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Abstract: We associate the stationary harmonic oscillator with time-dependent systems exhibiting
non-Hermiticity by means of point transformations. The new systems are exactly solvable, with
all-real spectra, and transit to the Hermitian configuration for the appropriate values of the in-
volved parameters. We provide a concrete generalization of the Swanson oscillator that includes
the Caldirola–Kanai model as a particular case. Explicit solutions are given in both the classical and
quantum pictures.
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1. Introduction

During the last decades, there has been an increasing interest in non-Hermitian struc-
tures and their implications in quantum theory. Nevertheless, the subject was overlooked
for long time because the reality of the spectrum is not granted a priori for non-Hermitian
models. A surprising breakthrough was offered by the demonstration that parity-time (PT)
symmetry implies the real spectrum [1], stimulating the systematic search of PT-symmetric
systems in quantum mechanics [2] (see also papers in the special issues [3,4]). Further
improvements have shown that PT-symmetry is not a necessary condition for the reality of
the spectrum [5,6]—a fact confirmed in diverse models of non-Hermiticity [7–11], where
the imaginary part of a wide class of complex-valued potentials leads to balanced gain
and loss probability without the necessity of PT-symmetry. The latter property opens
new possibilities in optical design, where the gain–loss manipulation includes but is not
limited to PT-symmetry [12]. Important theoretical achievements within the PT-symmetric
formulation [13] predicted the experimental observation of the phenomenon in optics [14].

Another interesting problem deals with non-stationary systems in quantum mechan-
ics, which find exciting applications in plasma physics [15] as well as in the design of
electromagnetic traps for charged particles [16–21]. As time-dependent systems obey
dynamical equations that cannot be reduced to eigenvalue problems in general, finding
solutions could mean a formidable consumption of computing resources. Two simplifi-
cations are notable: systems obeying adiabatic evolutions [22] and the Lewis–Riesenfeld
(parametric) oscillator [23]. In the former case, the time-evolution of the system is slow
enough for the Hamiltonian to tolerate time-dependent eigenvalues for instantaneous
eigenvalue equations [24]. In turn, the parametric oscillator is found to have a constant
of motion that defines the appropriate eigenvalue equation [23]. The latter result mo-
tivated the systematic research of quantum invariants [25–28], with applications in the
construction of time-dependent wave packets [29–37], Darboux transformations [38–41],
and two-dimensional photonic systems [42], among others.

The Swanson oscillator [43] is a very peculiar system that combines both profiles since
it is non-Hermitian and time-dependent. Formulated to study transitions of probability
amplitudes that are generated by non-unitary time evolutions, the model developed by

Quantum Rep. 2021, 3, 458–472. https://doi.org/10.3390/quantum3030030 https://www.mdpi.com/journal/quantumrep

https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0000-0001-5208-7054
https://orcid.org/0000-0001-6271-1623
https://doi.org/10.3390/quantum3030030
https://doi.org/10.3390/quantum3030030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/quantum3030030
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/article/10.3390/quantum3030030?type=check_update&version=3


Quantum Rep. 2021, 3 459

Swanson has been revisited and studied in different branches of physics and mathematical
physics [44–50]. Quite remarkably, the Swanson Hamiltonian can be connected with
the Hamiltonian of the harmonic oscillator by the appropriate rotation in configuration
space [51], which clarifies the solvability of the model.

In this work, we use point transformations [52] to associate the stationary harmonic
oscillator with a time-dependent system that exhibits non-Hermiticity and an all-real
spectrum. We have already applied the method to study parametric oscillators in the
Hermitian regime [27], and we have also shown that the construction of coherent states
is feasible for such systems. Here, we show that the appropriate point transformation
yields a wide family of time-dependent systems that may be chosen to be Hermitian or
non-Hermitian, in accordance with the involved parameters. Associating these systems
with the stationary harmonic oscillator, we obtain exactly solvable models that recover a
diversity of oscillators in both Hermitian and non-Hermitian configurations.

The organization of the paper is as follows. In Section 2, we introduce the main
concepts and provide the space of solutions for the non-Hermitian, time-dependent systems
in terms of the well known solutions of the harmonic oscillator. Concrete expressions are
given for the Hamiltonian of such systems. In Section 3, we show the applicability of our
model by solving the dynamical law of a generalization of the Caldirola–Kanai oscillator
in both classical and quantum pictures. We have added Appendix A in which the point
transformation theory is summarized.

2. Generalized Oscillators

Let us assume that the operator

1
h̄w0

Hsw = α2(t)â†2 + β2(t)â2 + θ(t){â, â†}+ α1(t)â† + β1(t)â , (1)

rules the dynamical law of a time-dependent quantum system. The constant w0 > 0 is
written in units of frequency. Hereafter, â and â† represent the boson ladder operators
fulfilling [â, â†] = I, with I the identity operator in the Hilbert space spanned by the Fock
basis {|n〉, n = 0, 1, 2, . . .}. The symbols [·, ·] and {·, ·} stand for the commutator and
anticommutator of the involved operators, respectively.

