vector machines that implicitly
map the input space into high-dimensional feature space using kernel functions, where the
maximal separating margins are constructed. In this case, the nonlinear explicit injective
function ¢ : R? — R® can be defined as follows:

1

- 9
xF+x3+1 ®

2 2
-2
p(x, ) 1= |

[lexz, 2x1,2x7,x] — X3,
V3

From a geometric point of view, feature vectors are indeed points on the surface of a
hyper-hemisphere. The corresponding elements to the quantum centroids p1, o, are the
centroids of the feature vectors:

1 .
X = = Y oox)  i=12 (10)
| l| xeC;

In general, such centroids are points inside the hypersphere and therefore they do not have
an inverse image.

The Helstrom classifier can also be applied in a smaller space using the following
encoder from R? to density operators of C?:

1 3
Olxy,x0] = ) (IZ + Z‘i bjU'j>, (11)
]:

where the Bloch vector b = ¢([x1,x2]) € R3 and ¢([x1, x2]) := [x1,x2,1]. As

1
VT
discussed in Section 5, the Helstrom classifier gives even less accurate results on the training
set as expected because the feature space is smaller than the previous one. In this particular
case, quantum centroids are points inside the Bloch sphere of a qubit that correspond to
density operators.

An interesting question suggested in [17] is whether classification accuracy can be
improved by increasing the dimension of the state space of density matrices that represent
input vectors. Improving accuracy providing # copies of centroids in quantum-inspired
classifications has a strong impact in terms of computational space (from dimension d — 1
to d") and time. Following the geometric approach, considering the significant values that
allow to carry out the classification, the explicit function ¢ : R? — R? for two copies can
be defined as follows:

1 2.2 5.2 2 2
@([x1,x2]) := ( {in’xz,2x%,2x1x2,2x1x2,2x1,2x1x§,2x1x2,2x1x2,2x1,2x§’,

x2 4 x5 +1)2
303 +8-2) 82341

V3 ' V6 '
xf—4xy+ 23 (253 +1) x4+ xF —5x3 +2x3x5 + x5 x4+ x5+ x5+ x3(2x5 —5)

\/ﬁ 7 \/ﬁ 7 \/ﬁ 7

2x§,2x2, x%(xl —x2)(x1 + x2),
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xf—6x3+ x5 +2x3(x3+1) 1

27 "6

In particular, removing null and multiple entries, we consider only 20 values instead of 81

for two copies, 51 values instead of 729 for three copies and so on. However, one must also

take into account high-precision numbers and track the propagation of the numerical error.
The gain in accuracy seems marginal already from three copies.

In Section 5, we will show some numerical results obtained by the implementation of
the Helstrom classifier and, in particular, the close analogy between this quantum-inspired
method and the SVM with linear kernel. A natural limitation of Helstrom classification
arises in the case of a training set where the centroids of the two classes coincide, the
Helstrom classifier is clearly useless because it is not able to perform a corresponding state
discrimination. In the same situation, there are effective classical classification methods
such as Random Forest, Naive Bayes classifier and Nearest Neighbor.

(< +33 - 2)(:F + 3 +4)]. (12)

4. Quantum-Inspired Nearest Mean Classifications

In [16], a quantum version of the nearest mean classifier was shown making use of the
inverse of the stereographic projection as encoder:

2

-1 d—1
7 R SX - ———————
a—1
yYrlx?4+1

d—1.,2
: - —1
[xl,...,xd,l, 221:171} € Sdﬁl. (13)

In the case x € R?, the lowest dimensional quantum encoding is obviously in C?; in
particular, py is given by the density matrix identified by the Bloch vector 77! (x), that is:

1 x%—i—x% X1 —ixp
= . . 14
Px x%—i—x%—i—l(xl—l—zxz 1 (14)

The state px is pure, i.e., a projector, as 771 (x) lies on the surface of the Bloch sphere.
In Appendix A, the encoding x — px defined by (14), in an arbitrary dimension, is realized
by the function SV MEncoder|x, type] with type = 2. For binary classification, in [16], the
centroids of the two classes are calculated in the feature space and then encoded into
density matrices according to (14). Given a test point encoded into a density matrix, the
classifier appends it to the nearest centroid with respect to the normalized trace distance:

_ 2
dtr(Px/Py) = \/ dtr(Px/ Py)r (15)

(1—bx,)(1—y,)

where by, and by, are the Bloch coefficients with respect to the Pauli matrix 03 of px and py
and dy, (ox, py) = 3tr(|ox — py|). One can easily verify that:

dir(px, py) = de(x,y), (16)

where df is the standard Euclidean distance. Therefore a quantum-inspired nearest mean
classifier can be defined by the encoding given in (14) and by the evaluation of the trace
distance between density operators. In [16], experimental results on the performances of
such a quantum-inspired classifier are presented and compared to the classical nearest
mean classifier with impressive results in terms of accuracy.

