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Abstract: We analyze periodically modulated quantum systems with SU(2) and SU(1, 1) symme-
tries. Transforming the Hamiltonian into the Floquet representation we apply the Lie transformation
method, which allows us to classify all effective resonant transitions emerging in time-dependent
systems. In the case of a single periodically perturbed system, we propose an explicit iterative proce-
dure for the determination of the effective interaction constants corresponding to every resonance
both for weak and strong modulation. For coupled quantum systems we determine the efficient
resonant transitions appearing as a result of time modulation and intrinsic non-linearities.
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1. Introduction

Effective transitions in time-dependent quantum systems have been extensively stud-
ied since the classical paper [1], later generalized in [2,3], and widely applied for the
description of atomic dynamics in external fields [4–16] and in more involved periodically
perturbed quantum systems [17–23]. Effective transitions are described by operators that:
(i) Become time-independent (resonant) in an appropriate reference frame under certain
relations between the system’s frequencies (resonant conditions); (ii) are not present in
the original Hamiltonian; and (iii) disappear in the rotating wave approximation (RWA).
Such resonant terms (later referred to as resonances) naturally appear in the effective
Hamiltonian in the weak interaction limit where the counter-rotating (CR) contributions,
rapidly oscillating in any reference frame terms, are perturbatively taken into account. The
most famous examples of time-dependent systems with an infinite number of effective
resonances are the Rabi model in classical field [1–3] and the parametric quantum oscil-
lator [24]. Even in these simplest systems, where the Hamiltonian is a linear form on the
SU(2) and SU(1, 1) Lie algebras, it turns out that the general expressions for the effective
interaction constants and the frequency shifts in the vicinity of each resonance, are not easy
to obtain.

The situation becomes even more complicated when two coupled quantum systems
are subjected to time-dependent periodic perturbations e.g., as in the quantum Rabi model
with modulated coupling and/or frequency. In these types of models, CR terms (in the
absence of external fields) are responsible for several physical effects such as: Multiphoton
atom-field interactions in the Rabi model [25,26], an improvement of a qubit photodetector
readout [27], the excitation of several atoms by a single photon [25,28], and several other
effective processes now experimentally achievable in solid state circuit quantum electrody-
namics (QED) setups [29–32]. An additional periodic excitation makes the situation even
richer, leading to e.g., the enhancement of CR interactions in the Rabi model [16], the gen-
eration of specific non-classical photon states [17], the emergence of non-linear spin-boson
couplings [18], the appearance of quantum to classical phase-transitions [19], lasing with a
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single atom [20], simulation of the anisotropic Rabi model [21], or the dynamical Casimir
effect [22].

One of the possibilities to construct a perturbation theory that unveils the effective
resonant interactions, is the Lie transformation method [33,34]. Such a method consists
in order-by-order elimination of CR terms by a specific set of transformations, whose
particular form directly follows from the algebraic structure of the original Hamiltonian [25].
The advantage of this approach consists in a rather simple and systematic procedure for
obtaining the general form of effective resonance terms and the order of the corresponding
effective coupling constants.

The aim of the present paper is to provide a systematic approach to the analysis
of effective resonant transitions in quantum systems obeying the SU(2), SU(1, 1), and
H(1) symmetries with periodically modulated frequencies and/or coupling constants. We
construct the Lie-type all-order perturbation theory allowing to determine the order of
every possible resonance that may emerge in the effective Hamiltonians. We consider
both single and coupled quantum systems and determine the efficient resonant transitions
emerging as a combination of the time modulation and intrinsic non-linearities, especially
relevant in interacting systems.

In Section 2 we outline the Lie transformation method in an example of a single
periodically perturbed SU(2)/SU(1, 1) system and provide not only the order of the
effective resonance terms [35] but the explicit iterative procedure for determining the
effective interaction constants both for the weak and strong modulation. In Section 3 we
analyze coupled time-dependent quantum systems and discuss types of efficient resonances
proper to different symmetries of the interacting systems.

2. Single Periodically Modulated Quantum System
2.1. General Settings

Let us consider a quantum system described by the following time-dependent Hamil-
tonian (the case where only the frequency of the system is modulated is considered in
Section 2.4),

H±(t) = ωX0 + 2g0 cos(νt)X0 + 2g1 cos(νt)(X+ + X−), ω, ν > 0, (1)

where the operators X±, X0, satisfy the following commutation relations:

[X0, X±] = ±X±, [X+, X−] = ±2X0, (2)

the signs ± correspond to the SU(2) and SU(1, 1) algebras respectively. In the interaction
picture the Hamiltonian takes the form:

Hint±(t) = g0

(
eiνt + e−iνt

)
X0 (3)

+g1

(
ei(ω+ν)tX+ + ei(ω−ν)tX+ + h.c.

)
, (4)

where the terms ∼ ei(ω−ν)tX+ + h.c. become time independent if ω = ν and corre-
spond to the principal resonance, while the counter-rotating (CR) terms ∼ cos(νt)X0
and ei(ω+ν)tX+ + h.c. rapidly oscillate for any relation between the frequencies.

The CR terms are neglected in the zero-order approximation when g1 ∼ g0 � ω, ν
(RWA) and the Hamiltonian (3) and (4) acquires a simple form:

Hint± ≈ g1

(
ei(ω−ν)tX+ + h.c.

)
.