The structure of Hsw resembles the expression of the Hamiltonian for the Swanson
oscillator [43,47,53,54]. Nevertheless, subtle but relevant differences must be noted since the
coefficients αj(t), β j(t), j = 1, 2, and θ(t) are time-dependent functions introduced to design
the profile of Hsw in Equation (1). Indeed, we distinguish four important configurations:

(I) Harmonic oscillator: Making αj = β j = 0 and θ = 1
2 , the operator (1) is reduced to

the well known Hamiltonian of the harmonic oscillator:

1
h̄w0

Hosc =
1
2{â, â†} = â† â + 1

2 . (2)

(II) Hermitian configuration: For θ ∈ R, and αj, β j ∈ C such that β j = α∗j , with z∗ the
complex conjugate of z ∈ C, the operator Hsw is Hermitian. The harmonic oscillator
Hamiltonian (2) is properly included in this class.

(III) Global non-Hermitian configuration: In general, for arbitrary complex-valued func-
tions αj, β j, and θ, the operator (1) is non-Hermitian. The two cases mentioned above
are therefore relevant subclasses of this configuration.

(IV) Non-Hermitian configuration: A subset of the global non-Hermitian class is character-
ized by real coefficients αj, β j, and θ. This includes the harmonic oscillator as well as a
subset of the Hermitian classes.

We are interested in solving the Schrödinger equation defined by Hsw. In the most
general situation, no orthogonality is granted a priori for the solutions as both time-
dependence and non-Hermiticity bring the problem out of the Sturm–Liouville formalism.
In the same context, the boson operators â and â† are not necessarily the ladder operators
for the corresponding set of solutions.
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Without loss of generality, we consider the Hermitian and non-Hermitian classes
as they are described above. The analysis of the global non-Hermitian case is provided
elsewhere, as it requires a more elaborate treatment.

The operator Hsw may be expressed in terms of the quadratures of position and
momentum. If one uses the well known relationships

â =
√

m0w0
2h̄

(
x̂ +

i
m0w0

p̂x

)
, â† =

√
m0w0

2h̄

(
x̂− i

m0w0
p̂x

)
, (3)

then (1) acquires the quadratic form

Hsw(t) =
p̂2

x
2m(t)

+
m(t)w2(t)

2
x̂2 + iΩ(t){x̂, p̂x}+ iv(t) p̂x + F(t)x̂ , (4)

where the linear terms are characterized by the time-dependent functions

Ω(t) := −w0[α2(t)− β2(t)] , v(t) := −
√

h̄w0
2m0

[α1(t)− β1(t)] , (5)

and

F(t) :=

√
m0 h̄w2

0
2 [α1(t) + β1(t)]. (6)

The mass and frequency terms of (4) are also time-dependent

m(t) =
m0

2θ(t)− [α2(t) + β2(t)]
, w2(t) = w2

0

(
4θ2(t)− [α2(t) + β2(t)]

2
)

. (7)

Note that the above formulae are defined by the expressions αj ± β j, which facilitates
their identification according to the classification provided above. Next, we provide
explicit expressions.

Before proceeding, one may revert the previous relationships and write down the param-
eters of the bosonic representation (1) in terms of those of the quadrature representation (4).
We thus obtain

α2(t) =
m2(t)w2(t)−m2

0w2
0 − 2m0w0m(t)Ω(t)

4m0w2
0m(t)

,

β2(t) =
m2(t)w2(t)−m2

0w2
0 + 2m0w0m(t)Ω(t)

4m0w2
0m(t)

,

(8)

together with

α1(t) =
−m0
√

w0v(t) + F(t)√
2h̄m0w2

0

, β1(t) =
m0
√

w0v(t) + F(t)√
2h̄m0w2

0

,

θ(t) =
m2

0w2
0 + m2(t)w2(t)
4m0w2

0m(t)
.

(9)

• Hermitian configuration: For β j = α∗j , systems (5) and (6) give

iΩ = ΩI := 2w0 Im(α2), iv = vI :=
√

2h̄w0
m0

Im(α1), FR =
√

2m0h̄w2
0 Re(α1), (10)

together with

mR =
m0

2θ − 2 Re(α2)
, w2

R = 4w2
0

(
θ2 + [Re(α2)]

2
)

. (11)
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Then, (4) is written in the self-adjoint form:

H̃sw(t) =
p̂2

x
2mR(t)

+
mR(t)w2

R(t)
2

x̂2 + ΩI(t){x̂, p̂x}+ vI(t) p̂x + FR(t)x̂ . (12)

Clearly, there is a one-to-one correspondence between the sets Sbos = {α1, α2, β1, β2, θ}
and Squad = {m, w, Ω, v, F}. Thus, by fixing the parameters in Sbos, one can determine
the parameters in Squad, and vice versa.

