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Abstract: The use of near-term quantum devices that lack quantum error correction, for addressing
quantum chemistry and physics problems, requires hybrid quantum-classical algorithms and tech-
niques. Here, we present a process for obtaining the eigenenergy spectrum of electronic quantum
systems. This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective
Hilbert space specified by a set of computational bases. From this projection, an effective Hamil-
tonian is obtained. Furthermore, a process for preparing short depth quantum circuits to measure
the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given, whereby
quantum entanglement and ancilla qubits are used. The effective Hamiltonian is then diagonalized
on a classical computer using numerical algorithms to obtain the eigenvalues. The use case of this
approach is demonstrated for ground state and excited states of BeH2 and LiH molecules, and the
density of states, which agrees well with exact solutions. Additionally, hardware demonstration is
presented using IBM quantum devices for H2 molecule.
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1. Introduction

Quantum computers offer the ability to address problems in quantum many-body
chemistry and physics by quantum simulation or in a hybrid quantum-classical approach.
The latter method is considered the most promising approach for noisy-intermediate scale
quantum (NISQ) devices [1]. The prospect and benefits of quantum algorithms, along with
suitable hardware, is in overcoming the complexity of the wave-function of a quantum
system as it scales exponentially with system size [2]. Therefore, developing techniques and
algorithms for NISQ era devices that may prove to have some computational advantage
themselves, or establish a path towards ideas and foundations that provide advantage for
future error-corrected quantum devices, is a worthwhile pursuit.

The leading algorithms intended to be executed on NISQ devices, which aim to de-
termine solutions to an electronic Hamiltonian, are variational in nature [3]. One specific
algorithm is the variational quantum eigensolver (VQE), which has been tremendously
successful in addressing chemistry and physics problems on quantum hardware and NISQ
devices [4–12]. However, the restriction or challenge that exist with VQE is the need for
prior insight with regard to selecting the trial quantum state, i.e., ansatz circuit. Further-
more, the classical optimization of the ansatz parameters may be a poorly converging
problem [13,14], therefore limiting the applicability of VQE for obtaining results accurate
enough for chemical or physical interpretation. Finally, the realization of ansatz circuits
that are motivated by domain knowledge, for example, the unitary coupled cluster ansatz
for chemistry problems [15], may not be directly applicable on NISQ hardware, therefore
requiring clever modification to obtain hardware efficient ansätze [6,7,16].

In this work, we present a pragmatic hybrid quantum-classical approach for calcu-
lating the eigenenergy spectrum of a quantum system within an effective model. Firstly,
an effective Hamiltonian is obtained through measurement of short-depth quantum circuits.
The effective Hamiltonian is essentially the projection of the quantum system Hamiltonian
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onto a limited set of computational bases. The basis set is prepared with the intent of
ensuring the dimensions of the corresponding matrix does not grow exponentially with the
system size. In order to evaluate the matrix elements of the effective Hamiltonian, suitable
non-parametric quantum circuits are specified. The quantum circuits are designed, exe-
cuted, and measured. From the result of the measurements, the diagonal and off-diagonal
terms of the effective Hamiltonian matrix are obtained. On the classical side, the effec-
tive Hamiltonian matrix, with suitable dimensions, is diagonalized numerically using a
classical computer.

The paper is organized as follows: A short background is presented in Section 2.
In Section 3, the steps taken in our hybrid quantum-classical approach are explained in
detail. In Section 4, we demonstrate the application of this hybrid approach on simple
chemical molecules BeH2 and LiH. In Section 5, the approach is demonstrated on the
IBMQ 5-qubit Valencia quantum processor [17] for H2 molecule. Finally, we discuss the
integration of VQE and the proposed approach in Section 6.

2. Background

Consider a quantum many-body system of electrons with the second quantized Hamil-
tonian:

Ĥ = ∑
ij

κija†
i aj + ∑

ijkl
vijkla†

i a†
j akal . (1)

a†
i and ai are the creation and annihilation operators, respectively. The anticommutator for

the creation and annihilation are given by: aia†
j + a†

j ai = δij and aiaj + ajai = a†
i a†

j + a†
j a†

i =

0. These rules enforce the non-abelian group statistics for fermions, that is, under exchange
of two fermions the wave-function yields a minus sign.

The indices in Equation (1) refer to single-electron states. The coefficients κij and vijkl
are the matrix integrals

κij = 〈i|K̂1|j〉 (2)

and

vijkl = 〈ij|V̂12|kl〉, (3)

where K̂1 and V̂12 operators correspond to one- and two-body interactions respectively.
Since K̂1 and V̂12 can depend on other parameters, such as the distance between nuclei,
the Hamiltonian in Equation (1) represents a class of problems. However, this class of prob-
lems has the common property that the number of fermions is a conserved value. Strictly
speaking, the terms in the Hamiltonian act on fixed-particle-number Hilbert spaces,HNF ,
that have the correct fermionic antisymmetry, with NF denoting the number of electrons.
In this paper, we consider this class of electronic systems where the Hamiltonian is assumed
to be in the form of Equation (1). The coefficients expressed in Equations (2) and (3) can
be obtained using software packages developed for quantum chemistry calculations that
perform efficient numerical integration [18].