In the opposite limit, g1 � g0 ∼ ω, ν the zero-order approximation gives the diago-
nal Hamiltonian:

Hint± ≈ g0

(
eiνt + e−iνt

)
X0,
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characterized by a trivial dynamics. The CR terms in (3) and (4) lead to the emergence of
non-trivial resonant transitions, not explicitly present in the original Hamiltonian. It is
well known that in the case of H(1) symmetry, X+ = a†, X− = a, X0 = a†a, no resonances
additional to the principal one ∼ aei(ω−ν)t appear.

In order to develop the Lie-perturbation theory that allows to describe all possible
effective resonances both in the limits g0,1 � ω, ν and g1 � g0 ∼ ω, ν, we introduce the
Euclidean algebra operators E, E†, E0, obeying the commutation relations:

[E0, E] = −E, [E0, E†] = E†, [E†, E] = 0, (5)

where E†E = EE† = I. Then, the Hamiltonian (1) can be put in a one-to-one correspon-
dence with the following time-independent (Floquet) form [35]:

HF
± = ωX0 + νE0 + g0

(
E + E†

)
X0

+g1

(
E + E†

)
(X+ + X−), (6)

where the Euclidean operators (E, E†, E0) describe a “classical” field interacting with the
X-system. The time-dependent Hamiltonian (1) is recovered from (4) by transforming it to
the frame rotating with the “classical frequency” ν,

HF
int± = g0

(
eiνtE† + e−iνtE

)
X0

+g1

(
eit(ω+ν)E†X+ + eit(ω−ν)EX+ + h.c.

)
,

with a subsequent averaging over the eigenstates of E, E† operators (phase-states), E|φ〉 =
e−iφ|φ〉,

|φ〉 = lim
N→∞

1√
2N + 1

N

∑
n=−N

e−inφ|n〉, (7)

where E0|n〉 = n|n〉, and setting the initial phase φ = 0 without loss of generality. The CR
terms are now identified with ∼

(
E + E†)X0 and ∼

(
EX− + E†X+

)
.

2.2. Effective Hamiltonian, g0,1 � ω, ν

We start with the most complicated limit g0 ∼ g1 � ω, ν, when the contributions of
diagonal and non-diagonal CR terms in (3) and (4) are of the same order. The CR terms
appearing in the Floquet Hamiltonian (6) can be removed order-by-order by applying a
set of Lie-type transformations according to the general scheme [25,33,34] as shown in
Appendix A.

The common feature of all of these transformations (small rotations) is their form:

Vk = eεk

(
Z(k)
+ −Z(k)

−
)

, (8)

where εk � 1 are some appropriate small parameters, under the condition that the Hamil-
tonian, which is transformed by (8), should contain the term Z(k)

0 such that
[

Z(k)
0 , Z(k)

±
]
=

±Z(k)
± . The resonance expansion is obtained as a power series of the small parameters εk

and only contains terms that become time-independent in appropriate reference frames.
The resulting resonance expansion in the leading order in each effective coupling

constant g1ε±k has the form:

HF
RE± ≈ ω̃X0 + νE0 + g1

∞

∑
k=0

ε±k

(
Ek+1X+ + Ek+1X−

)
, (9)
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where ω̃ is a modified X-system frequency, ε±0 = 1,

ε±k =
Bk(a±1, a±2, . . . , a±k)

k!
, (10)

where:
a±k = −ν−1(k− 1)!h±k,

and Bk(a±1, a±2, . . . , a±k) are the complete Bell polynomials [36], and the constants h±k are
obtained recursively according to h±1 = g0, h±2 = ±2g2

1/(ω + ν) and:

h±(2k+2) = −
h2
±(k+1)

2(ω + (2k + 1)ν)
(11)

− 1
ω + (2k + 1)ν

k

∑
m=1

h±mh±(2k+2−m),

h±(2k+1) = − 1
ω + 2kν

k

∑
m=1

h±mh±(2k+1−m), (12)

for k = 1, . . .. One can appreciate that ε±k is a k-th order homogeneous polynomial ε(k)

(A5) on some small parameters ε ∼ g0,1/l.c.(ω, ν) � 1, where l.c.(ω, ν) represents non
zero linear combinations of ω and ν for any relation between the frequencies.

The resonance expansion (9) contains all possible effective resonant transitions that
may emerge in (6) and indicates that such transitions happen only at (k + 1)ν = ω̃, where
the case k = 0 corresponds to the principal resonance present in the original Hamiltonian.

In principle, the effective Hamiltonian, describing the system excitation in the vicinity
of every particular resonance, should still be obtained from the resonance expansion (9) by
removing all of the other resonances. However, as is proven in Appendix A, the elimination
of all terms in (9) that become non-resonant under the condition ω ≈ (k + 1)ν does not
change the leading order of the effective interaction constants g1ε±k, thus the effective
Hamiltonian has the form:

HF
±(k+1) ≈ ω̃±(k+1)X0 + νE0

+g1ε±k

(
Ek+1X+ + E†k+1X−

)
. (13)

The effective X-system frequency ω̃±(k+1) includes small shifts that should be taken into
account up to the order of the coupling constant g1ε±k, which determines the width of the
corresponding resonance.