• Non-Hermitian configuration: For real coefficients αj, β j, and θ, Equations (4)–(7)
yield Hsw such that H†

sw 6= Hsw. The non-Hermiticity is due to the real-valued
functions Ω and v, which may be cancelled by making αj = β j. Noticeably, the latter
case is consistent with the Hermitian configuration mentioned in the previous item
after making ΩI = vI = 0. For ΩI 6= 0 and vI 6= 0, the appropriate transformation
shows that, providing Ω = v = 0, the self-adjoint operator H̃sw coincides with Hsw.

Considering the above remarks, the model is developed within the non-Hermitian
configuration defined by the real coefficients αj, β j, and θ. The Hermitian configuration will
be recovered after making αj = β j. On the other hand, without loss of generality, hereafter,

we make F = 0. From (6), the latter implies β1 = −α1, so that v =
√

2h̄w0
m0

β1.

2.1. Space of Solutions

In position representation, the solutions of the Schrödinger equation defined by the
Hamiltonian of the harmonic oscillator (2) are well known to be

Ψn(y, τ) = e−iEnτΦn(y), En = h̄w0(n + 1
2 ) , n = 0, 1, . . . , (13)

where τ stands for the time-variable, and the normalized functions

Φn(y) =

√
1

2nn!

√
m0w0

πh̄
e−

m0w0
2h̄ y2

Hn

(√
m0w0

h̄
y
)

, (14)

satisfy the eigenvalue equation HoscΦn(y) = EnΦn(y), with Hn(z) the Hermite polynomials [55].
To construct the solutions of the Schrödinger equation defined by Hsw, we use the

approach introduced in [27], which is based on the formalism of point transformations.
Detailed information is provided in Appendix A. Using t and x for the time-variable and
position-coordinate of the system governed by Hsw, the transformation

τ(t) =
∫ t dt′

σ2(t′)
, y(x, t) =

µ(t)x + γ(t)
σ(t)

, m(t) = m0µ2(t) , (15)

permits us to express the solutions we are looking for in terms of the formulae (13) and (14).
The time-dependent functions γ(t) and σ(t) are to be determined.

Within the point transformation approach, the rules (15) lead to a time-dependent
potential in the (x, t)-configuration. Explicitly,

V(x, t) =
m0µ2

2

(
Ẇµ

µσ
+

2i
µ2

d
dt
(µ2Ω)− 4Ω2 +

w2
0

σ4

)
x2 + m0µ

(
Ẇγ

σ
− 2iµΩv +

i
µ

d
dt

(
µ2v
)
+

w2
0γ

σ4

)
x + V0(t) , (16)

withWµ andWγ being two functions of time defined in Equation (A11), and V0(t) is given
in Equation (A12) of Appendix A.

In turn, the wave-functions ψn(x, t) are given by

ψn(x, t) = e−iEnτ(t)/h̄φn(x, t) , (17)
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where the functions φn(x, t) are constructed through the eigenfunctions of the stationary
(y, τ)-system:

φn(x, t) = A−1
0 (x, t)A−1

1 (x, t)Φn(y(x, t)) , (18)

with
A0(x, t) = exp

[
i m0

h̄
µ
σ

(Wµ

2 x2 +Wγx + ξ1

)]
, (19)

A1(x, t) := exp
[
−m0

h̄
µ2
(

Ωx2 + vx + ξ2

)]
, (20)

and
µ

σ
ξ1 =

γWγ

2σ
+
∫ t

dt′
(

µ2(t′)v2(t′)
2

− µ(t′)v(t′)Ω(t′)γ(t′)
)

. (21)

Thus, providing the solutions (13) and (14) of the stationary (y, τ)-system, we automat-
ically obtain the solutions (17)–(20) of a time-dependent system in the (x, t)-configuration.

Note that we have conveniently introduced the form of ψ given in (17) so that the time-
dependent factor e−iEnτ(t)/h̄ can be immediately identified with the phase introduced by
Lewis–Riesenfeld [23] for the parametric oscillator. In this form, the point transformation
provides a straightforward mechanism to determine this factor, which is nothing but the
transformation of the unitary time-evolution phase of the stationary oscillator. Alternative
approaches for non-Hermitian Hamiltonians have been previously studied in [53].

We would also like to emphasize that the expression of V(x, t) introduced in Equation (16)
represents a wide resource of complex-valued, time-dependent potentials linked to the sta-
tionary harmonic oscillator. The applicability of the above results is therefore very wide.
This embraces time-dependent Hermitian oscillators for real-valued functions V(x, t) as well
as non-Hermitian oscillators (stationary and non-stationary) for complex-valued functions
V(x, t). The main point is the manipulability of the concrete form of V(x, t) by tuning its
time-dependent coefficients.

