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Abstract: The physical synthesis concept for quantum circuits, the interaction between synthesis and
physical design processes, was first introduced in our previous work. This concept inspires us to
propose some techniques that can minimize the number of extra inserted SWAP operations required
to run a circuit on a nearest-neighbor architecture. Minimizing the number of SWAP operations
potentially decreases the latency and error probability of a quantum circuit. Focusing on this concept,
we present a physical synthesis technique based on transformation rules to decrease the number of
SWAP operations in nearest-neighbor architectures. After the qubits of a circuit are mapped onto the
physical qubits provided by the target architecture, our procedure is fed by this mapping information.
Our method uses the obtained placement and scheduling information to apply some transformation
rules to the original netlist to decrease the number of extra SWAP gates required for running the
circuit on the architecture. We follow two policies in applying a transformation rule, greedy and
simulated-annealing-based policies. Simulation results show that the proposed technique decreases
the average number of extra SWAP operations by about 20.6% and 24.1% based on greedy and
simulated-annealing-based policies, respectively, compared with the best in the literature.

Keywords: quantum circuits; transformation rules; nearest-neighbor architectures; simulated annealing

1. Introduction

Quantum computing is part of computer science research that focuses on the devel-
opment of computers based on quantum theory that examines the nature and behavior
of matter [1]. The invention of quantum computers represents a considerable leap in the
ability of computer processing [2]. A quantum computer gains extreme processing power
by following the laws of quantum physics. This improvement is achieved through the
ability to have several states and execute different commands using all possible permuta-
tions at a single time. There is a fundamental difference between classical computers and
next-generation quantum computers. A classical computer performs preset commands
based on classic physics rules, but a quantum computer is a device that uniquely identifies
a physical phenomenon based on quantum mechanics to basically detect a new mode of
information processing. In a typical computer, the information is fed into a series of code
bits, and these bits are manipulated by the Boolean logic gates that are applied serially to
obtain the final result. In a quantum computer, instead of using transistors and conven-
tional computer circuits, atoms and other fine particles are used to process information.
An atom can act as a quantum bit of memory on a computer, and transfer of information
from one location to another can also be achieved by optical fiber [3,4].

Physical design is one of the main processes of the quantum circuit design. The
other process is synthesis. The synthesis and physical design processes were traditionally
performed separately because the integration of two processes into one monolithic process
makes the complexity of design process unmanageable [5]. However, without interaction
between the physical design and the synthesis processes, the generated layout was not
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good. Addressing this issue, the physical synthesis concept [5], the interaction between
synthesis and physical design processes, was introduced in [6] for quantum circuits. The
physical synthesis modifies the netlist or layout considering the layout information to
improve the objectives (e.g., latency) or meet the design constraints.

In most physical platforms, performing quantum gates on non-adjacent qubits is error
prone and sometimes is hindered by the target technology [7]. Hence, quantum gates are
restricted to be performed on neighboring qubits. To perform a gate, a communication
channel of SWAP gates is needed to be constructed if the qubits in the physical environment
are not adjacent. These additional SWAP gates increase the latency and error probability of
the original quantum circuit [8]. Therefore, the fewer SWAP gates are added, the faster a
quantum circuit is executed. This problem is an NP-hard problem [9]. Several heuristic
approaches have been already proposed that tried to map qubits of a circuit on nearest-
neighbor architectures in a way that the number of SWAP gates were minimized [10–13].
Focusing on this problem, we propose a transformation-based physical synthesis technique
to decrease the number of SWAP gates. This procedure takes the mapping information and
uses transformation rules to substitute some parts of the netlist so that the circuit needs
fewer SWAP gates to be inserted.

The rest of the paper is organized as follows: The Section 2 overviews the prior works.
Section 3 contains the main idea of the transformation method as well as our explanation
of our strategy for applying this method. Sections 4 and 5 show the experimental results
and conclusion, respectively.