The evolution operator corresponding to the effective Hamiltonian (13) under the
resonance condition ω̃±(k+1) = (k + 1)ν is:

UF
±(t) = e−iνt((k+1)X0+E0)e−itg1ε±k(Ek+1X++E†k+1X−), (14)

and can be disentangled in the standard way. Using (14), the evolution of any observable
can be computed without returning to the time-dependent frame. This is achieved by
transforming the corresponding X-system operator with (14) and averaging the result over
the phase states (7). Strictly speaking, the evolution operator should still be transformed
with all the transformations of the form (8) used for removing non-resonant terms in order
to obtain the effective Hamiltonian (13). Nevertheless, since the transformations (8) are
time independent, they lead only to small modifications of amplitudes and can be neglected
in the first approximation. For instance, the evolution of X0 operator in the resonance
ω̃±(k+1) = (k + 1)ν can be easily found using (14),

X0(t) = X0C(2tg1ε±k) +
i
2
(X− − X+)S(2tg1ε±k),
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where C(x) = cos(x), S(x) = sin(x) for the su(2) algebra and C(x) = cosh(x), S(x) =
sinh(x) for the SU(1, 1) algebra.

The frequency shifts for the lowest resonances can be easily found by a direct applica-
tion of the transformations given in Appendix A. In order to obtain ω̃±(k+1) for the highest
order resonances the following procedure can be applied: The effective Hamiltonian (13) is
unitary equivalent to (6) up to k-th order on some small parameters. In other words there
exists a unitary transformation of the form:

O± = exp
{
(α†
± − α±)X0 + β±X+ − β†

±X−
}

, (15)

where
α±(E) = ∑

j=1
a±jEj, β±(E, E†) = ∑

j=0
b±jEj + c±jE†j, (16)

such that under the condition ω ≈ (k + 1)ν:

O†
±HFO± = H±(k+1) + O(ε(k+1)).

Taking into account the form of the perturbative action of transformations of the type (15)
on the Hamiltonian (6), as discussed in Appendix A, we realize that every coefficient in
(16) can be expanded in a series on some small parameters to be determined:

x±j = ∑
m

x(m)
±j , x(m)

±j ∼ ε(j+2m), (17)

here x±j = a±j, b±j, c±j, except for b±0 = c±0 = ∑ b(m)
±0 , with b(m)

±0 ∼ ε(2m+2). In general,

O†
±HFO± = A±

(
α±, α†

±, β±, β†
±
)

X0 + νE0

+B±
(

α±, α†
±, β±, β†

±
)

X+ + h.c., (18)

where the operators A± and B± can be easily found, see Equations (A11) and (A12) in
Appendix A.1. Expanding A±

(
α±, α†

±, β±, β†
±
)

and B±
(
α±, α†

±, β±, β†
±
)

in series according
to (17) and equaling to H±(k+1) up to ε(k) one can, in principle, determine all needed

x(m)
±j , m ≤ k and eventually find ω̃±(k+1) (see Appendix A for an explicit example). This

procedure is systematic and leads to immediate results for lower order corrections to the
frequency shift, but it becomes cumbersome for computing the higher order contributions.

2.3. Examples
2.3.1. Semi-Classical Rabi Model

The semi-classical Rabi model describes the evolution of an S-spin system in a periodic
field and the corresponding time-dependent Hamiltonian has the form:

H+(t) = ωSz + 2g(S− + S+) cos νt, (19)

where Sz,± are generators of the 2S + 1 dimensional representation of the su(2) alge-
bra, with:

[Sz, S±] = ±S±, [S+, S−] = 2Sz.

The Floquet form of (19) is:

HF
+ = ωSz + νE0 + g

(
E†S− + h.c.

)
+ g
(

E†S+ + h.c.
)

,
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where E0, E†, E are the generators of the Euclidean algebra (5). The Hamiltonian (19)
corresponds to g0 = 0 in (4), so that h+(2k+1) = ε+(2k+1) = 0, and thus only odd resonances
in (9) survive,

HF
RE+ = ω̃Sz + νE0 + g ∑

k=0
ε+2k

(
E2k+1S+ + h.c.

)
,

where ε+2k are given in (10) and ω̃ is the shifted atomic frequency. In the vicinity of the
resonance ω ≈ (2k + 1)ν, the effective Hamiltonian takes the form:

HF
+(2k+1) ≈ ω̃+(2k+1)Sz + νE0 + g+(2k+1)

(
E2k+1S+ + h.c.

)
.

The spin frequency shifts δω+(2k+1) = ω̃+(2k+1) − ω +O(ε(2k+1)) and effective cou-
plings g+(2k+1) are given in Table 1 for k = 0, 1, 2.

Table 1. The frequency shifts δω+(2k+1) = ω̃+(2k+1) − ω + O(ε(2k+1)) and effective couplings
g+(2k+1), k = 0, 1, 2 for the semiclassical Rabi model in terms of the small parameter ε = g/ω.

Interactions ge f f δω+(2k+1)

ES+ + h.c. g gε

E3S+ + h.c. − 9
4 gε2 9

2 gε +O(ε3)

E5S+ + h.c. 1
9

(
5
2

)5
gε4 25

6 gε
(

1− 19
144 ε2

)
+O(ε5)

2.3.2. Quantum Parametric Oscillator

For the quantum parametric oscillator,

H−(t) =
p2

2
+ ω2(1 + 2γ cos νt)

x2

2
,

corresponding to g0 = g1 = g = ωγ/2, and X+ → K+ = a†2/2, X− → K− = a2/2,
X0 → K0 =

(
a†a + aa†)/2 where , K±, K0 are generators of the SU(1, 1) algebra, the

expansion (4) is reduced to:

HF
RE− = ω̃a†a + νE0 +

g
2

∞

∑
k=0

ε−k

(
a†2Ek+1 + h.c.