Mapping to Qubits & Computational Basis

The Hamiltonian as written in Equation (1) can be expressed in the form of qubit
operations (i.e., Pauli matrices). This requires a transformation that preserves the anti-
commutation of the annihilation and creation operators. One transformation that satisfies
the criteria, and is based on the physics of spin-lattice models, is the Jordan-Wigner (JW)
transformation [19]. The JW-transformed Hamiltonian takes the form

Ĥ = ∑
s

λs ĥs, (4)



Quantum Rep. 2021, 3 139

in which λs’s are scalar and a Pauli string operator ĥs is defined as

ĥs = Ôs
1 ⊗ · · · ⊗ Ôs

N . (5)

Ôs
i ∈ { Î, X̂, Ŷ, Ẑ} acts on the i-th qubit, {X̂, Ŷ, Ẑ} are the three Pauli matrices [20], and Î is

the identity matrix with the number of qubits denoted as N.
If the number of Î operators in the tensor product of ĥs is N − k, we call ĥs a k-local

Pauli string operator. Upon the JW transformation of the Hamiltonian, a Fock basis of the
second quantization representation is in one-to-one correspondence with a computational
basis of the qubits [21]. In other words, a computational basis of

|n〉 = |n0, n1, . . . , nN〉, (6)

with N qubits, where ni ∈ {0, 1}, is equivalent to a an antisymmetric Fock basis.
Within the finite, but exponentially large, Hilbert space spanned by 2N computational

basis set, an effective matrix representation of the Hamiltonian may be possible, specifically,
if one can efficiently evaluate the matrix elements 〈n′|Ĥ|n〉 for an arbitrary computational
basis |n〉 and |n′〉. Furthermore, assuming that the dimensions of the resulting effective
matrix are relatively small, the matrix can be diagonalized on a classical computer, where
its eigenvalues approximate the spectrum of the original Hamiltonian.

In this paper, we show how to evaluate a matrix element 〈n′|Ĥ|n〉 for arbitrary
computational basis |n〉 and |n′〉, using a quantum circuit that has a circuit depth O(N).
We do so by using ancilla qubits; thus, N + 1 physical resources are needed. In addition,
we discuss how to choose an effective subspace for a given electronic Hamiltonian, with a
dimension Ns, based on physical motivations (see Section 3.3). The condition Ns << 2N

makes it possible to diagonalize the Hamiltonian on a classical computer. In Section 4, we
numerically demonstrate this method for simple quantum chemistry systems, focusing
on ground state energy and the density of state calculations of the low-energy spectrum.
Furthermore, in Section 5 we use the IBMQ 5-qubit Valencia device to measure the terms
for H2 in the complete computational basis of 4 qubits.

3. Constructing an Effective Matrix Representation for a Hamiltonian by
Qubit Measurement
3.1. Effective Hamiltonian and Circuit Representation

We first consider a Hamiltonian Ĥ that is expressed in terms of Pauli strings as in
Equation (4). Additionally, a subspace S = {|n〉}, with Ns corresponding computational
bases, is considered such that Ns << 2N . Let us define the effective Hamiltonian matrix as
the projection of Ĥ onto this subspace; that is

Ĥe f f = ∑
n,n′∈S

〈n|Ĥ
∣∣n′〉 |n〉〈n′∣∣. (7)

The next step is to define a simple quantum circuit that utilizes one ancillary qubit to
measure 〈n|Ĥ|n′〉matrix element.

The dimension of Ĥe f f depends on the choice of the subspace in S . The choice of the
subspace, intuitively, depends on the physics of the problem. However, the focus of this
paper is towards quantum chemistry problems, which are a primary application for NISQ
devices. For this class of Hamiltonians, there is a systematic way to select the appropriate
subspace. This is discussed in Section 3.3.