2. Related Work

This section is divided into two parts. In the first part, the works that use transforma-
tion rules for logic synthesis or post-synthesis optimization are mentioned. In the second
part, the research done on the physical synthesis in quantum circuits is stated.

The work performed in [14] presented the idea of local transformation of reversible
circuits. While the main purpose of this work was not post-synthesis optimization, its
idea was extended by other researchers to improve circuit costs. The authors defined a
canonical form for circuits in the NCT library and introduced a complete set of rules to
transform any NCT-constructible circuit into its canonical form, which may or may not be
compact. Shende et al. [15] proposed a new rule for simplification of reversible circuits
in the NCT library. The concept of applying a rule set was extended in [16], where the
authors introduced several transformation rules based on a set of predefined patterns
called templates. In [17], template matching with up to six gates was used in post-synthesis
optimization. Similarly, the Toffoli–Fredkin templates were explored in [18,19]. Toffoli
templates were expanded in [20,21] by the addition of all templates of size 7 (five templates)
and a set of templates of size 9 (four templates). Maslov et al. [22] used templates and
rules to simplify quantum circuits, such as a 10-gate quantum network for a 3-qubit full
adder. Lu et al. [23] proposed equivalent circuits. Equations were introduced in [23] to
simplify the quantum circuit as much as possible. Saeedi et al. [24] extended the templates
to work with up to three SWAP gates. Arabzadeh et al. [25] proposed a set of simplification
rules in terms of positively and negatively controlled Toffoli gates. An optimization in [26]
used a window to select potential subcircuits first. Abdessaied et al. [27] used Boolean
satisfiability for template matching. In the work performed in [28], a systematic method
of generating all templates with a given number of lines was presented. Bandyopadhyay
et al. [29] proposed a post-synthesis optimization technique for reversible circuits based on
newly defined templates. In their work, templates are applied on a specific order over the
input circuit and exhaustively search through the circuit for possible replacements.

The physical synthesis concept in quantum circuits was introduced in [6] for the first
time and some physical synthesis techniques proposed for ion trap technology in the next
papers [30–33].

Most of the above-mentioned papers are at the circuit level. However, our focus is on the
physical design level after the physical mapping is done in nearest-neighbor architectures.
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3. Transformation-Based Physical Synthesis

The physical synthesis modifies the netlist or layout considering the layout infor-
mation to improve the objectives (e.g., latency or error probability) or meet the design
constraints. The proposed scheme in this paper uses transformation rules to achieve the
desired improvements. These templates are composed of gates implementable in nearest-
neighbor technologies [34]. To apply those to the circuit, we present a flow. In the rest of
this section, we first introduce transformation rules and then present the flow.

Transformation rules consist of two equivalent sequences of gates. The first sequence
of gates is matched with a section of the circuit for simplification, and it is replaced with its
equivalent one when a match is found. Figure 1 shows our transformation rules used in
our approach. These rules are easily verifiable by checking their equivalent matrices.
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q1, q2, and q3, respectively. It can be easily verified by matrix multiplication that the two 
circuits shown in Figure 3a are functionally equal. This circuit has 6 gates and 4 qubits. If 
the initial locations of the qubits on the lattice are as in Figure 3c, four SWAP gates are 
needed, as shown in Figure 3d. However, when the two-gate template is replaced by its 
equivalent one, the circuit is transformed into one shown in Figure 3e that needs two 
SWAP gates, as shown in Figure 3f. 

Figure 1. Transformation rules used in this paper.

Figure 2 shows the proposed flow for applying the transformation approach. The flow
uses an optimized gate-level netlist as an input and generates a scheduled mapping. We
use the mapping approach proposed in [11] to map the input netlist onto the architecture.
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Figure 2. The proposed flow for applying transformations.