In the present work, we concentrate on the relationship between V(x, t) and the
potential part of Hsw, written in coordinate representation (4). Other oscillators will be
studied elsewhere.

2.2. Time-Dependent Model with Non-Hermiticity

Comparing the non-kinetic part of Hsw with V(x, t) leads to Equations (A13)–(A15) of
Appendix A. The time-dependent functions γ and σ that define the transformation (15) are
solutions of (A13) and (A14), respectively. These equations include pure-imaginary terms
that may be canceled through the constraints

µ2Ω = Ω0 , µ2v = v0 , (22)

where Ω0 and v0 are real constants to be fixed. The functions γ and σ are therefore defined
by the following system of equations:

σ̈ +

(
w2 + 4

Ω2
0

µ4 −
µ̈

µ

)
σ =

w2
0

σ3 , γ̈ +

(
w2 + 4

Ω2
0

µ4 −
µ̈

µ

)
γ = 2

v0Ω0

µ3 , (23)

together with

d
dt

(
µ

σ
ξ1 + iµ2ξ2 −

γ

2σ
Wγ − i

h̄
2m0

ln
µ

σ

)
−

v2
0

2µ2 + v0Ω0
γ

µ3 −
h̄

m0

Ω0

µ2 = 0 . (24)

The real-valued functions ξ1(t) and ξ2(t) resulted from integration with respect to x.
Note that the equation for σ in (23) has the structure of the nonlinear differential equa-
tion named after Ermakov [56]. Detailed information about the method of solution and
applications can be found in, e.g., [7,9,57].
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On the other hand, combining (22) with (8) and (9) gives rise to the set of parameters
Sbos of the bosonic representation (1). Therefore, the operator introduced in Equation (4)
acquires a simpler form

Hsw(t) =
p̂2

x
2m0µ2(t)

+
m0µ2(t)w2(t)

2
x̂2 +

i
µ2(t)

[Ω0{x̂, p̂x}+ v0 p̂x] , (25)

where µ plays the role of a time-dependent mass.
The non-Hermiticity of Hsw in Equation (25) is parameterized by the real constants Ω0

and v0; the Hermitian version of this operator arises by turning off both of these parameters.
Paying attention to the transformation of the position-variable (15), we realize that y(x, t)
is real-valued if the x-coordinate is real, as expected. The construction of non-Hermitian
operators Hsw permitting complex-valued mappings for y(x, t) may be derived from a
more general scheme, which is out of the scope of the present work.

Hereafter, we take Ω0 ≥ 0 and v0 ≥ 0. The complete characterization of the operator (25)
is therefore provided by the analytical form of the time-dependent functions α2 and β2.
Remarkably, up to the non-Hermitian term, the expression of Hsw in (25) has the structure of
the generalized Caldirola–Kanai oscillator discussed in [58] within the Arnold transformation
approach. Here, the operator (25) is linked with a time-dependent oscillator in the non-
Hermitian regime for which both mass and frequency depend on time. As the Hermitian
limit Ω0 = v0 = 0 has already been treated in [58,59], it is discarded throughout the rest of
the manuscript.

3. Applications

To illustrate the applicability of our approach, we consider a model generated by the
time-dependent functions

µ2 = e−Γt, w2 = w2
0. (26)

The Formulas (8) and (9) give

α2(t) = − 1
2 sinh(Γt)− Ω0

2w0
eΓt, β2(t) = − 1

2 sinh(Γt) +
Ω0

2w0
eΓt,

θ = 1
2 cosh(Γt), β1 =

√
m0

2h̄w0
v0eΓt.

(27)

Therefore, the operator (25) acquires the form

Hsw(t) =
eΓt

2m0
p̂2

x +
m0w2

0
2

e−Γt x̂2 + ieΓt(Ω0{x̂, p̂x}+ v0 p̂x) . (28)

The self-adjoint part of this operator coincides with the Hamiltonian studied inde-
pendently by Caldirola [60] and Kanai [61]. That is, the Hamiltonian Hsw(t) introduced in
Equation (28) may be considered a non-Hermitian extension of the Caldirola–Kanai oscillator.

At the classical level, the Caldirola–Kanai Hamiltonian leads to the Newton equation
of motion, including a friction term that is proportional to velocity. This property motivated
the unfinished debate about the nature and possible interpretation of friction forces in
quantum mechanics [62]. Considered a very interesting problem in the formal structure of
quantum mechanics, the Caldirola–Kanai oscillator deserves particular attention. For in-
stance, it has been studied in terms of the quantum Arnold transformation [26,58], where
exact solutions have been provided for the related Schrödinger equation.