The evaluation of diagonal terms in Ĥe f f , e.g., 〈n|Ĥ|n〉, is trivially performed by
preparing N qubits as a bit string of |n〉 ≡ (n0, . . . , nN) and measuring Ĥ. The measure-
ment of the total Hamiltonian is obtained by measuring every individual Pauli string, ĥs,
in Equation (5). The diagonal terms are then given by

〈n|Ĥ|n〉 = ∑
s

λs〈n|ĥs|n〉. (8)
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The off-diagonal matrix elements, e.g., 〈n′|Ĥ|n〉, which are generally complex num-
bers, can be evaluated using a single ancillary qubit. This can be done by considering the
quantum circuits as shown in Figure 1. The two circuits shown in Figure 1a,b are used to
calculate the real and imaginary parts of the matrix element, respectively. In both circuits,
the N + 1 qubits are initially prepared in |ψint〉 = |0〉 ⊗ |0〉⊗N state. The qubits are assumed
to be enumerated linearly from 1 to N + 1, where the N + 1-th qubit is the control qubit.

(a)

|0〉 H H

|0〉⊗N n′ n

(b)

|0〉 H S H

|0〉⊗N n′ n

(c)

|0〉

|0〉⊗3 n
→

|0〉

|0〉 X

|0〉 X

|0〉

Figure 1. Quantum circuits for measuring (a) the real and (b) imaginary parts of an off-diagonal
element 〈n′|Ĥ|n〉. (c) A controlled-n gate represents a set of CNOT gates that prepares the qubits in
the state |n〉. An example of controlled-n for N = 3 and |n〉 = |011〉 is shown.

After applying the first Hadamard gate on the ancillary qubit, from left to right as
shown in the circuits in Figure 1a,b, the quantum state of all the qubits is

|ψ〉 = 1√
2

[
|0〉|0〉⊗N + |1〉|0〉⊗N

]
, (9)

which, after a sequence of controlled-X gates, becomes entangled as

|ψ〉 = 1√
2

[
|0〉
∣∣n′〉+ |1〉|n〉]. (10)

Here, control gates (controlled-n and controlled-n′) flip NF qubits (corresponding to
the NF occupied electronic states) and prepare the target qubits in the computational basis
|n〉 (|n′〉), conditioned on the state of the control qubit is |1〉 (|0〉).

An example of a controlled-n gate that prepares target qubits in |011〉 state is shown
in Figure 1c. In practice, this part of the circuit requires two-qubit gates (e.g., CNOT) and
perhaps the need for full connectivity of qubits in order to operate on any two qubits. Full
connectivity of qubits could potentially be realized with ion-trapped devices [22]. See
Section 6 for further discussion.
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Depending on whether the real part or the imaginary part is calculated, the last gate
acting on the control qubit changes. With regard to the real part, after applying the last
Hadamard gate on the control qubit in Figure 1a, the quantum state is

|ψ〉 = 1
2
|0〉
[∣∣n′〉+ |n〉]+ 1

2
|1〉
[∣∣n′〉− |n〉]. (11)

Using this prepared quantum state, one can measure

M̂0 = |0〉〈0| ⊗ Ĥ (12)

at the end of the circuit and have

m0 = 〈ψ|
[
|0〉〈0| ⊗ Ĥ

]
|ψ〉

=
1
22

(
〈n|Ĥ|n〉+

〈
n′
∣∣Ĥ∣∣n′〉+ 2Re

[
〈n|Ĥ

∣∣n′〉)]).
(13)

Thus, after substituting for the diagonal elements 〈n|Ĥ|n〉 and 〈n′|Ĥ|n′〉, using
Equation (8), one obtains the real part of the off-diagonal matrix element 〈n|Ĥ|n′〉. The value
m0 in Equation (13) is measured on a quantum device using the identity |0〉〈0| = 1

2 ( Î +
Ẑ), by

m0 =
1
2
〈ψ| Î ⊗ Ĥ|ψ〉+ 1

2
〈ψ|Ẑ⊗ Ĥ|ψ〉

= ∑
s

λs

2
〈ψ| Î ⊗ ĥs|ψ〉+

λs

2
〈ψ|Ẑ⊗ ĥs|ψ〉. (14)

The imaginary part can be obtained in a similar fashion as done for the real part, but with
a slight modification to the circuit as shown in Figure 1b. The key addition is a phase-gate,
S, before the execution of the last Hadamard gate on the control qubit. This yields the
quantum state

|ψ〉 = 1
2
|0〉
[∣∣n′〉+ i|n〉

]
+

1
2
|1〉
[∣∣n′〉− i|n〉

]
(15)

that now includes a phase factor i before |n〉. After the last Hadamard gate in Figure 1b,
and following the same steps, Equations (12)–(14), the imaginary part Im

[
〈n|Ĥ|n′〉)

]
is obtained.

Our approach differs from the typical hybrid quantum-classical paradigm used in
ground state chemistry electronic structure calculations in that the quantum hardware
is used as a coprocessor to measure these matrix elements. Therefore, no parameterized
ansatz or variational optimization is required. In this approach, the depth of the quantum
circuit is significantly reduced; however, our method is based on the assumption that the
dimensions of Ĥe f f in Equation (7) are reasonable enough such that it can be diagonalized
using classical numerical algorithms.