After building the mapped circuit, our optimization loop is started. Our greedy policy
for transformation is as follows. One sequence is searched in the input netlist, and the
equivalent sequence is tentatively replaced into the location that it is found. Then, the
number of SWAP gates is calculated. If the number of SWAP gates is improved, this
sequence replacement is accepted. Otherwise, it is rejected. When the search of the first
sequence is completed, the search of the next sequence with the same mechanism follows.
The optimization loop continues until all sequences are examined.

An Example

In this section, an example is given to illustrate our transformation-based physical
synthesis approach. Figure 3a,b shows a template and a quantum circuit operating on q0,
q1, q2, and q3, respectively. It can be easily verified by matrix multiplication that the two
circuits shown in Figure 3a are functionally equal. This circuit has 6 gates and 4 qubits.
If the initial locations of the qubits on the lattice are as in Figure 3c, four SWAP gates are
needed, as shown in Figure 3d. However, when the two-gate template is replaced by its
equivalent one, the circuit is transformed into one shown in Figure 3e that needs two SWAP
gates, as shown in Figure 3f.
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4. Experimental Results

To evaluate the proposed approach, it was applied to the benchmark circuits from [34].
In this paper, we targeted the number of SWAP gates as the objective function and reduced
it to minimize the latency and error probability of the circuits. Although our approach is
applicable to all kinds of nearest-neighbor architectures, we applied it to the 2D square
lattice topology to compare our approach with the previous one [11].

Table 1 shows the number of SWAP gates and the run time of the benchmark circuits
resulted from prior physical design flow [11] and our physical design flow enhanced
by the template-matching physical synthesis technique. The number of SWAP gates of
circuits obtained by the prior physical design flow and ours are shown in the columns
“Prior Physical Design Flow” and “Our Physical Design Flow”, respectively. The column
“Improvement” shows that the improvement of the number of SWAP gates resulted from
the physical synthesis approach proposed in this paper. As can be seen, a considerable
improvement of 20.6% (on average) was achieved in the number of SWAP gates of the
benchmarks. The columns “Prior Physical Design Flow” and “Our Physical Design Flow”
under “Run Time” show the run time of the prior physical design flow and the run time of
our optimization technique, respectively. The last column includes the runtime overhead
imposed by our optimization approach.
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Table 1. The results achieved by prior physical design flow and ours for the attempted benchmarks 1.

# Benchmarks Qubits Gates

Number of SWAP Gates Run Time (ms) 2

Prior Physical
Design Flow

[11]

Our Physical
Design Flow

Improve-
ment (%)

Prior Physical
Design Flow

[11]

Our Physical
Design Flow

Overhead
(%)

1 Adder-8 18 381 55 50 9.1 237 250 5.2
2 Adder-16 34 757 107 93 13.1 289 306 5.6
3 Adder-24 50 1133 147 126 14.3 290 310 6.5
4 Adder-32 66 1509 193 160 17.1 295 317 6.9
5 Adder-64 130 3013 385 304 21.0 2640 2850 7.4
6 Qft7 7 104 15 13 13.3 12 12 0.0
7 Qft8 8 135 16 13 18.8 15 15 0.0
8 Qft9 9 170 25 20 20.0 18 19 5.3
9 Qft10 10 209 28 21 25.0 26 28 7.1

10 Grover6 7 3314 195 160 17.9 3020 3150 4.1
11 Grover7 8 10,672 1326 1002 24.4 7540 8108 7.0
12 Grover8 9 29,454 1508 1024 32.1 12,780 14,002 8.7
13 Grover9 10 80,480 8415 4928 41.4 24,987 28,050 10.9

Average 20.6 5.7

1 All results of this section are obtained on a Core i3 with 6 gigabyte of memory. 2 As calculated by the Rational Quantify suite.

