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Abstract: Bell’s inequality is investigated in parity-time (PT ) symmetric quantum mechanics, using
a recently developed form of the inequality by Maccone, with two PT -qubits in the unbroken phase
with real energy spectrum. It is shown that the inequality produces a bound that is consistent with the
standard quantum mechanics even after using Hilbert space equipped with CPT inner product and
therefore, the entanglement has identical structure with standard quantum mechanics. Consequently,
the no-signaling principle for a two-qubit system in PT -symmetric quantum theory is preserved.
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1. Introduction

Bell’s inequality [1–4] has played a significant role in distinguishing the quantum
theory and a classical theory with local hidden variables [2]. It has been studied extensively
in many equivalent forms, involving the standard Dirac-von-Neumann inner product.
The most familiar form of the Bell’s inequality is Clauser-Horne-Shimony-Holt (CHSH)
inequality [5], where expectation values of observables are calculated using bi-linear Pauli
operators and if the local hidden variable assumption is considered, then the inequality has
a bound of 2, while the maximum violation allowed by quantum mechanics is 2

√
2, also

known as Tsirelson’s bound [6]. There has been a large number of experimental tests of
Bell’s inequality, where many subtle aspects of the underlying quantum correlations have
been carefully probed [7–12]. It is important to note that, historically, the mathematical
core of Bell’s theorem goes back to the derivation of Boole’s inequality in the probability
theory [13,14]. Recently a simpler form of the inequality has been obtained in a succinct
way by Maccone [15], following Preskill [16] and Mermin’s suggestion [17].

The proof of the inequality in [15] considers two identical objects with the same
values of all properties and takes Einstein’s arguments [18] into account, implying that,
the values of properties are initially known i.e., predetermined (or counterfactual-definite).
Furthermore, it assumes that the values are independent of measurements, which suggests
measuring a property of one object will not affect the measurement of the second object’s
property (i.e., locality). Assuming three, arbitrary two-valued properties A, B, C, satisfying
both locality and counterfactual-definiteness and that each observer has two such objects,
the Bell’s inequality in Maccone’s form [15] states that,

Psame(A, B) + Psame(A, C) + Psame(B, C) ≥ 1. (1)

Here, Psame(A, B) is the probability that the property A of the first object and B of the second
have the same values. If the probability sum is greater than or equal to one, it will indicate
that, the theory will obey both locality and counterfactual-definiteness. However, quantum
theory violates the Bell’s inequality showing that, it is either non-local e.g., de Broglie-Bohm
interpretation [19] or non-counterfactual-definite e.g., Copenhagen interpretation [15] and
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it indicates that a deterministic quantum theory encompassing local hidden variables can
not account for observations made from quantum physics [20].

In standard quantum mechanics, to obtain real energy eigenvalues and to maintain
the unitarity of the evolution, the condition of the Hermiticity of the Hamiltonian (i.e.,
H = H†) is indispensable. Although in the past few years, it has been predicted that this
requirement of Hermiticity which is generally stated as an axiom in quantum theory, can be
replaced by the less mathematical and more physical conditions on Hamiltonians without
compromising on the physical core of the quantum theory. Recently, the complex extension
of quantum mechanics has been put forward by Bender, Brody, and Jones [21], which
includes replacement of mathematical condition of Hermiticity of Hamiltonians by the con-
dition of PT -symmetry, to obtain the corresponding real energy eigenvalue spectrum [22].
Physically, the PT -symmetric Hamiltonians are not isolated like Hermitian Hamiltonians;
rather, they are in contact with the environment leading to the non-Hermiticity character.
If this contact is constrained such that the gain from the environment is exactly balanced
by the loss, then the PT -symmetric Hamiltonians will have real energy eigenvalues, lead-
ing to the unbroken PT -symmetric phase. Consequently, the PT -symmetric quantum
theory behaves like Hermitian quantum theory in equilibrium. For the general case, it
can have complex eigenvalues, in the broken PT -symmetric phase, and in this case, the
PT -symmetric systems behave like out of equilibrium systems.

