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S.A   Dot product node 

Backpropagation of dot product node. 
 

Figure 1  Graph of dot product node.  

𝐗 is an input state. The size of 𝐗 corresponds to N(= 2𝑛) of states with n qubits. 𝐖 is the network weights and corresponds to a 
gate in the quantum circuit. The size is N × N. 

𝐗 = (𝑥1, 𝑥2, … , 𝑥𝑁  )T 

𝐖 = [

𝑤1,1 ⋯ 𝑤1,𝑁

⋮ ⋱ ⋮
𝑤𝑁,1 ⋯ 𝑤𝑁,𝑁

] 

Output 𝐘 is written as 𝐘 = 𝐖 ∙ 𝐗. Here, when there is a gradient 
𝜕𝐿

𝜕𝐘
 with respect to 𝐘 of the loss function 𝐿, the gradient of each 𝐿 

with respect to 𝐗 and 𝐖 is calculated as follows. 
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S.B   Rotation gate 𝑼(𝜽) node 

The weight 𝐖 in the full-connected network is made to correspond to the rotation gate in the quantum circuit. 

𝐖 = [
𝑤1,1 𝑤1,2

𝑤2,1 𝑤2,2
] = [

𝑢1,1(𝜃) 𝑢1,2(𝜃)

𝑢2,1(𝜃) 𝑢2,2(𝜃)
] = 𝑼(𝜃) 

Unlike conventional fully-connected networks, the elements of the unitary gate 𝑼(𝜃) matrix are not independent of each other 
and have a common parameter 𝜃. Therefore, the gradient of 𝐿 with respect to 𝜃 is obtained by backpropagation using the calculation 
graph shown in Fig. 2. 

 

For example, we chose 𝑅𝑌 gate, 

𝑼(𝜃) = 𝐑𝐲(𝜃) = [
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We define vector 𝒊𝟎 = [1 1] and 𝒊𝟏 = 𝒊𝟎
T. The gradient is 

Figure 2  Graph of rotation gate 𝑼(𝜃) node 
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From above,  
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S.C     Observation Probability node 

Output state |𝜓𝑜𝑢𝑡⟩ is 

|𝜓𝑜𝑢𝑡⟩ = 𝑐0|0⟩ + 𝑐1|1⟩ + ⋯+ 𝑐𝑁−1|𝑁 − 1⟩, 
where 𝑐𝑗 is the probability amplitude and satisfies |𝑐0|

2 + |𝑐1|
2 + ⋯+ |𝑐𝑁−𝑖|

2 = 1.  

 

Figure 3 Graph of the probability amplitude node  

 

 

The gradient of 𝑝𝑖  with respect to a probability amplitude 𝑐𝑗 can be calculated as follows. 𝑐�̅� is the complex conjugate of 𝑐𝑗. 
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S.D   Quantum circuit learning results with classification problems. The training data are added with noise. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  Quantum circuit learning results using error backpropagation for nonlinear binary classification problem with 4 qubit and 7 layer 
depth:   (a)  Training data set for make_circles, red for label ‘0’ and blue for label ‘1’ ; (b) Test results using the learnt parameter using 
the 200 make_circles dataset, pink line corresponding to the median boundary of the continuous probability;  (c) scikit-learn-SVM 
classification results using the learnt support vectors; (d) Training data set for make_moons, red for label ‘0’ and blue for label ‘1’ ;; (e) 
Test results using the learnt parameter under the 200 make_moon dataset, pink line corresponding to the median boundary of the continuous 
probability;    (f) scikit-learn-SVM classification results using the learnt support vectors.   
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