Heuristic Algorithm Analysis

As stated before, we followed a greedy approach to accept or reject one substitution.
In other words, the substitutions increasing the number of SWAP gates were rejected.
To examine the impact of applying another heuristic on the result, we used simulated
annealing (SA) heuristics [35] in accepting or rejecting substitutions. Table 2 shows the
results of using the heuristic. The column “Our Approach Based on SA” under “Number of
SWAP Gates” shows the number of SWAP gates obtained by our physical design flow when
we substitute the simulated annealing heuristic for our greedy approach. The columns
“Our Approach Based on Greedy” and “Our Approach Based on SA” under “Run Time”
show the run times of our physical design flow using the simulated annealing approach
and the greedy approach, respectively. The column “SA/Greedy Ratio” under “Number
of SWAP Gates” contains the ratio of the number of SWAP gates obtained by simulated
annealing to that achieved by our greedy approach. The column “Improvement” shows
that the improvement of the number of SWAP gates resulted from the physical synthesis
approach based on SA. The column “Overhead” includes the runtime overhead imposed
by the SA approach. The last column includes the ratio of the run time of the flow based on
the simulated annealing approach to that based on our greedy approach. It can be observed
from the table that simulated annealing provided slightly better results than the greedy
approach in most cases. However, on average, the run time of simulated annealing is
almost 6.49 times longer. This observation might suggest that while various heuristics may
provide slightly different results, it is the execution time that varies the most among them.
In other words, it appears that the execution time is the determining factor in choosing
among the heuristic approaches. Based on this, we chose the greedy approach for the
remainder of this paper.

Figure 4 depicts the behavior of the number of SWAP gates obtained by the two
approaches in accepting or rejecting a substitution. Although the improvement obtained
by our approach depends on the structure of a circuit, as the number of gates increases,
more templates can be potentially found in the circuit. Therefore, as the figure implies, the
improvement increases with increasing the number of gates.
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Table 2. The number of SWAP gates of the benchmark circuits achieved by using simulated annealing heuristics compared
with our greedy approach in accepting or rejecting a substitution.

# Benchmarks

Number of SWAP Gates Run Time (ms)

Our
Approach
Based on
Greedy

Our
Approach

Based on SA

Improve-
ment (%)

SA/Greedy
Ratio

Our
Approach
Based on
Greedy

Our
Approach

Based on SA

Overhead
(%)

SA/Greedy
Ratio

1 Adder-8 50 50 0.0 1 250 580 132.0 2.3
2 Adder-16 93 91 2.2 1.0 306 600 96.1 2.0
3 Adder-24 126 123 2.4 1.0 310 780 151.6 2.5
4 Adder-32 160 155 3.1 1.0 317 900 183.9 2.8
5 Adder-64 304 295 3.0 1.0 2850 20,950 635.1 7.4
6 Qft7 13 13 0.0 1.0 12 20 66.7 1.7
7 Qft8 13 12 7.7 1.0 15 30 100.0 2.0
8 Qft9 20 18 10.0 0.9 19 46 142.1 2.4
9 Qft10 21 19 9.5 0.9 28 150 435.7 5.4

10 Grover6 160 155 3.1 0.9 3150 30,270 861.0 9.6
11 Grover7 1002 906 9.6 1.0 8108 100,704 1142.0 12.4
12 Grover8 1024 995 2.8 0.9 14,002 193,509 1282.0 13.8
13 Grover9 4928 4656 5.5 1.0 28,050 563,282 1908.1 20.1

Average 4.5 1.0 548.9 6.49
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5. Conclusions

The idea behind this paper is to present equivalent models with the same level
number and to use them in the physical synthesis of quantum circuits. Physical synthesis
involves making local changes in the netlist to improve design criteria, including the
delay of quantum circuits. In this paper, a number of templates are proposed, and by
substituting these templates in different benchmark circuits, an improvement is presented
in the number of SWAP gates. To put the proposed templates into the experiment, nearest-
neighbor architectures are selected as our substrate architecture. The results show that the
template-matching approach improves the number of SWAP gates up to 41%.

To evaluate our greedy approach in deciding a substitution, we compared it with the
SA approach. The results showed that the SA method improves the number of SWAP gates
only marginally, while its run time is almost 6.49 times longer.
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