The unique feature of the non-Hermitian system is merging different eigenvalues and
eigenvectors. This singularity in parametric space, where this merging happens, is known
as an Exceptional point. Additionally, non-Hermitian systems do not obey conservation
laws as they exchange energy with the surroundings. To understand such systems, PT -
symmetric Hamiltonians play a crucial role. Physically, the PT -symmetric Hamiltonians
are being used to understand optical gain and loss in photonics by treating them as non-
conservative ingredients [23]. The first experimental realization of PT -symmetric systems
was observed in an electrical circuit system [24]. Consequently, it was further explored
into conservative coupled systems, which consists of balanced gain and loss, e.g., optical
microcavities [25], optical systems with atomic media [26], optical waveguides [27] and
mechanical systems [28].

It has been previously shown that, the basic properties of entanglement can be vio-
lated under local PT -symmetric operations [29–33] i.e., if one qubit is subjected to PT -
symmetric Hamiltonian evolution and the other is in the conventional world, then entangle-
ment increases under local operation. We use the version of Bell’s inequality from [15,16]
and consider both the qubits in PT -symmetric framework along with CPT inner product,
which results in obtaining a consistent Bell’s bound as in Hermitian quantum mechan-
ics. It needs to be emphasised that, the Bell’s inequality is a fundamental measure of
non-locality and it becomes evident from our result that, the non-locality is consistent
in PT -symmetric quantum theoretic framework. It is worth pointing out that, in the
unbroken PT -symmetric phase, Bell-CHSH inequality has been found to be consistent
with Hermitian quantum mechanics [34].

The paper is organized as follows: In Section 2 we discuss the general PT -symmetric
Hamiltonian, the corresponding eigenvectors and introduce CPT inner product with the
individual definitions of C,P , T operators. We deduce the proof of Bell’s inequality for PT -
symmetric quantum systems and show that the bound is independent of non-hermiticity
parameter (which further leads to the conservation of no-signaling theorem) in Section 3.
In Section 4 we summarize our findings, compare with the previous works and conclude
with the future directions.

2. PT -Symmetric Qubits

For the purpose of illustration, we consider the PT -symmetric Hamiltonian [21],

H =

(
reiθ s

s re−iθ

)
, (2)
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with the eigenvalues,
E± = rcosθ ±

√
s2 − r2sin2θ. (3)

Based on the above eigenvalues, there are two parametric regions, the brokenPT -symmetric
region in which energy eigenvalues form a complex conjugate pair since, s2 < r2sin2θ
and the region of unbroken PT -symmetry, where energy eigenvalues are real because,
s2 > r2sin2θ [21]. The eigenvectors for the unbroken PT -symmetric case are,

|a0〉 = |ψ+〉 =
1√

2cosα

(
eiα/2

e−iα/2

)
, (4)

|a1〉 = |ψ−〉 =
i√

2cosα

(
e−iα/2

−eiα/2

)
. (5)

Following [21], we have set sinα = (r/s)sinθ, where, α is the non-Hermiticy parameter. It
is noted that, the condition s2 = r2sin2θ yields the PT -symmetric degenerate states.

The CPT inner product is defined as [21],

〈ψ+| = [CPT |ψ+〉]t, (6)

where, C is the charge conjugation operator and t is the matrix transposition operation.
The operator C has eigenvalues ±1 and it yields the sign of the PT -norm of the state.

This follows,
CPT |ψ±〉 = ± |ψ±〉 (7)

It is seen that C2 = 1, provided;

C = 1
cosα

(
isinα 1

1 −isinα

)
. (8)

The parity operator is defined as [21],

P =

(
0 1
1 0

)
, (9)

with, P2 = 1. Operators P and C do not commute with each other and if the non-
Hermiticity parameter α→ 0 then C → P.

The time reversal operator T is an anti-linear operator, which changes i to −i i.e., T
implements the action of complex conjugation. It is important to note that, T belongs to
the class of operators known “involutional” operators [35];

T 2 = η I, η = ±1, (10)

provided, T explicitly satisfies, T iT −1 = −i.
Using above definition of inner product and C,P , T operators, one observes that the

orthonormality conditions are satisfied for eigenvectors of PT -symmetric Hamiltonian;

〈a0|a0〉 = 〈a1|a1〉 = 〈ψ+|ψ+〉 = 〈ψ−|ψ−〉 = 1.