)
,

where ε−k are given in (10). As in the classical case, the effective couplings corresponding
to resonances at 2ω ≈ (k + 1)ν are proportional to ∼ ω(g/ω)k+1 and:

HF
−(k+1) ≈ ω̃−(k+1)a

†a + νE0 + g−(k+1)

(
Ek+1a†2 + h.c.

)
.

The oscillator frequency shifts δω−(k+1) = ω̃−(k+1) − ω + O(ε(k+1)) and effective
couplings are given in Table 2 for k = 0, 1, 2.

Table 2. The frequency shifts δω−(k+1) = ω̃−(k+1) −ω +O(ε(k+1)) and effective couplings g−(k+1),
k = 0, 1, 2 for the parametric quantum oscillator in terms of the small parameter ε = g/ω.

Interaction ge f f δω−(k+1)

Ea†2 + h.c. 1
2 g − 1

4 gε

E2a†2 + h.c. −gε − 4
3 gε +O(ε3)

E3a†2 + h.c. 81
32 gε2 − 9

8 gε +O(ε3)
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2.4. Effective Hamiltonian, g1 � g0 ∼ ω, ν

The situation is less involved in the limit g1 � g0 ∼ ω, ν if the expansion of the
effective coupling constants is restricted by the leading order in the expansion of the
effective coupling constants. Applying the transformation:

V = exp
[ ε

2

(
E† − E

)
X0

]
, (20)

where ε = 2g0/ν, to the Hamiltonian (6) the following expression is obtained:

H±0 = ωX0 + νE0 −
2g1

ε ∑
k=1

(−1)kkJk(ε)
(

EkX+ + E†kX−
)

+
2g1

ε ∑
k=1

kJk(ε)
(

E†kX+ + EkX−
)

, (21)

where Jk(ε) are the Bessel functions. Removing all CR terms in (21) in the weak interaction
limit g1 � ω, ν, results in the following resonance expansion:

H±RE ≈ ωX0 + I±(ε)X0 + νE0

−2g1

ε ∑
k=1

(−1)kkJk(ε)
(

EkX+ + E†kX−
)

(22)

where εk = g1/(ω + kν) and:

I±(ε) = ±
8g1

ε2 ∑
k=1

εkk2 J2
k (ε). (23)

In the vicinity of each resonance ω ≈ mν, the effective Hamiltonian takes the form:

He f f±m ≈ ωX0 + I±m(ε)X0 + νE0 +
2g1

ε
(−1)m+1mJm(ε)

(
EmX+ + E†mX−

)
, (24)

where the frequency corrections,

I±m(ε) = ±
16g2

1ω

ε2 ∑
k=1
k 6=m

k2 J2
k (ε)

ω2 − k2ν2 ±
8g2

1m2 J2
m(ε)

ε2(ω + mν)
. (25)

appear as a result of eliminating all the other transitions in (22).

2.5. Modulated Quantum System with Intensity Dependent Coupling

Our approach can be easily extended to Hamiltonians non-linear on the algebra
generators when only the frequency of the system is modulated. Let us consider the
following Hamiltonian:

H±(t) = ω[1 + γ cos(νt)]X0 + Hint (26)

Hint = g[X+ f (X0) + f (X0)X−], (27)

where f (X0) is a function of the “diagonal” operator X0, in the strong modulation limit,
ωγ . ν. The interaction Hamiltonian in (27) describes a wide class of quantum optical
systems as atom-photon interactions, parametric processes [37–40]. It is clear, that only
assisted transitions, i.e., induced by the external field, can be generated by (26) due to the
presence of the term ωX0.

Applying the transformation:

V = exp
[ ε

2

(
E† − E

)
X0

]
, (28)
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where ε = ωγ/ν . 1 to the Floquet Hamiltonian corresponding to (26):

HF
± = ωX0 + νE0 +

1
2

ωγ
(

E + E†
)

X0 + g[X+ f (X0) + f (X0)X−], (29)

we obtain the following exact expression:

VHF
±V† = ωX0 + νE0 + gJ0(ε)[X+ f (X0) + f (X0)X−]

+g ∑
k=1

Jk(ε)
[(

E†k + (−1)kEk
)

X+ f (X0) + h.c.
]
. (30)

The Hamiltonian (30) contains all the possible resonances ∼ EkX+ f (X0), along with
CR terms ∼ E†kX+ f (X0), which can be perturbatively eliminated in the weak coupling
limit, g� ω, ν, by a set of transformations:

Wm = exp
(

εm Jm(ε)
[

E†mX+ f (X0)− f (X0)EmX−
])

,

where εm = g/(ω + mν)� 1. This leads to corrections of order ε(1) ∼ g/l.c.(ω, ν) in the

frequency, and ε(2) ∼
(

ε(1)
)2

in the coupling constant, and, in addition, to new CR terms

of the form ε(1)(E†l + h.c.)K±(X0)), where:

K±(X0) = ±2X0 f 2(X0) + X+X−
(

f 2(X0 − 1)− f 2(X0)
)

,

which can be also removed with an appropriate transformation. As a result we arrive at
the following resonant expansion:

HF
RE± ≈ ω̃X0 + νE0 + gI(ε)K±(X0)

+g
∞

∑
k=1

(−1)k Jk(ε)
(

EkX+ f (X0) + h.c.
)

, (31)

where ω̃ = ω(1 + O(ε(1))) and:

I(ε) = g
∞

∑
k=0

J2
k (ε)

ω + kν
. (32)

The expansion (31) is similar to (9), exhibiting possible effective resonances at ω ≈ kν.
However, the non-linear term ∼ gε(1)K±(X0) generates an intensity dependent frequency
shift, which makes the resonances with k & M, where JM(ε) ∼ I(ε) inefficient.