Considering the interest that non-Hermitian structures such as the Hamiltonian (28)
arouse in the literature on the matter, we solve the corresponding dynamical law for both
the classical and quantum pictures.
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3.1. Classical Picture

To determine the classical equations of motion associated to the classical counterpart
of operator (28), consider the classical Hamiltonian

Hclass(Q, P; t) =
eΓtP2

2m0
+

e−Γtm0w2
0

2
Q2 + ieΓt(2Ω0QP + v0P) . (29)

Using canonical quantization, together with the symmetrization rule QP→ 1
2{x̂, p̂x},

operator (28) is recovered, as expected.
The Hamilton equations of motion, Q̇ = ∂Hclass

∂P and −Ṗ = ∂Hclass
∂Q , yield

P = m0e−ΓtQ̇− 2im0(Ω0Q + v0) , (30)

which is complex-valued in the configuration space (Q, Q̇). From (30), we have Q̇ =

eΓt(m−1
0 P + 2i(Ω0Q + v0)), so that Q̈ = {Q̇, Hclass}PB + ∂Q̇

∂t , where {·, ·}PB stands for the
Poisson bracket. After some calculations, one arrives at equation

Q̈− ΓQ̇ +
(

w2
0 + 4Ω2

0e2Γt
)

Q = −2Ω0v0e2Γt , (31)

which defines the behavior of a damped parametric oscillator with a time-dependent
frequency (w2

0 + 4Ω2
0e2Γt) and that is subjected to the force −2Ω0v0e2Γt.

The second-order differential equation with real-valued coefficients (31) admits real-
valued solutions Q(t) upon appropriate initial conditions Q(0), Q̇(0) ∈ R. To write this in
a more familiar form, we make Q = e−Γt/2Q—a change of variable known as expanding
coordinates [63,64]. Then,

Q̈+

(
w2

0 −
Γ2

4
+ 4Ω2

0e2Γt
)
Q = −2Ω0v0e3Γt/2 (32)

is the equation of motion for a driven parametric oscillator with no damping.

• Constant mass: For Γ = 0, the mass term in (29) is m0 = const. In this case, the
solutions of Equation (32) are immediate:

Q(t) = A cos
(√

w2
0 + 4Ω2

0 t + ϕ

)
− 2Ω0v0

w2
0 + 4Ω2

0
,

Q̇(t) = −A
√

w2
0 + 4Ω2

0 sin
(√

w2
0 + 4Ω2

0 t + ϕ

)
,

(33)

with A and ϕ integration constants determined from the initial conditions as

A =

√
Q̇2(0) +

(
Q(0) + 2Ω0v0

w2
0+4Ω2

0

)2
, tan ϕ = −

√
w0+4Ω2

0Q̇(0)
2Ω0v0+(w2

0+4Ω2
0)Q(0)

. (34)

The dynamics on the configuration space (Q, Q̇) describe elliptic closed trajectories,
displaced along the Q axis due to the presence of both Ω0 and v0; see Figure 1.

• Time-dependent mass. For Γ 6= 0, we may introduce the variable z = eΓt to get

z2 d2Q
dz2 + z

dQ
dz

+
(

Λ2 + 4Ω0
2z2
)
Q = −2v0Ω0z3/2 , (35)

where

Λ2 :=
w2

0
Γ2 −

1
4

, Ω0 =
Ω0

Γ
, v0 =

v0

Γ
. (36)
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We can immediately identify that the homogeneous part of (35) coincides with the
Bessel differential equations [55]. In this case, we use the solutions

Qh;1(t) =
JiΛ(2Ω0eΓt)

ΩiΛ
0

, Qh;2(t) ≡ Q∗h;1(t) =
J−iΛ(2Ω0eΓt)

Ω−iΛ
0

, (37)

where Jν(z) is the Bessel function of the first kind, and the constants Ω±iΛ
0 have been

introduced such that

limΩ0→0Qh;1(t)→
exp[i
√

w2
0−Γ2/4 t]

Γ(1+iΛ)
, limΩ0→0Qh;2(t)→

exp[−i
√

w2
0−Γ2/4 t]

Γ(1−iΛ)
, (38)

lead to the solutions of the conventional oscillator.

On the other hand, after some calculations, the function

Qp(t) = i
πv0Ω1−iΛ

0
2 sinh(πΛ)

Γ( 3
4 − i Λ

2 )

Γ( 7
4 − i Λ

2 )Γ(1− iΛ)
×

e(
3
2−iΛ)Γt JiΛ

(
2Ω0eΓt

)
1F2

( 3
4 − i Λ

2
1− iΛ, 7

4 − i Λ
2

∣∣∣∣−Ω2
0e2Γt

)
, (39)

provides the particular solution of Equation (35). Then, the general solution can be written
in the form

Q(t) = `1 Re Qh;1(t) + `2 ImQh;1(t) + 2 ReQp(t) , (40)

where `1 and `2 are arbitrary real constants fixed from the initial conditions. In contrast to
the constant-mass solutions, an explicit form for `1 and `2 in terms of the initial conditions
Q(0) and Q̇(0) is not feasible; however, it can be established by numerical means.