As illustrated in the previous section, in order to improve data separation, the input
space can be mapped into a higher dimensional feature space by means of a kernel trick.
It is also possible to reduce the computational space from R8 to R in this case with the
following explicit function ¢ : R — R>:

2
¢([x1,x2]) = ( [4x1x2,2x1 (x% + x% — 1),2x2(x% + x% -1),

X} 423 +1)2
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2 2 4 4 2.2
Zx% _ 2x%, dx7 +4xy; — x7 — x5 —2x7x5 — 1
V3

In Appendix A, we implement the higher dimensional encoding induced by ¢ calling the
function BlochVector[SV MEncoder|x, 2]] and removing the null components.

The following distances, respectively, the Hilbert-Schimidt distance, trace distance,
Bures distance and Hellinger distance, are often considered and can be used for nearest

mean classification:
dus(p1,02) = £/ trlp1 — p2|%,

1
di(p1,02) = Etr\m —p2l,

dg(p1,02) = \/2 —2tr\/\/p1p2+/P1,

dre(p1, p2) = \/2 — 2tr\/p1y/p2,

where |A| = VA'A is the modulus of the operator A. The measures induce different
geometries. The set of states of a qubit is equivalent to the Bloch sphere for the Hilbert-
Schmidt distance djs and for the trace distance dyy, and to the Uhlmann hemisphere for the
Bures distance dp. For higher dimensions, the geometries induced by the Hilbert-Schmidt
distance and the trace distance also differ. The Bures distance and trace distance are useful
measures for quantifying the states distinguishability. The Bures distance is an optimized
Kullback-Leibler distance between output statistics over all quantum measurements. The
trace distance is a function of the probability to successfully discriminate two states in a
single measurement optimized over all quantum measurements. As mentioned above,
in the bi-dimensional case there is the equivalence of the normalized trace distance and
the Euclidean distance (16). Moreover, one can see that the trace distance between pure
states is equal to half of the Euclidean distance between the respective Bloch vectors.
Therefore, in the Mathematica code of Appendix B, the function CentroidClassify for
nearest mean classification based on trace distance is equivalently defined by means of the
standard norm.

Within the paradigm of quantum-inspired classification, the Bures distance and the
Hellinger distance can be used to define other classifiers that evaluate these distances
for the nearest mean classification. Let us consider a binary classification problem and
the quantum centroids (3) of the two classes. We can define a classification algorithm
that evaluates the Bures distance between the pure quantum state encoding a test point
and the quantum centroids that are not pure in general. The fidelity between density
operators, defined as F(p1,02) = (tr \/ﬁpz\/ﬂ)Z, reduces to F(p1,02) = (P1|02|91)
when p; = |¢1) (1]. Therefore, the Bures distance between the pure state pz encoding the
test point X and the quantum centroid p; is:

J (17)

1 . .
N ifo_o L 1™ . = (%) D)
dB(px,pl)—\/Z 2\/d(1+(d 1)b™ . b )_DB(b b ) (18)

where b™ and b(!) are the Bloch vectors of px and p;, respectively, and d is the dimension
of the Hilbert space of the quantum encoding. The formula (18) can be directly derived
from tr(p102) = %(1 + (d —1)bM - @), which is an immediate consequence of the fact
that the generalized Pauli matrices are traceless and satisfy tr(c;o;) = 24;;. An example of
the nearest mean classifier based on the Bures distance can be defined by Algorithm 1.
The quantum encodings at line 1 and line 3 of Algorithm 1 can be realized by the
function SV MEncoder|x, 1], defined in Appendix A, for instance. At line 5, the quantum
centroids are constructed according to (3); alternatively, the classifier can calculate the
centroids in the feature space from the Bloch vectors of the quantum states encoding the
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training points like in (10), where in general, the resulting centroid vectors X; are not the
Bloch vectors of density operators.