It is easy to find that the effective Hamiltonian in the vicinity of m-th resonance,
ω ≈ mν, m < M, has the form:

HF
±m ≈ ω̃X0 + νE0 + gĨm(ε)K±(X0)

+(−1)mgJm(ε)(EmX+ f (X0) + h.c.), (33)

where

Ĩm(ε) =
gJ2

0 (ε)

ω
+ 2gω

∞

∑
k=1
k 6=m

J2
k (ε)

ω2 − k2ν2 + g
Jm(ε)

ω + mν
. (34)

It is worth noting that in the weak modulation limit, ε . ε� 1, only the first resonance
ω ≈ ν survives in the non-linear case, since the effective coupling is of the order of the
intensity dependent shift,

HF
±1 ≈ ωX0 + νE0 +

g2

ω
K±(X0)−

gωγ

2ν

(
EX+ f (X0) + f (X0)E†X−

)
. (35)



Quantum Rep. 2021, 3 181

Observe, that in the particular case, f (X0) = 1, the resonant expansion for linear
Hamiltonians is recovered. For instance, for the Dicke model [15],

H = ω0[1 + γ cos(νt)]Sz + g(S+ + S−). (36)

in the strong modulation limit, ω0γ� g, the resonance expansion has the following form:

HF
RE ≈ ω0Sz + 2

g2

ω
J2
0 (ε)Sz + g ∑

k=1
(−1)k Jk(ε)

(
EkS+ + h.c.

)
.

3. Two Periodically Modulated Coupled Quantum Systems

The application of Lie transformations in order to determine the effective interaction
constants, corresponding to effective resonances emerging in the case of two coupled
and periodically modulated systems, becomes a quite involved task. We will analyse the
situation where the coupling between the systems is significantly smaller than the bare fre-
quencies of both systems. Thus, for consistency, all CR terms in the interaction Hamiltonian,
appearing even in the absence of time-dependence, should be taken into account.

Let us consider two interacting quantum systems, X and Y in dipole approximation,
where the frequency of one of those is harmonically modulated. The corresponding
Hamiltonian is:

H(t) = ω0[1 + γ cos(νt)]X0 + ω1Y0 + g(X+ + X−)(Y+ + Y−), (37)

where the operators describing X or Y systems can be from SU(2), SU(1, 1) or h(1) algebras.
The commutation relations have the following generic form:

[X+, X−] = Px(X0) = ∇xφx(X0), [Y+, Y−] = Py(Y0) = ∇yφy(Y0), (38)

where φz(Z0) = Z+Z− is a second degree polynomial for SU(2) and SU(1, 1) algebras, and
is a first degree polynomial for the Heisenberg–Weyl algebra h(1); the discrete derivative is
defined as:

∇nzφz(Z0) = φz(Z0)− φz(Z0 + n)

where n ∈ Z.
The resonance expansion in the limit of strong modulation, ωγ . ν and weak coupling,

g� ω0,1 is obtained in Appendix B and has a generic form:

HF
RE ≈ ω0X0 + ω1Y0 + νE0 + gK(X0, Y0) + Hint, (39)

The intensity dependent frequency shift K(X0, Y0) explicitly given in (A28)–(A31),
leads to the inhibition of higher-order transitions in X and Y systems. For the considered
symmetries h(1), SU(2), and SU(1, 1), the effective interaction Hamiltonian Hint has the
following structure:

Hint = ∑
k=1

3

∑
m=0

∑
n=1

ε
(m)
nk H(m)

nk ,

where H(m)
nk are given in Appendix B.

The form of the intensity dependent shift K(X0, Y0) (A28)–(A31) depends on the
degree of the polynomials φx(X0) and φy(Y0):

(i) Both X and Y systems are described by the h(1) algebra. In this case K(X0, Y0) is a
linear form on X0, Y0;

(ii) One of the systems is described by h(1) and another by SU(2)/SU(1, 1) algebra. In
this case the leading term in K(X0, Y0) is a second degree polynomial on X0 and Y0,
and the first correction is of a third degree one;

(iii) The leading term in K(X0, Y0) is a third degree polynomial if both systems have
SU(2)/SU(1, 1) symmetry.
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3.1. Modulated Quantum Parametric Amplifier

Let us start with a non-degenerated parametric quantum amplifier with modulated
frequency [41], described by:

H(t) = ωa(1 + γ cos(νt))a†a + ωbb†b + g
(

a† + a
)(

b† + b
)

. (40)

In this case X+ = a†, X− = a, X0 = a†a, Y+ = b†, Y− = b, Y0 = b†b and no intensity
dependent shift (A28)–(A31) appears in the resonant expansion:

K(a†a, b†b) ≈ −g ∑
k=0

εk J2
k (ε)

(
a†a + b†b + 1

)
+ O(ε(3)), εk =

g
ωa + ωb + kν

since φ(a†a) = a†a and ∇φ(a†a) = 1. The resonance expansion (39) is reduced to
the following:

HF
RE ≈ (ωa − gIa(ε))a†a + (ωb − gIb(ε))b†b (41)

+gJ0(ε)
(

ab† + h.c.
)
+ g ∑

k=1
Jk(ε)

[(
E†k + (−1)kEk

)
ab† + h.c.