(a) (b)

Figure 1. (a) Trajectories in the configuration space (Q, Q̇) for constant-mass (Γ = 0), with w0 = 1,
Ω0 = 1.5, and v0 = 2. The initial conditions are Q(0) = 0, Q̇(0) = 2 (blue-solid), and Q(0) = 0,
Q̇(0) = 4 (red-dashed). The cross indicates the initial conditions. (b) The time-dependent functions
Q (blue-solid) and Q̇ (red-dashed) for the initial conditions Q(0) = 0, Q̇(0) = 2.

The corresponding trajectory in the configuration space is depicted in Figure 2a for
a finite time interval. Clearly, the trajectory is no longer closed as the particle mass is
continuously changing over time. We remark that, as time passes, the particle localizes to a
well-defined finite region that shrinks over time, while the velocity increases exponentially.
This behavior is clear from Figure 2b.
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(a) (b)

Figure 2. (a) Trajectories in the configuration space (Q, Q̇) for Γ = 1 in the interval t ∈ (0, 3),
with w0 = 1, Ω0 = 1.5, and v0 = 2. The initial conditions are Q(0) = 0, and Q̇(0) = 2. The red
cross depicts the initial condition. (b) The time-dependent functions Q(t) (blue-solid) and Q̇(t)
(red-thick-solid) for the above-mentioned parameters.

3.2. Quantum Picture

The solutions of the Schrödinger equation defined by the Hamiltonian (28) require the
functions σ and γ. In this regard, the solutions of the homogeneous equation

q̈ +
(

w2
0 −

Γ2

4
+ 4Ω2

0e2Γt
)

q = 0 (41)

serve to solve both the Ermakov and the inhomogeneous equations included in (23). Indeed,
following [7,9], we know that the Ermakov equation defining σ is solved by using the two
linearly independent solutions of (41), namely q1 and q2. We thus obtain

σ(t) =
(

aq2
1(t) + bq1(t)q2(t) + cq2

2(t)
) 1

2 , b2 − 4ac = −
w2

0
W2

0
, (42)

with W0 = Wr(q1, q2) the Wronskian of q1 and q2, which in this case is always a constant.
In turn, the inhomogeneous equation associated with γ shares solutions with the classical
Equation (32), which was already solved in the previous section.

• For the constant mass case, we use the homogeneous solutions and their respective
Wronskian W0 as

q1 = cos
(√

w2
0 + 4Ω2

0 t
)

, q2 = sin
(√

w2
0 + 4Ω2

0 t
)

, W0 =
√

w2
0 + 4Ω2

0 , (43)

whereas the solution for γ(t) is the same as that for −Q(t) provided in (33).
• For the mass term µ(t) = e−Γt/2, we have

q1(t) = Re
(

JiΛ(2Ω0eΓt)

ΩiΛ
0

)
, q2(t) = Im

(
JiΛ(2Ω0eΓt)

ΩiΛ
0

)
, W0 = Γ

π sinh(πΛ) , (44)

with Ω0 and Λ given in (36). Moreover, γ(t) = −Q(t), with Q(t) given in (40).

The profile of σ(t) and γ(t) is depicted in Figure 3, paying special attention to the
constant mass Γ = 0 and Γ = 1 cases. In this figure, it is verified that the solution to the
Ermakov equation is indeed always different from zero, as we stated earlier and proved
in [8,9] (see also [65]). Therefore, the point transformation is non-singular for t ∈ R.
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(a) Γ = 0 (b) Γ = 1

Figure 3. Solution to the Ermakov equation σ(t) (blue-solid) and the non-homogeneous equation γ(t)
(red-dashed) for the mass term e−Γt/2 for the constant mass case Γ = 0 (a) and Γ = 1 (b). Moreover,
in (a), we have used A and ϕ as in Figure 1, whereas in (b), we have used `1 and `2 as in Figure 2.
The remaining parameters have been selected in both cases as a = c = w0 = 1, Ω = 1.5, v0 = 2.