Algorithm 1: Quantum-inspired nearest mean classifier based on Bures distance.
Input :Two classes C; and C; of training points, unlabelled point %
Result :Label y of X
encode X into a pure state px;
foreach x € C; orx € C, do
‘ encode x into a pure state p;
end

B N =

5 construct the quantum centroids p; = ‘é‘_‘ Yxec,pxfori=1,2;
6 b%) « BlochVector|og];

7 bl « BlochVector[p;] fori = 1,2;

s if Dy (b@),b(l)) < Dg <b<5‘>,b(2>> then

9 ‘ returny =1
10 else
11 ‘ return y = 2
12 end

5. Numerical Results and Discussion

We focus on some numerical results obtained running the considered quantum-
inspired classifiers on some datasets. In Appendix A, there is the Mathematica code
of the tests on the Helstrom classifier, and in Appendix B, there is the Mathematica code
of the implementation of the quantum-inspired NMC (the code is also available at the
following repository: github.com/leporini/classification). As a benchmark for testing the
Helstrom classifier, we applied the DB-SCAN clustering algorithm [19] to a moons dataset,
obtaining the classification of Figure 1.

The first test provides the quantum encoding of the bi-dimensional input vectors
into a five-dimensional space according to (9) and (10) and the execution of the Helstrom
classifier on the moons dataset. The obtained decision boundary and the misclassified
points are shown in Figure 2. The same classification task has been tackled by a classical
SVM with a linear kernel, which returns the decision line and the support vectors depicted
in Figure 3. The comparison of the outputs reveals that the execution of the Helstrom
classifier returns the decision boundary of an SVM with the linear kernel.
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Figure 1. DBSCAN classification.
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Figure 2. Helstrom classification with highlighted points classified incorrectly.

Figure 3. SVM with linear kernel behaves similarly to the Helstrom method.

The considered test on the performance of the Helstrom classifier over the moons
dataset can be repeated considering a smaller space encoding the data points into density
operators of a qubit according to (11). Since we are considering a feature map ¢ : R? — R3,
which represents data in a lower dimensional space, the classifier is less accurate as
expected. The accuracy of the Helstrom classifier, over the training set, in the two cases is:

AccHé! = 0.8455, Acct! = 0.503. (19)

Accuracy is sensitive to the dimension, as shown in Figure 4.
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200 400 600 800

Figure 4. Accuracy of the Helstrom classifier as a function of the dimension of the space.

In Figure 5, there is the decision boundary found by the Helstrom classifier, with
misclassified points, in the lowest dimensional case. Figure 6 shows the output of an SVM
with a linear kernel, and its behavior is confirmed as similar to the Helstrom classifier.

Figure 5. Helstrom method applied to the smallest space with highlighted points classified incorrectly.
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Figure 6. SVM with linear kernel behaves similarly to the Helstrom method in the smallest space.

In the case of a training set where the centroids of the two classes coincide, the
Helstrom classifier does not work because it is not able to perform a state discrimination.
Let us consider the dataset represented in Figure 7 with coinciding centroids; on the one
hand, the Hesltrom classifier is useless, and on the other hand, RandomForest, Naive Bayes
classifier, and Nearest Neighbors present the following high accuracies on the training set:

cc®F =0975,  AccMB=0955,  AccNN =0.985. (20)

Considering a dataset with distinguishable but close centroids, the performance of the
Helstrom classifier is poor with respect to existing classical methods. For example, let
us consider the training set represented in Figure 8. The accuracies of the Helstrom
classifier, the Random Forest and the Nearest Neighbors can be compared, observing that
the performances of the classical algorithms are definitely better in terms of the correct
classification:

Acc =073,  AccRF =098,  AccNN =0.85. (21)

In Figure 9, there are the misclassified points by the Helstrom classifier.

i)
T

0/

2 1 0 . 2
Figure 7. Helstrom classification is useless with the same centroids, while some classical meth-
ods work.
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Figure 8. Helstrom classification is useless with centroids close to each other, while some classical
methods work.

a0 -

-&0

= — I . o I [ I
-40 =20 0 20 40

Figure 9. Helstrom method with highlighted points classified incorrectly.