]
+g ∑

k=1
Jk(ε)

(
E†kab + h.c.

)
+ g ∑

k=1

(
ε
(1)
1k (ε)E†ka2 + ε

(1)
2k (ε)E†kb2 + h.c.

)
,

where I(ε) is defined in (32) with ω = ωa + ωb and:

ε
(1)
1k (ε) ≈ −g ∑

l=0

(−1)k+l Jl(ε)Jl+k(ε)

ωa + ωb + lν
, ε

(1)
2k (ε) ≈ −g ∑

l=0

Jl(ε)Jl+k(ε)

ωa + ωb + lν
.

The effective two-photon resonances have a significantly smaller width than the
assisted transitions already present in the Hamiltonian (40), ab†, ab. The effective Hamil-
tonians describing the principal, ∼ ab† and side-band ∼ E†kab†, Ekab†, E†kab transitions
acquire a frequency correction of order O(ε(2)) in the vicinity of each resonance. However,
the frequency shift and effective coupling constant in the vicinity of two-photon transitions
2ωa,b ≈ kν (obtained by removing all the other resonances) are significantly modified. The
frequency shift takes the form:

Ĩa,b(ε) =
2gωb,a J2

0 (ε)

ω2
a −ω2

b
+ 2g ∑

n=1

J2
n(ε)(ωa + ωb)

(ωa + ωb)
2 − n2ν2

+ 2g ∑
n=1

J2
n(ε)(ωb,a −ωa,b)

(ωa −ωb)
2 − n2ν2

, (42)

where the values of the summation index satisfying |ωa ±ωb| = nν are excluded.
For instance, in the case 2ωb ≈ ν y ωa = ωb/2, the effective Hamiltonian:

He f f ≈ ωa(1− Ĩa(ε))a†a + ωb(1− Ĩb(ε))b†b + νE0 + ge f f

(
Eb†2 + E†b2

)
, (43)

where:

ge f f ≈ 2g2ωb

∞

∑
l=0

(2l + 1)
Jl(ε)Jl+1(ε)

ω2
a − (ωb + lν)2 , (44)

describes the b-mode squeezing.
In Figure 1, we plot the time-averaged transition probability |〈0a, 0b|U(t)|0a, 2b〉|2,

where, for g = 0.1, ωb = 10, and ε = 0.9, the value ν = ωb − Ĩb ≈ 20.0011 is obtained,
which perfectly coincides with the numerical calculations.

In Figure 2, we compare the exact evolution of the average photon number in the b-
mode, starting with the initial vacuum state |0a, 0b〉with the results of analytical calculations
using the effective Hamiltonian (43),

〈b†b〉app ≈ sinh2
(

2ge f f t
)

. (45)
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Figure 1. Time averaged transition probability |〈0a, 0b|U(t)|0a, 2b〉|2 as a function of the modulation
frequency ν generated by the time-dependent Hamiltonian (40); ν ≈ 2ωb, ωb = 10, ωa = ωb/2,
g = 0.1, and ε = 0.9.
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Figure 2. Evolution of the average photon number in mode b for the initial vacuum state in both
modes in case of effective two-photon transition, ν ≈ 2ωb, where ωb = 10, ωa = ωb/2, g = 0.1, and
ε = 0.9. The solid (blue) line corresponds to the analytic approximation (45), the dashed (black) line
results from numerical calculation with the Hamiltonian (40).

3.1.1. Dicke Model with Modulated Frequency

The dynamics of the quantum Dicke model, describing the interaction between an
effective S-spin system and a single mode of a quantized field with harmonically modulated
atomic frequency [16,17,20,22,42] is governed by the following Hamiltonian,

H = ω0[1 + γ cos(νt)]Sz + ω1a†a + g
(

a† + a
)
(S+ + S−), (46)

where g � ω0,1 and, 0 < ε = ω0γ/ν < 1, which corresponds to (37) with X± = S±,
X0 = Sz and Y+ = a†, Y− = a, Y0 = a†a. In this case the intensity-dependent shift
(A28)–(A31) takes the form:

K(Sz, a†a) = gε(1)(ε)
(

S2
z +

(
1 + 2a†a

)
Sz

)
+ ε(3)(ε)(a†a)2Sz + O

(
ε(3)
)

,
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where ε(k) ∼ εk, ε ∼ g/l.c.(ω, ν) � 1, are some homogeneous polynomials on the Bessel
functions Jk(ε), 0 < ε = ω0γ/ν . 1 (A32). In particular, (i) the dynamic Stark shift term
∼ ε

(1)
k (ε)a†aSz suppresses all transitions between the field and the atomic system with

an exchange of more than one excitation; (ii) the atomic Kerr term ∼ ε
(1)
k (ε)S2

z does not
allow to efficiently absorb more than one excitation by the atomic system; and (iii) the field
Kerr term ∼ ε

(3)
k (ε)(a†a)2 makes the generation of more than four photons by the quantum

field inefficient. Thus, the resonance expansion containing only efficient transitions takes
the form:

HF
RE ≈ ω0Sz + ω1a†a + νE0 + K(Sz, a†a) + gJ0(ε)(aS+ + h.c.)