3.2. Implementing Measurements

As shown in Equation (14), the expectation value of the Hamiltonian becomes the
weighted sum of expectations for the set of Pauli string operators with respect to the output
quantum state of the circuit. Since these operators are not in general commuting, one needs
to setup and run a number of different quantum circuits. This number can be up-to all
Pauli string operators in the Hamiltonian. Each circuit is then executed many times and
every time the qubits are measured, the results are realized in different computational
bases. The sampled realization provides a probability distribution and is used to estimate
the expectation value of the Pauli string.
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Generally, measurements are done either directly or indirectly. In the case of direct
measurements, single-qubit rotations are applied to a subset of qubits at the end of the
circuit. This subset is identified based on the locations in the tensor-product of the operator
ĥs that are not identity Î. This set of rotations essentially changes the computational bases
in which the given operator ĥs is diagonal. The direct measurement is commonly used in
the experimental demonstration of quantum hardware and VQE [6].

The indirect measurement approach [23] requires a series of controlled gates that are
applied to the N target qubits, using one ancillary control qubit. The indirect measurement
method is used in iterative quantum phase estimation algorithms [24].

Although the two types of measurement approaches are theoretically equivalent [20],
experimentally, there are differences. The benefits and drawbacks of direct and indirect
measurements are discussed, for example, in Reference [25]. The main difference is the
number of times the circuit is to be executed to achieve a desired precision ε, which is
O( 1

ε2 ) and O( 1
ε ) for direct and indirect measurements respectively. The implementation

of a general control-U gate in the indirect measurement is a challenging task [23]. How-
ever, in regards to our purposed approach, where the U operator is a single Pauli string,
the indirect measurement implementation is straightforward.

The indirect measurement can be adapted as shown in quantum circuit in Figure 2.
An additional control qubit is added to this circuit. The Pauli operators are applied on the
k locations of ĥs when the control is in state |1〉. It is straightforward to follow the quantum
state of the qubits throughout the circuit. The final state reads as:

|ψ〉 = 1
2
|00〉

[∣∣n′〉+ |n〉+ ĥ
∣∣n′〉+ ĥ|n〉

]
+ . . . .

(16)

Upon measuring M̂ = |0〉〈0| ⊗ |0〉〈0| ⊗ Î, at the end of this circuit, using Equation (16),
and steps discussed in Section 3.1, the real part of the off-diagonal matrix element 〈n′|ĥs|n〉
is obtained. The imaginary part is determined under same steps, while an additional phase
gate is applied to the last ancillary qubit, similar to the situation in Figure 1b.

In terms of Pauli strings, the value of 〈ψ|M̂|ψ〉 is obtained from the expectations
〈ψ|ẐN+2|ψ〉, 〈ψ|ẐN+1|ψ〉, and 〈ψ|〈ẐN+2 ⊗ ẐN+1|ψ〉, similar to Equation (14).

|0〉 H H

|0〉 H H

|0〉⊗N n′ n h

Figure 2. Quantum circuit for indirect measurement of the real and imaginary parts of an arbitrary
element 〈n′|ĥs|n〉, for a given Pauli string operator ĥs. Only controlled one-qubit gates are used.
The first control qubit from the top is used for the measurement of the operator ĥs. The second control
is to prepare the quantum state of the target qubits.

Finally, using the state preparation and measurements outlined through
Sections 3.1 and 3.2, all the Ns × Ns matrix elements of the effective Hamiltonian in
Equation (7) can be evaluated, by repeating the execution of the quantum circuits as dis-
cussed in Figures 1 and 2, for all the possible combinations of a chosen set of {|n〉} bases.

Note that the approach for evaluating the real and imaginary parts of a matrix element
is similar to the interference method introduced in ref. [10], with the difference being that
our approach uses an ancillary qubit in order to realize the interference.

3.3. Preparing the Computational Basis

The computational basis set S = {|n〉} with Ns << 2N , needs to be specified in
practice. These bases serve as the row and columns of Ĥe f f in Equation (7). The process



Quantum Rep. 2021, 3 143

and motivation for how to choose this set should be based on the underlying nature and
physics of the problem.

In theory, one established approach to approximate the ground states of quantum
many-body systems is mean-field theory [26]. In this approach, the true ground state is
constructed by perturbing a reference mean-field quantum state. The quantum chemistry
field has established theories and techniques for treating such problems. One particularly
successful theory and numerical method is coupled cluster (CC), typically referred to
as the gold-standard in computational quantum chemistry [27]. In CC, one assumes a
wave-function ansatz

|ψ〉 = eT̂ |0〉, (17)

for the ground state. Here, |0〉 is a reference quantum state (e.g., Hartree-Fock) and is
considered to be anti-symmetric under exchange of two fermions. The operator T̂ =
T̂1 + T̂2 + · · · is a sum over different possible excitation operators with respect to the
reference state. Typically, the set of excitation operators in T̂ includes single and double
terms (i.e., CCSD), which enables a series representation of the Taylor expansion of eT̂ ,
but high-order terms can also be added. The coefficients for the excitation operators inside
T̂ are determined by variational methods; that is, by minimizing the expectation of the
Hamiltonian with respect to the ansatz [27].