The numerical results presented in this section reveal the connection between the
Helstrom classifier and SVM with linear kernel; in particular, one can observe that different
strategies of quantum encoding by means of Bloch vectors of density operators correspond
to different kernel tricks.

In Section 4, we showed that from a geometric viewpoint, a quantum-inspired nearest
mean classifier based on the trace distance between density operators can be equivalently
implemented considering the Euclidean distance between Bloch vectors. We considered
both the implementations of this quantum-inspired NMC, finding the exact equivalence in
terms of accuracy on the moons dataset:

AccPersity — AccBloch — 865, (22)

AccPersity s the accuracy of the NMC based on the quantum encoding of data points
into density operators according to (14) and the calculation of trace distances within this
representation. AccP°" is the accuracy of the NMC, which encodes the data points into
Bloch vectors by means of the inverse of the stereographic projection and evaluates the
Euclidean distance in the Bloch feature space.
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6. Conclusions

In this paper, we analyzed some methods of quantum-inspired classification, high-
lighting a connection with support vector machines. After an introduction on the Bloch
representation of quantum states in an arbitrary dimension, we considered the Helstrom
quantum state discrimination applied to binary classification (the Helstrom classifier), ob-
serving that its execution is similar to an SVM with linear kernel. In particular, adopting
a geometric viewpoint, we described how quantum encodings of feature vectors can be
used to implement a kernel trick, improving the quality of classification. Moreover, if
one considers multiple copies of the encoding quantum states to map real feature vectors
into a space with higher dimensions (as performed in [6] to obtain a polynomial kernel
for a quantum SVM with an exponential cost of space resources), we showed that the
computational cost can be calmed down, deleting the redundancies in the resulting Bloch
vectors. In this way, in quantum-inspired classification, one can define a nonlinear injective
function to perform a kernel trick saving space and time.

We presented some experimental results on the moons dataset to exhibit the behavior
of the Helstrom classifier as an SVM with a linear kernel. With this dataset, we have
enlarged the dimension of the Hilbert space, changing the quantum encoding within the
Bloch representation of the density operators. On the other hand, we gave a couple of
examples where the Helstrom classifier does not work due to the difficult discrimination of
the quantum states representing the centroids of the classes.

We also focused on quantum-inspired nearest mean classification that is based on the
computation of operator distances between density matrices encodings feature vectors.
For instance, the classifier can evaluate the trace distance or the Bures distance among
encoding quantum states. We considered the classifier with trace distance showing that
it is equivalent (in terms of classification accuracy) to the “geometric” classifier, which
evaluates the Euclidean distance between Bloch vectors. Then, we proposed an algorithm
based on Bures distance, which can be evaluated directly in terms of Bloch vectors. An
empirical study on this quantum-inspired classifier is a matter for future works.

As a general consideration emerging from the present work, we point out that the
geometric approach considering the Bloch representation of density matrices is suitable
to describe quantum-inspired classification. This approach reveals a connection between
the Helstrom classifier based on quantum state discrimination and SVM. The geometric
viewpoint seems to be fruitful also to define quantum-inspired nearest mean classifiers.

The present work opens possible directions of investigation such as the full char-
acterization of the kernel of the Helstrom classifier in order to complete the description
of quantum state discrimination as the execution of a support vector machine. More in
general, an interesting topic could be a satisfying geometric analysis of quantum-inspired
machine learning algorithms beyond classifiers since the present paper suggests that the
geometry of quantum states offers a novel machinery to deal with data.
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Appendix A. Mathematica Notebook for Quantum-Inspired Classifications
https://sites.pitt.edu/~tabakin/QDENSITY (accessed on 28 August 2021).

Needs[“QDENSITYQdensity”, “C:\ \Qdensity.m"];

KetBra:usage = "| 7% ) (741 | of C?, where x,y€ {0,...,d-1} and |0),| 72 ),...,|1) are the elements of the canonical basis of C?*;

KetBra[d_, x_ y_|:=SparseArray[{{x + 1L,y + 1} — 1}, {d,d}];

BlochVector::usage = "BlochVector|[p], where p is a density operator of C? and d>2.