3.3. Hermitian Conjugate and Bi-Orthogonality

As a byproduct of the point transformation, the construction of the Hermitian conju-
gate H†

sw and its wave-functions is made obvious by noticing that

H†
sw =

p̂2
x

2m0µ2(t)
+ m0µ2(t)w2(t)x̂2 − i

µ2(t)
(Ω0{x̂, p̂x}+ v0 p̂x) 6= Hsw (45)

arises from Hsw through Ω0 → −Ω0 and v0 → −v0. This change leaves the differen-
tial equations defining σ and γ in (24) invariant. Therefore, the transformed coordinate
y(x, t) and time parameter τ(t) are the same for both Hsw and H†

sw. In this form, the solu-
tions ψ̃(x, t) of the Schrödinger equation associated with (45) are also obtained from the
stationary solutions

ψ̃(x, y) = (Ã(x, t))−1Ψ(y(x, t), τ(t)) , Ã(x, t) =
√

σ

µ
A0(x, t)(A1(x, t))−1 . (46)

That is,

ψ̃n(x, t) = e−iEnτ(t)/h̄φ̃n(x, t) , φ̃n(x, t) :=
√

µ

σ
(A0(x, t))−1A1(x, t)Φn(y(x, t)) , (47)

with

Φn(y(x, t)) =

√
1

2nn!

√
m0w0

πh̄
e−

m0w0
2h̄ ( µx+γ

σ )
2

Hn

(√
m0w0

h̄

(
µx + γ

σ

))
. (48)

The above results are remarkable since the wave-functions ψn(x, t), together with their
Hermitian conjugate counterparts ψ̃n(x, t), form a bi-orthogonal system that provides a
mathematical procedure to satisfy the superposition principle [8]. In this form, the non-
Hermitian oscillators introduced above can be studied in much the same way as in the
Hermitian approaches. In the present case, the probability density may be studied through
the following equivalent forms [10]:

P (B)
n (x, t) := |ψ̃∗n(x, t)ψn(x, t)| = |ψ∗n(x, t)ψ̃n(x, t)| . (49)

Figure 4 illustrates the time-evolution of the probability density (49) for the non-
Hermitian oscillators introduced in the previous section. In particular, for a constant mass,
the probability density oscillates periodically with time; see the first row of Figure 4. Note
also that the wave packet width oscillates as well, producing a “breathing” effect as the
wave packet propagates. This behavior matches well with the dynamics of the classical
counterpart. For Γ = 1, shown in the second row of Figure 4, the probability density is no
longer periodic. Instead, the wave packet follows the trajectory of a damped oscillatory.
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(a) n = 0 (b) n = 1 (c) n = 2

(d) n = 0 (e) n = 1 (f) n = 2

Figure 4. Probability distribution in the bi-product sense (49) for the constant mass case Γ = 0 (first
row) and the time-dependent mass case Γ = 1 (second row). The parameters are the same as in
Figure 3.

4. Conclusions

In this manuscript, we have shown that the stationary harmonic oscillator is connected
with time-dependent systems exhibiting non-Hermiticity via point transformations. Al-
though this association includes a very wide set of such systems, we concentrated on a
generalization of the Swanson oscillator that includes the Caldirola–Kanai system as partic-
ular case. We provided concrete expressions for the Hamiltonian and the corresponding
exact solutions in both classical and quantum pictures. The systems studied here transit to
their Hermitian configuration at the appropriate limit of the involved parameters. We have
also shown that the point transformations automatically provide the Hermitian conjugate
of the system under study as well as the corresponding solutions. This has been used to
construct a bi-orthogonal system that allows the calculation of probability densities, which
are dissimilar to the conventional densities in the sense that no phase shifts producing
oscillations of the norm are allowed [10]. Noticeably, the real and imaginary parts of the
fundamental solutions, as well as their probability densities, behave qualitatively equally
in both normalizations, although the bi-normalized values are usually larger than the
conventionally normalized values. The latter situation is reversed for superpositions of the
basis elements (see [10]).
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Appendix A. Point Transformations

In position-representation, the Schrödinger equation defined by the harmonic oscilla-
tor Hamiltonian (2) may be written as

ih̄
∂Ψ
∂τ

= − h̄2

2m0

∂2Ψ
∂y2 +

m0w2
0

2
y2Ψ . (A1)

The solutions are provided in Equations (13) and (14) of the main text. Hereafter
we say that the set {y, τ, Ψ} defines the frame of the harmonic oscillator (HO), which is
composited by the spatial-coordinates y, the time-variable τ, and the solutions Ψ of (A1).

Equivalently, for the operator Hsw(t) introduced in Equation (4) one has

ih̄
∂ψ

∂t
= − h̄2

2m(t)
∂2ψ

∂x2

+ (2h̄Ω(t)x + h̄v(t))
∂ψ

∂x
+

[
m(t)w2(t)

2
x2 + F(t)x + h̄Ω(t)

]
ψ . (A2)

The set {x, t, ψ} defines the frame of the time-dependent non-Hermitian oscillator
(TnH-HO), integrated by the spatial-coordinates x, the time-variable t, and the solutions ψ
of Equation (A2).