+g ∑
k=1

Jk(ε)
[(

E†k + (−1)kEk
)

aS+ + Eka†S+ + h.c.
]

+g ∑
k=1

ε
(1)
1k (ε)

(
EkS2

+ + h.c.
)

+g ∑
k=1

ε
(1)
2k (ε)

(
Eka†2Sz + h.c.

)
+ g ∑

k=1
ε
(3)
3k (ε)

(
a†4Sz + h.c.

)
. (47)

3.1.2. Non-Symmetric Excitation of an Atomic System in a Vacuum Field

The resonant expansion (47) reveals the existence of effective processes consisting in
the excitation of two atoms in the symmetric configuration, described by:

gε
(1)
1k (ε)

(
EkS2

+ + h.c.
)

.

However, this process is rapidly suppressed by the atomic Kerr term ∼ S2
z , which is of the

first order on the small parameters. Thus, the symmetry of the atomic system should be
broken in order to render the two-atom excitation process efficient.

Let us consider the following generalization of the Hamiltonian (46) to the two-
atom case,

H(t) =
2

∑
i=1

(ωi + g0 cos(νt))szi + ωca†a

+2
(

a† + a
) 2

∑
i=1

gisxi, (48)

of which the corresponding Floquet form is:

HF =
2

∑
i=1

ωiszi + ωca†a + νE0 (49)

+g0

(
E + E†

) 2

∑
i=1

szi + 2
(

a† + a
) 2

∑
i=1

gisxi.

For simplicity, we also assume that ε = g0/ν� 1. In this case we obtain a resonant
expansion, which up to the second order on the small parameters is given in Appendix B.1,
Equation (A33). Instead, the Kerr term Equation (A33) contains the spin exchange operator
s−1s+2 + h.c., which can be taken out of resonance under appropriate frequency conditions.
For instance, choosing:

ωc = ω1 + ω2 ≈ ν,

gi � |ω1 −ω2|,
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Imposing appropriate conditions on the frequencies all of the first order transitions in (A33)
can be removed thus arriving at the following effective Hamiltonian for the initial vacuum
field mode:

HF
e f f ≈ ω̃1sz1 + ω̃2sz2 + νE0 + ge f f (Es+1s+2 + h.c.), (50)

where ω̃i = ωi + gi(ε1i + δ1i) +O(ε(3)), ε = g0/ν, ε1i = gi/(ωc + ωi), δ1i = gi/(ωi −ωc),
and ε2i = gi/ωc. The effective interaction constant is:

ge f f = ε(g1ε12 + g2ε11 − g1δ12 − g2δ11).

The Hamiltonian (50) describes an effective excitation of two different atoms mediated
by a vacuum field in the modulated Dicke model [43].

In Figure 3, we plot the time-averaged probability of two-atom excitation
|〈01, 02|U(t)|11, 12〉|2 from the vacuum as a function of the modulation frequency ν, at
ω2 = 3ω1 with ω1 = 10, g0 = g1 = g2 = g = 1. The evolution operator U(t) is generated
by the exact Hamiltonian (48). The position of the resonance is well described by our
approximation, giving ν = ω̃1 + ω̃2 ≈ 4ω1 − 104g/(105ω1) = 39.90095.
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Figure 3. Time averaged transition probability |〈01, 02|U(t)|11, 12〉|2 as a function of the modulation
frequency ν generated by the time-dependent Hamiltonian (48); ν ≈ ω1 + ω2, ω1 = 10, ω2 = 3ω1,
and ωc = ω1 + ω2 with g0 = g1 = g2 = 1.

In Figure 4 we compare the evolution of averages 〈s−1s+1〉 and 〈s−1s−2s+2s+1〉, de-
scribing the excitation of the first atom and the joint excitation of both atoms [28], and the
corresponding approximate evolutions, generated by the effective Hamiltonian (50), for
the initial non-excited atoms and the cavity mode in vacuum |01, 02〉. The approximate
expressions, immediately following from (50),

〈s−1s+1〉app = 〈s−1s−2s+2s+1〉app ≈ cos2
(

ge f f t
)

, (51)

describe the dynamics of the observables fairly well for ν = ω̃1 + ω̃2, ω2 = 3ω1, ωc =
ω1 + ω2 with ω1 = 10, and g0 = g1 = g2 = g = 1.
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Figure 4. Evolution of the averages 〈s−1s+1〉 (above) and 〈s−1s−2s+2s+1〉 (below) for the initial non-excited atoms and
the cavity mode in vacuum |01, 02〉; ν = ω̃1 + ω̃2, ω2 = 3ω1, ωc = ω1 + ω2 with ω1 = 10, and g0 = g1 = g2 = 1; the
continuous (blue) line corresponds to the numerical calculation for the exact Hamiltonian (48), the dashed (black) line
corresponds to the approximation (51).

4. Conclusions

Even the simplest periodically modulated quantum systems exhibit a rich resonance
structure captured by the expansion (9). This resonance expansion is obtained by a specific
Lie-type perturbation theory where the coupling constant is small with respect to the bare
system’s frequencies both for weak and strong modulation amplitude. In the framework
of this approach the order of each resonance, which determines the width of the related
transition, and consequently the Rabi frequency of corresponding oscillations can be found.
In the case of single modulated linear systems, we have been able to obtain the principal
contribution to the effective interaction constant corresponding to each resonant term.