\n\t Returns the corresponding Bloch vector beR?-1w;

BlochVector([p_]:=Block([{d, sigma},

d = Dimensions|p][[2]];

sigma = {};

Do[AppendTo|[sigma, KetBra[d, I, k] + KetBra[d, k,1]], {1,0,d — 2}, {k,1 + 1,d — 1}];

Do[AppendTo[sigma, —iKetBra[d, k, I] + iKetBra[d, k]|, {1,0,d — 2}, {k,1 + 1,d — 1}];

Do [AppendTo [sigma, \/%(Sum[KetBra[d, k k], {k,0,1 — 1}] — IKetBrald, ], l])] AL1,d- 1}];

Tr[p#]&/@sigma];

BlochVectorInverse::usage = "BlochVectorInverse[b]

\n\t Returns the density operator of C? of the Bloch vector beR%~1.

\n\t Not any vector b of the unit hypershpere gives rise a density operator,

since the output is not a semi-definite positive operator (i.e. there exists a negative eigenvalue),

\n\t but all vectors of length <2 give rise a density operator.";

BlochVectorInverse[b_]:=Block[{d, sigma, p},

d = Ceiling [ /Tength[b] +1;

sigma = {};

Do[AppendTo|[sigma, KetBra[d, I, k| + KetBra[d, k,1]], {1,0,d — 2}, {k,1 + 1,d — 1}];

Do[AppendTo|[sigma, —iKetBrald, k, I| + iKetBra[d, 1, k]], {1,0,d — 2}, {k,1 + 1,d — 1}];

Do AppendTo sigma, /Ty (Sum|KetBrald, k, k], {k,0,1 — 1}] — IKetBrad, , ) 41d-13;

b = ZPadRight(b, d);

p = l1dentityMatrix[d] + \/%Sum[b[[j]]sigma[[j]], {j,1,d"2-1}];

Return[p]];

SVMEncoder::usage = "SVMEncoder[x,type], where x€R4~! (keeps the value |x| and normalizes the new vector if type=1).

\n\t When type=2, it uses the inverse of the stereographic projection.

\n\t Returns the density operator of C?,

which is projection-operator (that projects over the closed subspace determined by the normalized vector) if type is 1 or 2.

\n\t It is a mixed state with the corresponding Bloch vector of length 2 if type=3.";

SVMEncoder|x_, type_|:=Block[{u,p},

u = Switch [type, 1, Normalize[Append|[x,1]],2, mAppend [x, 1 (Total[x"2] — 1)],3, Normalize[Append|x, 1]]];

If[type == 3, p = BlochVectorInverse[u], p = Outer|[Times, u, u]]; Return[p]];

BinaryClassifier::usage = "BinaryClassifier[DClass1,DClass2],

where DClass1 and DClass2 are density operators of the class 1 and 2, respectively.

\n\t Returns the projection-operators P+ and P-.";

BinaryClassifier[DClass1_, DClass2_]:=Block[{p, ¢, vals, vecs, prjs, p1j1, prj2},

_ Length[DClass1] .
P = Tength[DClass1]+Length[DClass2] /

¢ = pTotal[DClass1] — (1 — p)Total[DClass2|; {vals, vecs} = Eigensystem|c];

vecs = Normalize/@vecs; prjs = Outer[Times, Conjugate[#], #]&/@vecs;

prjl = Total[Pick[prjs, NonNegative[vals]]];

pr1j2 = Total[Pick[prjs, Negative[vals]]];

Return[{priL, pri2} ]l

HelstromClassify::usage = "HelstromClassify[{P+,P-},p].

\n\t Returns the class 1 or 2.";

HelstromClassify [{prj1_ p1j2_}, p_]:=If[Tr[prj1.#] > Tr[prj2.#],1,2]&/@p;