Within the point transformation theory [52], the mapping from HO to TnH-HO is
established by the relationships

y = y(x, t), τ = τ(x, t), Ψ = Ψ(y(x, t), τ(x, t)) = G(x, t; ψ(x, t)). (A3)

Computing the total derivatives dΨ
dx , dΨ

dt , and d2Ψ
dx2 , one has

∂Ψ
∂τ

= G1

(
x, t; ψ,

∂ψ

∂x
,

∂ψ

∂t

)
,

∂2Ψ
∂y2 = G2

(
x, t; ψ,

∂ψ

∂x
,

∂2ψ

∂x2 ,
∂ψ

∂t

)
. (A4)

To avoid nonlinear terms one may introduce the conitions [27]

Ψ = G(x, t; ψ) = A(x, t)ψ , τ = τ(t) . (A5)

After some calculations, from (A4) one arrives at

Ψτ =
A
τt

[
− yt

yx
ψx + ψt +

(
At

A
− yt

yx

Ax

A

)
ψ

]
,

Ψy,y =
A
y2

x

[
ψx,x +

(
2

Ax

A
− yxx

yx

)
ψx +

(
Axx

A
− yxx

yx

Ax

A

)
ψ

]
,

(A6)

the subindices denote partial derivatives, fu = ∂ f
∂u . Substituting (A5) and (A6) into (A1) gives

ih̄ψt +
h̄2

2m0

τt

y2
x

ψx,x + B(x, t)ψx −V(x, t)ψ = 0, (A7)

with

B(x, t) = −ih̄
yt

yx
+

h̄2

2m0

τt

y2
x

(
2

Ax

A
− yxx

yx

)
,

V(x, t) = −ih̄
(

At

A
− yt

yx

Ax

A

)
− h̄2

2m0

τt

y2
x

(
Axx

A
− yxx

yx

Ax

A

)
+

τt

2
m0w2

0y2(x, t).

(A8)
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Demanding coincidence of (A7) with (A2) requires

τt

y2
x
=

m0

m(t)
, B(x, t) = −2h̄Ω(t)x . (A9)

To simplify calculations we introduce real-valued functions µ(t) and σ(t) such that
τt = σ−2(t) and m(t) = m0µ2(t). From the first condition in (A9) we get

τ(t) =
∫ t dt′

σ2(t′)
, y(x, t) =

µ(t)x + γ(t)
σ(t)

,

where γ(t) : R → R emerges as a constant of integration with respect to x. The above
result is quoted as Equation (15) in the main text. On the other hand, the second condition
in (A9) permits to determine the remaining transformation function A(x, t), which we
conveniently rewrite as

A(x, t) = A0(x, t)A1(x, t) , (A10)

with
A0(x, t) := exp

[
i m0

h̄
µ
σ

(
1
2Wµx2 +Wγx + ξ1

)]
,

and
A1(x, t) := exp

[
−m0

h̄ µ2
(

Ωx2 + vx + ξ2

)]
.

The above expressions are quoted respectively as (19) and (20). The real-valued
functions ξ1(t) and ξ2(t) are integration constants with respect to x, and

Wµ ≡ Wµ(t) = σµ̇− σ̇µ, Wγ ≡ Wγ(t) = σγ̇− σ̇γ , (A11)

where ḟ = d f
dt . In this form, A(x, t) is factorized as the product of the gauge transformation

A0(x, t), working as a unitary transformation, and the non-gauge term A1(x, t), accounting
for the non-Hermiticity of Hsw(t).

The explicit form of the time-dependent potential V(x, t) introduced in (A8) is pro-
vided in Equation (16) of the main text, together with

V0(t) = m0

[
d
dt
( µ

σ ξ1
)
− W

2
γ

2σ2 −
µ2v2

2 +
w2

0γ2

2σ4 + h̄
m0

Ω
]
+ im0

[
d
dt (µ

2ξ2)− t h̄
2m0

Wµ

σµ

]
. (A12)

Comparing Equation (16) with the potential associated to the operator (4) gives a
system of equations for σ, γ, ξ1 and ξ2. After making V0 = h̄Ω−1 one gets

σ̈ +
[
w2 + 4Ω2 − µ̈

µ + 2i
µ2

d
dt (µ

2Ω)
]
σ =

w2
0

σ3 , (A13)

γ̈ +
[
w2 + 4Ω2 − µ̈

µ + 2i
µ2

d
dt (µ

2Ω)
]
γ = 2vµΩ− i

µ
d
dt (µ

2v) , (A14)

and

d
dt

(
µ

σ
ξ1 + iµ2ξ2 −

γ

2σ
Wγ − i

h̄
2m0

ln
µ

σ

)
− i

γ

2µ

d
dt

µ2v− µ2v2

2
+ vγµΩ = 0. (A15)
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