〈a0|a1〉 = 〈ψ+|ψ−〉 = 0.
(11)

This immediately follows,

〈b0|b1〉 = 0 = 〈c0|c1〉 (12)
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3. Proof of Bell’s Inequality in PT -Symmetric Quantum Theory

To obtain Bell’s inequality in PT -symmetric quantum theory, we consider a quantum
system that violates inequality (1). Consider three objects A, B and C having two valued
properties defined by the following set of eigenstates [15].

For A, we define the two valued properties as states |a0〉 and |a1〉, while for B and C
we define their corresponding two valued properties in terms of states given as,

|b0〉 =
1
2
|ψ+〉+

√
3

2
|ψ−〉 ,

|b1〉 =
√

3
2
|ψ+〉 − 1

2
|ψ−〉 ,

|c0〉 =
1
2
|ψ+〉 −

√
3

2
|ψ−〉 ,

|c1〉 =
√

3
2
|ψ+〉+ 1

2
|ψ−〉 .

(13)

Consider two level systems (PT -qubits) in the joint entangled state,

|ψAB〉 =
1

2
√

2
[|a0〉 (|b0〉+

√
3 |b1〉) + |a1〉 (

√
3 |b0〉 − |b1〉)]. (14)

With the corresponding bra vector for the abovePT -symmetric joint entangled state; [30,31,36],

〈ψAB| = [(CPT ⊗ CPT ) |ψAB〉]t. (15)

where, t is the matrix transposition operation.
Similarly, |ψAC〉 and |ψBC〉 are defined as,

|ψAC〉 =
1

2
√

2
[|a0〉 (|c0〉+

√
3 |c1〉)− |a1〉 (

√
3 |c0〉 − |c1〉)],

|ψBC〉 =
1

4
√

2
[(|b0〉+

√
3 |b1〉)(|c0〉+

√
3 |c1〉)− (

√
3 |b0〉 − |b1〉)(

√
3 |c0〉 − |c1〉)].

(16)

The corresponding bra vectors are,

〈ψAC| = [(CPT ⊗ CPT ) |ψAC〉]t , 〈ψBC| = [(CPT ⊗ CPT ) |ψBC〉]t. (17)

Using the CPT inner product defined in (15), one obtains,

〈ψAB|ψAB〉 = 〈ψAC|ψAC〉 = 〈ψBC|ψBC〉 = 1. (18)

We now calculate the probability amplitude of obtaining 0 or 1, for both the properties A
and B or A and C or B and C (for example the property can be the results of any dichotomic
systems), by using CPT inner product. Given all the above prerequisites (The explicit
calculation for one case is provided in the Appendix A), one obtains,
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〈a0b0|ψAB〉 = [(CPT ⊗ CPT ) |a0b0〉]t |ψAB〉 =
1

2
√

2
,

〈a1b1|ψAB〉 = [(CPT ⊗ CPT ) |a1b1〉]t |ψAB〉 = −
1

2
√

2
,

〈a0c0|ψAC〉 = [(CPT ⊗ CPT ) |a0c0〉]t |ψAC〉 =
1

2
√

2
,

〈a1c1|ψAC〉 = [(CPT ⊗ CPT ) |a1c1〉]t |ψAC〉 =
1

2
√

2
,

〈b0c0|ψBC〉 = [(CPT ⊗ CPT ) |b0c0〉]t |ψBC〉 = −
1

2
√

2
,

〈b1c1|ψBC〉 = [(CPT ⊗ CPT ) |b1c1〉]t |ψBC〉 =
1

2
√

2
.

(19)

Using,
P = | 〈ψ|φ〉 |2,

the probabilities of obtaining 0 or 1 for both the properties are,

P(a0b0) = P(a1b1) = P(a0c0) = P(a1c1) = P(b0c0) = P(b1c1) =
1
8

. (20)

Therefore,

Psame(A, B) + Psame(A, C) + Psame(B, C) =
3
4

. (21)

This is the Bell’s bound for PT -symmetric quantum mechanics using Maccone’s form and
it identically matches with the Hermitian quantum mechanics. Remarkably, the above
equation has no dependence on non-Hermiticity parameter.