ToDensity[B_]:=Block[{sigma, p},

sigma = {KetBra[2,0,1] + KetBra[2,1, 0], —iKetBra[2, 1,0] + iKetBra[2,0, 1], KetBra[2,0,0] — KetBra[2,1,1]};
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p = {}:Do[AppendTo[p, } (IdentityMatrix[2] + Sum[B[[, llsigma[[l, {j, 3}1)], {i, Leng¢h[BI}]; Returnl]];
unstandardize[point_, sd_, mu_]:=point x sd + mu;
getvectors[cf_ClassifierFunction, X_]:=With[{p = X}, With[{sd = StandardDeviation[p], mu = Mean([p]},
unstandardize[#, sd, mu]&/@cf[[1]][“Model”] [“TrainedModel”|[[1]] [“supportVectors”]]]
getplane[svincf_ClassifierFunction, X_]:=With[{tm = svmcf[[1]][“Model”][“TrainedModel”][[1]], points = X},
Module[{sv = tm[“supportVectors”], svc = tm[“supportVectorCoefficients”],
sd = StandardDeviation[points], mu = Mean[points], dim = Length[points[[1]]], vecs, offset},
vecs = Rest[RotationMatrix[{svc.sv, PadRight[{1}, dim] }] IdentityMatrix[dim]];
offset = With[{vars = Array/[x, dim]}, Values@First@FindInstance[vars.(svc.sv) == tm[“rho”], vars]];
vecs = sd * #& /@vecs;
offset = unstandardize|offset, sd, mu];
If[dim > 2, InfinitePlane[offset, vecs], InfiniteLine[offset, First[vecs]]]]]

DBSCAN with a toy dataset
circle[r_, theta_]:={rSin[theta], rCos[theta] };
{train, test} = With[{rot = RotationTransform|[r, {0,0}], tra = TranslationTransform[{1,2.5}],
pts = circle@@@Random Variate[UniformDistribution[{{2, 3}, {0, Pi} }],2000] },
TakeDrop|[RandomSample@Join|tra[rot[pts]], pts], 2000];
cl = ClusterClassify/[train, Method — “DBSCAN"]
ListPlot[Pick[test, cl[test], #] &/@Range[2], PlotStyle — Directive[PointSize[0.013], Opacity[0.7]],
AspectRatio — 1, Frame — True, Axes — False]
{X1,X2} = Pick[train, cl[train], #]&/@Range[2];
{X1Test, X2Test} = Pick[test, cl[test], #]&/@Range[2];

D1 = SVMEncoder|#, 1)&/@X1;

D2 = SVMEncoderl[#, 1]&/@X2;

{p1,p2} = BinaryClassifier[D1,D2];

y1 = HelstromClassify[{p1, p2}, D1];

y2 = HelstromClassify[{p1, p2}, D2);

accuracy[yl_ y2_]:=N [%’?] ;

accuracy(yl,y2]

Show [Plot3D[{ Tr[p1.SVMEncoder[{x1,x2}, 1]], Tr[p2.SVMEncoder[{x1,x2},1]]}, {x1, —10, 10}, {x2, —10, 10},
PlotStyle — {Green, Red}, ViewPoint — {0, 0, o}, Lighting — {{“Ambient”, White} }, Mesh — False],
Graphics3D[{RGBColor|0, 1,0, 0.5], PointSize[0.013], Point[Append [#, 1]&/@X1] }],
Graphics3D[{RGBColor(1, 0,0, 0.5], PointSize[0.013], Point[Append [#, 1]&/@X2] }]]

y =Join[y1,y2];

X = Join[X1,X2];

HelstromX1 = Pick[X, y,1];

HelstromX2 = Pick[X, y,2];

svm = Classify[X — y, Method — {“SupportVectorMachine”, “KernelType” — “Linear”};
Graphics[{Point[X], Blue, PointSize[Large|, Point[getvectors[svm, X]], Opacity[0.5], Gray, getplane[svm, X] }]

AssociationMap[ClassifierMeasurements[Classify[X — y, Method — {“SupportVectorMachine”, “KernelType” — #}],
1 — HelstromX1,2 — HelstromX2, “Accuracy”]&, { “Linear”, “RadialBasisFunction”, “Polynomial”, “Sigmoid” }]

D1Test = SVMEncoder|#, 1)&/@X1Test;
D2Test = SVMEncoder([#, 1]&/@X2Test;
y1 = HelstromClassify[{p1, p2}, D1Test];
y2 = HelstromClassify[{p1, p2}, D2Test];
accuracy(yl,y2]

0.8455 is the Helstrom accuracy on the training set
Linear — 0.9475, RadialBasisFunction — 0.9915, Polynomial — 0.996, Sigmoid — 0.889

0.8365 is the Helstrom accuracy on the test set
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DI1C = ToDensity[Normalize[Append [#, 1]|&/@X1];

D2C = ToDensity[Normalize[Append|[#, 1])&/@X2];