Since the exponential operator in the CC ansatz, Equation (17), is non-unitary, it cannot
be directly implemented on gate-based quantum computers, where gates correspond to
unitary operators. Thus, a unitary version of the CC ansatz has been introduced and is
known as Unitary Coupled Cluster (UCC) [15,28]. Ideally, the implementation of UCC
ansatz should be constructed such that the number of gates is minimized so that the circuit
depth does not exhaust the current coherence times of NISQ devices. As a result of the this
concern, hardware efficient anstaz have been proposed [6] as a substitute.

In the numerical demonstration of this work (see Section 4), we consider a simplified
ansatz for the ground state as:

|ψ〉 = c0|0〉
+ ∑

iν
ciνa†

i aν|0〉

+ ∑
ijνβ

cijνβa†
i a†

j aνaβ|0〉

+ · · · , (18)

where i, j, . . . refer to the unoccupied levels, and ν, β, . . . , refer to occupied levels with
respect to single (S), double (D), and higher order excitation operators. The ansatz in
Equation (18) implies that the true many-body ground state is a superposition of the
reference state |0〉 and all possible S {a†

i aν|0〉}, D {a†
i a†

j aνaβ|0〉}, up-to T̂n|0〉 excitations,

where n in T̂n is finite and independent of N.
In particular, assuming that it is possible to truncate the series at some low-excitation

level, such as the D or triples (T), the number of eigenstates in the expansion of the above
ansatz remains a polynomial function in N.

Taking the ansatz in Equation (18), we specify the set S in the following way. (1)
Pick a computational basis as the reference quantum state, that is |0〉 = |nint〉. (2) Identify
computational bases corresponding to a finite number of excitations, such as S and D.
These are Ns << 2N bases and polynomial function in N.

In step (1), we identify the initial computational basis |nint〉 by minimizing the
〈nint|Ĥ|nint〉, in which, for example, a classical Monte Carlo process from spin lattice
models [29] can be used. This computational basis is essentially the qubits’ configuration
that has the lowest energy expectation. Since this step is a classical one, it is performed
effectively even for a large number of qubits.
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In step (2), once the state |nint〉 is determined, one can rearrange the configuration of
the qubits by swapping 1’s and 0’s within the state |nint〉. The swapping is done so that the
configurations corresponding to S, D, up-to T̂n are fully realized. The energy expectation
corresponding to these configurations (the diagonal elements in the He f f ) are stored on a
classical register. The final result is obtained among the set of configurations whereby Ns
of are the lowest energies; these are the configurations that are selected. The above steps
are demonstrated numerically which is discussed in the next section (see Section 4).

4. Numerical Demonstration: LiH and BeH2

The application of the methodology discussed in Section 3 is focused on BeH2 and LiH
molecules due to thier relatively small number of electrons and molecular orbital footprint.
The number of electrons in BeH2 and LiH is six and four, respectively. The single-electron
molecular spin-orbitals in the second quantized Hamiltonian are constructed using the
minimal atomic STO-3G basis set [2,6]. For BeH2, there are a total of 14 spin-orbital, thus
corresponding to 14 qubits; LiH contains 12 spin orbitals and, hence, 12 qubits. For the
purpose of measuring the matrix elements of the effective Hamiltonian, Equation (7), one
additional ancillary qubit is required, as illustrated in the quantum circuits shown in
Figure 1. Therefore, the total number of qubits for the simulation of BeH2 and LiH is 15
and 13, respectively.

To obtain the coefficients in the Hamiltonian of Equation (1)—more specifically as
defined in Equations (2) and (3)—we make use of the Psi4 quantum chemistry package [30].
The second quantized Hamiltonian is further transfomed onto a set of Pauli strings and their
corresponding weights, Equation (1), via JW transform using OpenFermion package [31].

In order to construct the potential energy surface for each inter-nuclear distance, R,
the steps indicated in the previous paragraph are repeated. The distance R corresponds
to the bond length between Be–H or Li–H in a given molecule; both LiH and BeH2 are
linear molecules. We note that these calculations are assuming the total Hamiltonian can
be represented using the Born-Oppenheimer approximation, where the dynamics of the
core nuclei are neglected. This is standard practice in quantum chemistry calculations [26];
thus, at every distance R, the nuclear-nuclear repulsion energy is treated classically and is
added to the Hamiltonian as a constant.

