

Supplementary material

Quantum Circuit Learning with Error

Backpropagation Algorithm and Experimental

Implementation

Masaya Watabe1, Kodai Shiba1,2, Chih-Chieh Chen2 , Masaru Sogabe2, Katsuyoshi

Sakamoto1,3, Tomah Sogabe1,2,3*

1 Engineering department, The University of Electro-Communications, Tokyo, Japan
2 Grid, Inc. Tokyo, Japan

3 i-PERC, The University of Electro-Communications, Tokyo, Japan

E-mail: sogabe@uec.ac.jp

S.A Dot product node

Backpropagation of dot product node.

Figure 1 Graph of dot product node.

𝐗 is an input state. The size of 𝐗 corresponds to N(= 2𝑛) of states with n qubits. 𝐖 is the network weights and corresponds to a
gate in the quantum circuit. The size is N × N.

𝐗 = (𝑥1, 𝑥2, … , 𝑥𝑁)T

𝐖 = [

𝑤1,1 ⋯ 𝑤1,𝑁

⋮ ⋱ ⋮
𝑤𝑁,1 ⋯ 𝑤𝑁,𝑁

]

Output 𝐘 is written as 𝐘 = 𝐖 ∙ 𝐗. Here, when there is a gradient
𝜕𝐿

𝜕𝐘
 with respect to 𝐘 of the loss function 𝐿, the gradient of each 𝐿

with respect to 𝐗 and 𝐖 is calculated as follows.

𝜕𝐿

𝜕𝐗
= 𝐖T ∙

𝜕𝐿

𝜕𝐘

𝜕𝐿

𝜕𝐖
=

𝜕𝐿

𝜕𝐘
∙ 𝐗T

S.B Rotation gate 𝑼(𝜽) node

The weight 𝐖 in the full-connected network is made to correspond to the rotation gate in the quantum circuit.

𝐖 = [
𝑤1,1 𝑤1,2

𝑤2,1 𝑤2,2
] = [

𝑢1,1(𝜃) 𝑢1,2(𝜃)

𝑢2,1(𝜃) 𝑢2,2(𝜃)
] = 𝑼(𝜃)

Unlike conventional fully-connected networks, the elements of the unitary gate 𝑼(𝜃) matrix are not independent of each other
and have a common parameter 𝜃. Therefore, the gradient of 𝐿 with respect to 𝜃 is obtained by backpropagation using the calculation
graph shown in Fig. 2.

For example, we chose 𝑅𝑌 gate,

𝑼(𝜃) = 𝐑𝐲(𝜃) = [
cos

𝜃

2
− sin

𝜃

2

sin
𝜃

2
cos

𝜃

2

] ,

𝜕𝐑𝐲(𝜃)

𝜕𝜃
= [

𝜕𝑢1,1

𝜕𝜃

𝜕𝑢1,2

𝜕𝜃
𝜕𝑢2,1

𝜕𝜃

𝜕𝑢2,2

𝜕𝜃

] = [
− sin

𝜃

2
− cos

𝜃

2

cos
𝜃

2
− sin

𝜃

2

] ,

We define vector 𝒊𝟎 = [1 1] and 𝒊𝟏 = 𝒊𝟎
T. The gradient is

Figure 2 Graph of rotation gate 𝑼(𝜃) node

𝜕𝐿

𝜕𝜽𝒊𝟏

= [

𝜕𝐿

𝜕𝜃

𝜕𝐿

𝜕𝜃
𝜕𝐿

𝜕𝜃

𝜕𝐿

𝜕𝜃

] =

[

𝜕𝐿

𝜕𝑢1,1

𝜕𝑢1,1

𝜕𝜃

𝜕𝐿

𝜕𝑢1,2

𝜕𝑢1,2

𝜕𝜃

𝜕𝐿

𝜕𝑢2,1

𝜕𝑢2,1

𝜕𝜃

𝜕𝐿

𝜕𝑢2,1

𝜕𝑢2,1

𝜕𝜃]

 ,

𝜕𝐿

𝜕𝜽𝒊𝟎

= 𝒊𝟏
T ∙

𝜕𝐿

𝜕𝜽𝒊𝟏

 ,

𝜕𝐿

𝜕𝜃
=

𝜕𝐿

𝜕𝜽𝒊𝟎

∙ 𝒊𝟎
T.

From above,

𝜕𝐿

𝜕𝜃
=

𝜕𝐿

𝜕𝜽𝒊𝟎

∙ 𝒊𝟎
T = (𝒊𝟏

T ∙
𝜕𝐿

𝜕𝜽𝒊𝟏

) ∙ 𝒊𝟎
T

𝜕𝐿

𝜕𝜃
=

𝜕𝐿

𝜕𝑢1,1

𝜕𝑢1,1

𝜕𝜃
+

𝜕𝐿

𝜕𝑢1,2

𝜕𝑢1,2

𝜕𝜃
+

𝜕𝐿

𝜕𝑢2,1

𝜕𝑢2,1

𝜕𝜃
+

𝜕𝐿

𝜕𝑢2,2

𝜕𝑢2,2

𝜕𝜃

S.C Observation Probability node

Output state |𝜓𝑜𝑢𝑡⟩ is

|𝜓𝑜𝑢𝑡⟩ = 𝑐0|0⟩ + 𝑐1|1⟩ + ⋯+ 𝑐𝑁−1|𝑁 − 1⟩,
where 𝑐𝑗 is the probability amplitude and satisfies |𝑐0|

2 + |𝑐1|
2 + ⋯+ |𝑐𝑁−𝑖|

2 = 1.

Figure 3 Graph of the probability amplitude node

The gradient of 𝑝𝑖 with respect to a probability amplitude 𝑐𝑗 can be calculated as follows. 𝑐�̅� is the complex conjugate of 𝑐𝑗.

𝜕𝑝𝑗

𝜕𝑐𝑗
=

𝜕

𝜕𝑐𝑗
(𝑐𝑗𝑐�̅�) = 𝑐�̅�

S.D Quantum circuit learning results with classification problems. The training data are added with noise.

Figure 4 Quantum circuit learning results using error backpropagation for nonlinear binary classification problem with 4 qubit and 7 layer
depth: (a) Training data set for make_circles, red for label ‘0’ and blue for label ‘1’ ; (b) Test results using the learnt parameter using
the 200 make_circles dataset, pink line corresponding to the median boundary of the continuous probability; (c) scikit-learn-SVM
classification results using the learnt support vectors; (d) Training data set for make_moons, red for label ‘0’ and blue for label ‘1’ ;; (e)
Test results using the learnt parameter under the 200 make_moon dataset, pink line corresponding to the median boundary of the continuous
probability; (f) scikit-learn-SVM classification results using the learnt support vectors.

(a) (b)

(d) (e)

(c)

(f)