4. Conclusions

To summarize, we show that, in the unbroken phase of PT -symmetry, using the PT -
symmetric qubits and physically accepted CPT inner product, the Bell’s inequality will
be violated exactly in the same manner as in the conventional quantum mechanics. This
verifies thatPT -symmetric quantum theory is a genuine complex extension of conventional
quantum mechanics. Further, it signifies that, the no-signaling theorem is not violated
under PT -symmetric operations if both qubits are taken as PT -qubits along with the
consistent definition of CPT inner product. Our result is consistent with [34] using a
much more simpler setting of Bell’s inequality. Hence, PT -symmetric Hamiltonians can
be used as a powerful tool for quantum information, quantum computing and quantum
communications. In short, if Alice and Bob both live in a PT -symmetric quantum world,
and use PT -symmetric qubits and properly defined CPT inner product, then they will
find that, the extent of violation for Bell’s inequality is same as that in standard Hermitian
quantum mechanical world. Analysing Bell’s inequality for the broken PT -symmetric
case [37] and the dependence of the Bell’s bound on the dimension of the PT -symmetric
systems are works in progress. The experimental realization of our result on IBM quantum
experience will be the matter of forthcoming research.
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Appendix A

We begin with the PT -symmetric eigenvectors of the Hamiltonian in (2).
The two orthonormal states of the properties A and B are respectively given as,

|a0〉 =
1√

2cosα

(
eiα/2

e−iα/2

)
|a1〉 =

i√
2cosα

(
e−iα/2

−eiα/2.

)
(A1)

|b0〉 =
1

2
√

cosα


√

3
2 e−iα/2 + 1√

2
eiα/2

1√
2

e−iα/2 −
√

3
2 ieiα/2

 |b1〉 =
1

2
√

cosα

− 1√
2

e−iα/2 +
√

3
2 eiα/2√

3
2 e−iα/2 + 1√

2
ieiα/2.

 (A2)

The joint entangled state for A and B is then,

|ψAB〉 =
1√
2

[
1
2
|a0b0〉+

√
3

2
|a0b1〉+

√
3

2
|a1b0〉 −

1
2
|a1b1〉

]

=
1

32cosα




(
√

3i + eiαsecα)

secα +
√

3(−i + tanα)

secα +
√

3(i + tanα)

−(
√

3i + e−iα)secαe−iα/2

+


(
√

3i + eiαsecα)

secα +
√

3(−i + tanα)

secα +
√

3(i + tanα)

−(
√

3i + e−iα)secαe−iα/2




+
1

32cosα




(i−
√

3e−iα)secα

secα +
√

3(−i + tanα)

(i +
√

3 + secα + tanα)

−(i +
√

3eiα)secαe−iα/2

+


(
√

3i + e−iα)secα

−secα +
√

3(i + tanα)

(−i +
√

3eiα)secα

(−1 +
√

3eiα)secαe−iα/2




=
(

itanα√
2

secα√
2

secα√
2

−itanα√
2

)t

(A3)

Then inner product can be obtained as,

〈a0b0| = [(CPT ⊗ CPT ) |a0b0〉]t , 〈a1b1| = [(CPT ⊗ CPT ) |a1b1〉]t. (A4)

The quantity 〈a0b0|ψAB〉 yields the probability amplitude for obtaining 0 for both A
and B;

〈a0b0|ψAB〉 = [(CPT ⊗ CPT ) |a0b0〉]t. |ψAB〉

=
1√

2(2 + 2e2iα)


1
4 (1−

√
3isecα + itanα)(2 + 2e2iα)−1

eiα +
√

3ie2iα

−
√

3i + eiα

1 +
√

3ieiα


t

.


itanα

secα

secα

−itanα


=

1
2
√

2
.

(A5)

Therefore, the probability is,

P(a0b0) =
1
8

. (A6)

Similarly, the probability amplitude for getting 1 for both A and B as,

〈a1b1|ψAB〉 =
1

2
√

2
. (A7)
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The total probability of obtaining the same property for both A and B is found as,

P(a0b0) + P(a1b1) =
1
4

(A8)

Likewise, the total probability of getting same property for both A and C or B and C, can
be calculated;

Psame(A, B) + Psame(A, C) + Psame(B, C) =
3
4

. (A9)
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