For every distance R, a set of computational bases is chosen. This set includes the
basis with the lowest energy expectation (the reference configuration) and computational
bases that correspond to the low-order excitations (i.e., S, D, etc.) with respect to the
reference configuration. In the case of BeH2, we construct the effective Hamiltonian matrix
by keeping the S, D, and T excitations; thus, the total number of computational bases
for BeH2 is Ns = 1588. The low dimension of the effective Hamiltonian matrix makes
it possible to diagonalize the matrix on a classical computer using standard numerical
techniques [32]. Thus, the lowest energies, including the ground state energy, are obtained
at every R. The results for this process are shown in Figure 3.

Figure 3a shows the ground state energy, as well as a few low-lying excited states,
for BeH2 of the effective Hamiltonian. The exact energies are given by the dashed curves
in Figure 3a. In Figure 3b, the difference between the exact and obtained ground state
energy is shown. An error within the hatched area indicates results that are within chemical
accuracy. Chemical accuracy is typically identified as ∼ 5× 10−3 Hatrees. Figure 3c shows
the same energy difference for all other excited-state energies. The same process is done
for LiH where only S and D configurations are used. The total number of permutations of
4 fermions (495) is reduced to Ns = 200, and the results are shown in Figure 4.
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Figure 3. (a) The calculated binding curve of BeH2 for the ground state and several excited states
demonstrating the application of the method described in this work. (b) The difference between the
ground state energies obtained from diagonalization of the exact and the effective Hamiltonian along
with the chemical accuracy line, and (c) is energy difference for the obtained excited state spectra
within the effective model and exact diagonalization.
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Figure 4. Similar result as shown in Figure 3 but for LiH. (a) Shows ground state and excited states
and (b),(c) indicate energy differences compared to exact diagonalization.
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The total number of configurations can be approximated by the highest excitation
considered. For n-electron excitation, the number of configurations is (NF

n )(N−NF
n ) < N2n.

Thus, the total number of configurations is less than 1 + · · ·+ N2n = O(N2n) when N � 1.
Of course, this argument is valid as long as n can be assumed to be finite and independent
of the size of the system N or the number of electrons NF. Under these assumptions,
the dimensions of the effective Hamiltonian, He f f , remains polynomial if one replaces the
minimal STO-3G with the extended atomic basis.

Density of States

Knowledge of density of states (DOS) can be important in analyzing the thermody-
namic behaviour of a system at finite temperature and in the analysis of transition states
important in chemical reactions [33]. One advantage of the method proposed in this paper
is the insights provided into the low-energy spectrum of the quantum system, more pre-
cisely, the degeneracy of the energy levels. To illustrate this, in Figure 5, the unnormalized
DOS of the LiH obtained via the effective Hamiltonian is compared with the exact density,
which shows qualitatively good agreement.

Figure 5. The unnormalizaed density of states for LiH at different binding distances. The blue fill
indicates the exact, and the green fill indicates simulated.

5. Hardware Demonstration: H2

In this section, we demonstrate the feasibility of the hybrid quantum-classical ap-
proach discussed in this paper on a IBMQ hardware device. Specifically, we calculate the
eigenenergy spectrum of H2 molecule using STO-3G minimal basis-set.

Within STO-3G basis set, the total number of spin-orbitals for H2 is four. In contrast
to the numerical demonstration, where the computational basis was prepared using the
UCC ansatz, here, we employ the complete computational basis with conserved number of
electrons for H2 (NF = 2). The number of computational basis set with conserved electron
number, is Ns = 6, and the bases are:

{|n0, n1, n2, n3〉} = {|1100〉, |1010〉, |1001〉
|0110〉, |0101〉, |0011〉}. (19)

The number of bases is not further reduced; that is, the effective Hamiltonian con-
structed here is equal to the full Hamiltonian within the NF = 2 electron number. The above
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set can be interpreted as the collection of all the S and D exciations, as introduced in
Section 3.3, above a classical configuration, such as |1100〉.

The Hamiltonian of the problem, stated as a weighted sum of Pauli string operators,
as in Equation (4), has a total of fifteen operators, which can be grouped as:

G1 = {I I I I, ZII I, IZI I, I IZI, I I IZ, ZZII,

ZIZI, ZIIZ, IZZI, IZIZ, I IZZ} (20)

and

G2 = {YXXY, XXYY, YYXX, XYYX}. (21)

Here, a Pauli string operator, such as ZII I, is a shorthand for Ẑ1 ⊗ Î2 ⊗ Î3 ⊗ Î4, as in-
troduced in Equation (5).