{p1C, p2C} = BinaryClassifier[D1C, D2C|;

y1 = HelstromClassify[{p1C, p2C}, D1C|;

y2 = HelstromClassify[{p1C, p2C}, D2CJ;

accuracy(yl,y2]

Show [Plot3D[{ Tr[p1C.ToDensity[{Normalize[{x1,x2,1}] }][[1]]],
Tr[p2C.ToDensity[{Normalize[{x1,x2,1}]}[[1]]]}, {x1, 10,10}, {x2, 10,10},

PlotStyle — {Green, Red}, ViewPoint — {0,0, o0}, Lighting — {{“Ambient”, White} }, Mesh — False],
Graphics3D[{RGBColor[0, 1,0, 0.5], PointSize[0.013], Point[Append [#, 1]&/@X1] }],

Graphics3D[{RGBColor[1, 0,0, 0.5], PointSize[0.013], Point{Append]#, 1]&/@X2]}]]

y =Join[y1,y2];

HelstromX1 = Pick[X, y, 1];

HelstromX2 = Pick(X, ,2];

svm = Classify[X — y, Method — {“SupportVectorMachine”, “KernelType” — “Linear”};
Graphics[{Point[X], Blue, PointSize[Large], Point[getvectors[svmn, X]], Opacity([0.5], Gray, getplane[svm, X] }]
AssociationMap[ClassifierMeasurements|Classify[X — y, Method — {“SupportVectorMachine”, “KernelType” — #}],
1 — HelstromX1,2 — HelstromX2, “Accuracy”]&, {“Linear”, “RadialBasisFunction”, “Polynomial”, “Sigmoid" }]

0.503 is the Helstrom accuracy on the training set

Linear — 0.9925, RadialBasisFunction — 0.9905, Polynomial — 0.9955, Sigmoid — 0.8655

Heltrom classifier gives the best average success probability (1/2+1/2(1/2 |p1 — p2]1),
but it does not work with the same centroid (such as 1/21).

X1 = Table[{Tan[6],0}, {6,0,27, % }];

X2 = —RotateLeft[#, 1)&/@X1;

ListPlot[{X1, X2}, PlotStyle — Directive[PointSize[0.013], Opacity[0.7]], AspectRatio — 1, Frame — True, Axes — False]
D1C = ToDensity[Normalize[Append [#, 1])&/@X1];

D2C = ToDensity[Normalize[Append [#, 1]|&/@X2];

MatrixForm([#]&/@N [{ oSt ey Total[DIC] — oDl Total[D2C], RaPicl, Toipnd, }]
AssociationMap[ClassifierMeasurements[Classify[1 — X1,2 — X2, Method — #],1 — X1,2 — X2, “Accuracy”]&,
{“RandomForest”, “NaiveBayes”, “SupportVectorMachine”, “NearestNeighbors”}]

00
[o3)
082014 0
( 0 017986 )

0.82014 0
0 0.17986

RandomForest — 0.975, NaiveBayes — 0.955, SupportVectorMachine — 0.83, NearestNeighbors — 0.985

0 0
X1=N [Flatten [Table [{ { C"‘["]\‘/*_fsc["] , Tm\/[;] }, {_ C°:/[ii] , (—1+Cos‘/[g])CSCI9] }}, {9, o= 1, 1% }] ,1] ];

] ]
X2 — N | Flatten | Table Ta"‘/[iz] _C°“/[iz] , { (—1+Co‘s/[;])Csc[9]’ Cot[ﬂ]\-/\\-_ZCsc[D]}

A0 o = o B} |1
ListPlot[{X1, X2}, PlotStyle — Directive[PointSize[0.013], Opacity[0.7]], AspectRatio — 1, Frame — True, Axes — False]
D1 = SVMEncoderl[#, 1]&/@X1;

D2 = SVMEncoder([#, 1]&/@X2;

{p1,p2} = BinaryClassifier[D1,D2];

y1 = HelstromClassify[{p1, p2},D1];

y2 = HelstromClassify[{p1, p2}, D2];

’

accuracy(yl,y2]