Our goal is to use the quantum hardware to evaluate the values for 〈n|ĥs|n′〉, where
ĥs belongs to G1 or G2, and |n〉 and |n′〉 can be any of the bases listed in Equation (19).

Note that this task is not a difficult one for a classical computer. However, the objective
of the paper and hardware demonstration is to establish a hybrid quantum-classical com-
putational scheme in which the quantum processor performs some of the computational
tasks. In the simulations of this paper, the task is the evaluation of the phase associated
with the exchange of fermions; since 〈n|ĥs|n′〉 can be understood as exchanging fermions
on |n〉 via the operator ĥs, and to arrive at |n′〉. The output can only take discrete values of
±1, ±i, and 0.

In each group G1 and G2, Pauli string operators commute and, thus, theoretically, can
be measured simultaneously. However, in order to perform simultaneous measurement,
one needs to adjust the computational bases, by applying further quantum gates on the
target qubits. The appended measurement circuit further increases the circuit depth [34].
Thus, practically, the simultaneous measurement may not be advantageous, and, in contrast,
induces further noise and decoherence on NISQ devices. Nevertheless, for G1, no further
circuit depth is required, as they are all measured in the z-basis.

We can further reduce the quantum coprocessor computational load by excluding
circuits containing terms that are classically efficient to compute. In Equations (20) and (21),
the operators in G1 do not contribute to off-diagonal matrix element of the Hamiltonian,
while operators in G2 contribute only to the off-diagonal matrix elements. This information
is used to reduce the essential number of circuits to be run on the hardware.

The evaluation of an element 〈n|ĥs|n′〉 is performed by assigning an appropriate
circuit, as introduced in Section 3.1, to a quantum coprocessor. In this work, we make use
of the IBMQ cloud open devices.

Once a circuit is loaded onto a quantum coprocessor, each circuit is executed a several
times. The number of times a circuit is run is referred to as the number of shots. In this
work, each circuit was executed for a total of 8000 shots. At each run, the qubits are
measured, and the collection of the realized configurations is used to evaluate value of
〈n|ĥs|n′〉.

The preparation of the circuits is performed using the transpile and assemble routines
available in the IBM Qiskit API [35], which enables collating individual circuits, corre-
sponding to the diagonal and off-diagonal terms, to prepare each circuit to run as a single
job on a target IBMQ device. In this work, we make use of the IBMQ 5-qubit Valencia
hardware [17]. The number of circuits—for both real and imaginary parts separately—after
the transpile and assemble routines for the diagonal and off-diagonal terms corresponds
to 66 and 60 circuits, respectively. The execution timings for the IBMQ QASM simulator
range between 0.21–1.5 s and for the IBMQ Valencia 5 qubit device 274–298 s with 8000
shots per circuit. Due to the limited number of qubits available on this processor, direct
measurement is used, that is by measuring all the qubits at the end of the circuit.

As a sanity check, we first use IBMQ QASM simulator [36] to perform all steps in-
volved as outlined in Section 3. The calculations are shown in Figure 6a. The results
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perfectly match the exact values as expected. Furthermore, in Figure 6b the off-diagonal
terms in the Hamiltonian are evaluated using IBMQ Valencia device, while the diagonal
elements are evaluated using the IBMQ QASM simulator. In both cases, upon diagonaliza-
tion of the obtained Hamiltonian, the energy spectrum is in good agreement with the exact
values. We observe in Figure 6b that there is a slight lifting of the double degeneracy of H2,
which we associate to the device noise. This is due to the occurance of non-zero values in
the measured off-diagonal terms when in fact the exact value should be zero.

Finally, all the matrix elements, that is, diagonal and off-diagonal elements, are eval-
uated using IBMQ Valencia device. The results are shown in Figure 7a, which was done
with and without measurement error mitigation. The use of measurement error mitigation
marginally improves the results. The discrepancy between the exact and hardware values,
without and with measurement error mitigation, are shown in 7b,c.

The effect of noise is ubiquitous in current quantum hardware and is inherently com-
plex and difficult to characterize. However, the result of noise due to the measurement
process can be mitigated to some degree by using a calibration matrix [35]. The resulting
calibration matrix is then used to reduce errors of subsequent circuit measurements. The ap-
plication of measurement error mitigation is demonstrated in Figure 7a with beneficial
impact on error shown in Figure 7c.

The calculations in Figure 7, that is construction of the effective Hamiltonian, Ĥe f f , are
performed through five independent IBMQ job submissions. Each time the energy-surface
is slightly different, which can be associated to the inherent device errors and perhaps low
number of shots used. The error bars in Figure 7b,c indicate the min/max range in errors
of the five different calculation.
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Figure 6. The binding curves for H2 using a (a) noiseless QASM simulator to obtain all Pauli terms
and (b) a noiseless QASM simulator to evaluate diagonal Pauli terms and the IBMQ Valencia 5-qubit
device to measure off-diagonal terms.



Quantum Rep. 2021, 3 149

Exact
IBMQ	Valencia	(5q)
Measurement	Error	Mitigation

En
er
gy
	S
pe
ct
ru
m
	[H

a]
0.0

1.0

2.0

3.0

10−3

10−2

10−1

Measurement	Error	Mitigation

10−3

10−2

10−1

Bond	Distance	[Å]
0.5 1 1.5 2

Er
ro
r	[
Ha

]

(c)

(b)

(a)

Figure 7. The complete hardware calculation using the IBMQ Valencia 5-qubit device. The lowest
value shown in (a) for 5 distinct hardware runs where 8000 shots is used. The absolute error between
exact and hardware results is shown in (b), where symbol indicates the mean and error-bars min/max
amongst the 5 runs. (c) The same as (b) but with measurement error mitigation for the target hardware.
The semi-opaque region in (b),(c) indicates chemical accuracy limit.

6. Discussion and Summary

Recently an abundance of Variational Quantum Algorithms (VQA) have been intro-
duced to solve electronic quantum many-body problems on NISQ devices [3–5,8–11,28].
These VQA proposals mostly rely on optimization of parametric circuits. In this paper,
we demonstrate that an alternative approach exists, specifically for quantum chemistry
problems, which does not require an optimization procedure and parametric ansatz. In this
approach, the quantum hardware is used only to prepare a many-body quantum state and
to efficiently measure the expectation values of certain target observables with respect to
this quantum state. From the output measurements, one can construct what we refer to as
an effective Hamiltonian matrix, Ĥe f f . Upon diagonalization of Ĥe f f using classical eigen-
decomposition numerical methods one obtains the ground state and low-lying excited
states of the system.

The approach introduced in this paper is particularly suitable for NISQ devices where
short quantum circuit depth is essential due to lack of error-correction protocols on these
devices. An additional important aspect of this approach is that it provides access to the
low-lying energy spectra of the system and not just the ground state in comparison with
the original VQE process.

In the context of VQE and VQE-type algorithms, several attempts have been made
to extend the variational approach to excited states [10,11,37–40]. Quantum subspace ex-
pansion [41,42], for example, constructs a set of non-orthogonal bases out of an optimized
ansatz, and performs post-processing to obtain excited states. Deflation techniques as de-
scribed in ref. [11], constructs a pseudo-Hamiltonian in which the ground state is excluded
and orthogonality is enforced through regularization. Successful examples are introduced
for some low-lying excited states of LiH [8]. In all these previous works, optimization of a
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parametric ansatz is required and, therefore, necessitates an enormous number of quantum
circuit executions and sampling.

The approach introduced in this paper is similar to multistate contracted VQE (MC-
VQE) in ref. [10]. The main difference is the application of VQE: MC-VQE is obviously a
VQE-type algorithm, our approach is distinct in that it does not require a parametric circuit
or variational procedure for optimization. In addition, our method differs since it uses
supporting quantum circuit resources, i.e., ancilla qubits, in order to perform interference
and measurement that is different from the quantum circuit in ref. [43] and its generalization
in ref. [10].

An extension of our approach to VQE type algorithm is possible. This can be done
by appending a set of parametric gates that act only on the target qubits to the circuits
in Figure 1. Let us denote this part of the circuit with U(θ), where θ stands for a set of
parameters. Then, it can be verified that, given θ, the final matrix element obtained from
the circuit after measurement (see Equation (2), for example) becomes 〈n|U†(θ)ĤU(θ)|n′〉,
compared to 〈n|Ĥ|n′〉. The appended parametric circuit U(θ) allows one to project the
Hamiltonian onto S(θ) = {U(θ)|n〉}, for a given θ. This means the Ns × Ns effective
Hamiltonian is now parametric and depends on the value(s) of θ. The optimal parameter(s)
are then obtained by minimizing the ground-state energy of the effective Hamiltonian
matrix. The reference state {U(θ)|n〉} can be regarded as the contracted reference states
introduced in ref. [10].

One possible limitation of the circuits shown in Figure 1 is the execution of two-
qubit gates corresponding to control operations over n-qubits (i.e., series of CNOT gates).
For NISQ devices with hardware-restricted qubit connectivity, this may require a number
of SWAP gate operations and, therefore, can increase the circuit depth and subsequent
error rates [44,45]. In essence, the implementation of the circuits described in this paper
will depend on the ability to limit circuit depth and associated error rates by NISQ hard-
ware circuit optimization (i.e., scheduling). However, significant improvements in qubit
connectivity of various modalities (e.g., ion traps) [22,46] or optimizing quantum circuits
against decoherence [47,48] may blunt this concern.
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