Show [Plot3D[{Tr[p1.SVMEncoder([{x1,x2}, 1]], Tr[p2.SVMEncoder[{x1,x2},1]]}, {x1, —10, 10}, {x2, —10,10},
PlotStyle — {Green, Red}, ViewPoint — {0,0, o0}, Lighting — {{“Ambient”, White} }, Mesh — False],
Graphics3D[{RGBColor|0, 1,0, 0.5], PointSize[0.013], Point[Append [#, 1]&/@X1] }],
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Graphics3D[{RGBColor(1, 0,0, 0.5], PointSize[0.013], Point[Append [#, 1]&/@X2] }]]

MatrixForm(#]&/@Chop [N[{‘["—“fﬂ"—‘—wgﬂ‘ o Total[D1] — o teshlbl - Total (D), el Toalpd, }]]

AssociationMap|ClassifierMeasurements|Classify[1 — X1,2 — X2, Method — #],1 — X1,2 — X2, “Accuracy”]&,

{“RandomForest”, “NaiveBayes”, “SupportVectorMachine”, “NearestNeighbors”}]

0.73 is the Helstrom accuracy on the training set

0.250031 12.5 0
125 —0.250031 0
0 0
0375 0.125
0.125 0.375 )
0 0.25
0.369999  —0.125
—0.125  0.380001 0

0 0 0.25

RandomForest — 0.98, NaiveBayes — 0.545, SupportVectorMachine — 0.45, NearestNeighbors — 0.85

FeatureVector::usage = "FeatureVector[m,n,type],

where m is the dimension of the input vector, n is the number of copies of the density operator, type of the SVMEncoder

\n\t Returns the feature vector.";

FeatureVector[m_, n_, type_]:=Block[{p, state, x},

p = SVMEncoder|Array/(x, m|, type];

state = Nest[TensorProductQDJ[p, #|&, p,n — 1];
DeleteDuplicates|DeleteCases[BlochVector state], 0]]];
FeatureVector(2,1,2]

8x[1]x[2]
(1+x[112-+2[22 )
(1] (14212 +222)
(1+Y 1)2+x[2 2)2
4x2)(~1+2[1)? v[z]Z)
(1+x[1]2+x[2) )
4x1)2 -~ 4x[2)2
(1+xR+222) (12(124x[212)?
412 " 422 B 2112 4x22)
V3112 4+x22) T V3(1a124x22) V(1412 +x(212)2

State[n_, x_|:=Block[{p, state},

p = SVMEncoder]|x, 1];

state = Nest[TensorProductQDJ[p, #|&, p,n — 1]];
HelstromAccuracy([n_, X1_, X2_]:=Block[{D1, D2, p1, p2,y1,y2,acc},
acc = {}; Do

D1 = State[i, #&/@X1;

D2 = State[i, #]&/@X2;

{p1,p2} = BinaryClassifier[D1,D2];

y1 = HelstromClassify[{p1, p2},D1];

y2 = HelstromClassify[{p1, p2}, D2];

AppendTo [acc, {Length[FeatureVector[Z, i,1],N [%] }] A, n}];
Return(acc]];

acc = HelstromAccuracy[6, X1, X2];

ListLinePlot[acc, AxesLabel — {“dimension”, “accuracy”}]
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Appendix B. Mathematica Notebook for the Quantum-Inspired NMC
Quantum-inspired NMC with the moons dataset defined in Appendix A

CentroidClassify[{meanl_, mean2_},D_|:=

If[Tr[ConjugateTranspose[mean1 — #].(mean1 — #)] < Tr[ConjugateTranspose[mean2 — #].(mean2 — #)],1,2]&/@D;

meanl = Mean[D1];

mean2 = Mean[D2];

y1 = CentroidClassify[{mean1, mean2}, D1];

y2 = CentroidClassify[{mean1, mean2}, D2];

accuracy(yl,y2]

B1 = BlochVector[#&/@D1;

B2 = BlochVector|[#]&/@D2;

meanl = Mean[B1];

mean2 = Mean([B2];

CentroidClassify[{meanl_, mean2_}, B_, p_]:=If[Norm[mean1 — #, p] < Norm[mean2 — #, p|, 1,2]&/@B;

y1 = CentroidClassify[{mean1, mean2}, B1,2];

y2 = CentroidClassify[{mean1, mean2}, B2,2];

accuracy(yl,y2]

0.865 is the accuracy of the NMC with trace distance between density operators

0.865 is the accuracy of the NMC with Euclidean distance between Bloch vectors
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