Effective Hamiltonians, describing all possible resonant transitions, can be extracted
from the resonance expansion by establishing some particular frequency conditions. It was
observed that in the case of a single modulated system the order of effective Hamiltonians
in the vicinity of each resonance is exactly the same as that of the corresponding terms in
the resonance expansion.

The common feature of modulated linear (on Lie algebra generators, in our case SU(2)
and SU(1, 1)) Hamiltonians is the absence of the dynamic Stark shift and Kerr-like terms
in the resonance expansion. Thus, all of the resonances appearing in this expansion are
efficient i.e., there are always frequency conditions such that the transition probabilities
between energy levels, described by the corresponding effective Hamiltonian, are close
to unity. In contrast, the effective Hamiltonians of periodically perturbed non-linear
quantum systems (effective as in Section 2.5) and coupled (as in Section 4), always contain
non-linearities that “select” the efficient transitions among all those present in the formal
resonance expansion. The present approach can be immediately generalized to quantum
systems with higher unitary symmetries, in particular, to multilevel atoms described by
generators of SU(N) algebra.
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Appendix A. Single Periodically Modulated Quantum System

Here we detail the procedure outlined in section for obtaining the higher order cor-
rections to the frequency closed to the k-th resonance. Expansion corresponding to the
Floquet Hamiltonian (6) by removing CR terms with adequate small Lie transformations
and keeping only the principal order on g0,1 � ω, ν.

The CR term g1
(
E†X+ + h.c.

)
can be exactly eliminated by the transformation:

V±1 = exp
{

ε±1

(
E†X+ − EX−

)}
, (A1)

where
T(2ε±1) =

2g1

ω + ν
, (A2)

and T(x) = tan(x) for SU(2) case, [X+, X−] = 2X0, and T(x) = tanh(x) for the case
su(1, 1), [X+, X−] = −2X0. The Hamiltonian (6) transformed with V±1 takes the form
H±1 = V±1HF

±V†
±1,

H±1 = νE0 + ω±1X0 + g0

(
E† + E

)
X0 ±

g2
1

ω±1 + ν

(
E†2 + E2

)
X0 (A3)

+
g1

2

(
1 +

1
∆±1

)(
EX+ + E†X−

)
− g0

g1

ω±1 + ν
(X+ + X−)

−g0
g1

ω±1 + ν

(
E†2X+ + E2X−

)
+

g1

2

(
1

∆±1
− 1
)(

E†3X+ + E3X−
)

,

where ∆±1 =
√

1± 4g2
1/(ω + ν)2, and ω±1 = (ω + ν)∆±1.

The elimination of the CR term ∼ X+ + X− only produces corrections to the terms
already present in (A3), and thus can be neglected, since we are interested only in the
principal order of the effective interaction constants. On the contrary, the elimination of
the CR term ∼ E†2X+ + h.c. leads to the appearance of ∼ E3X0 + h.c., ∼ E†4X+ + h.c. and
∼ E†5X+ + h.c., and in addition to the modification of the coefficient of ∼ E†3X+ + h.c..
Such an elimination procedure of CR terms ∼ f±k

(
E†kX+ + h.c.

)
, k = 1, 2, . . . can be

systematically carried out by applying the transformations:

V±k = eA±k , A±k = ε±k

(
E†kX+ − EkX−

)
, (A4)

with
T(2ε±k) =

2 f±k
ω + kν

.

An important observation should be made here about the order of f±k and ε±k:

f±k ∼ g0,1ε(k−1), ε±k ∼ ε(k),

where ε(k), is a homogeneous polynomial of order k on some small parameters ε j ∼
g0,1/l.c(ω, ν)� 1, being l.c.(ω, ν) a linear combination of ω and ν,

ε(k) = ∑
j1 ...,js

cj1,...,js ε
nj1
j1

. . . ε
njs
js , (A5)

where nj1 + · · ·+ njs = k, and cj1,...,js are real numbers.
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Once the principal orders of CR terms ∼
(

E†kX+ + h.c.
)

are removed, we arrive at
the following form:

H±2 = ω̃X0 + νE0 + g1

(
EX+ + E†X−

)
+

∞

∑
k=1

h±k

(
E†k + Ek

)
X0,

where ω̃ is the system’s modified frequency. The couplings h±k are obtained from the
following recurrence relations:

h±1 = g0, f±1 = g1,

h±k = ±2g1
f±(k−1)

ω + (k− 1)ν
∼ g1ε(k−1),

for k = 2, . . ., and

f±(2k+1) = ∓ 1
4g1

(
h±(k+1)

)2

−
k

∑
m=1

h±m
f±(2k+1−m)

ω + (2k + 1−m)ν
∼ g1ε(2k),

f±2k = −
k

∑
m=1

h±m
f±(2k−m)

ω + (2k−m)ν
∼ g1ε(2k−1),

for k = 1, . . .. The CR terms of the form ∼ EkX0 + h.c commute with each other and can be
removed altogether with the transformation:

U± = exp

[
±

∞

∑
k=1

δ±k

(
E†k − Ek

)
X0

]
,

where
δ±k =

h±k
kν
∼ ε(k),

obtaining the expansion:

H±3 ≈ ω̃X0 + νE0 + g1

(
EX+e±∑k=1 δ±k(E†k−Ek) + h.c.

)
.

The term EX+e±∑k=1 δ±kE†k
+ h.c does not contribute to the principal order of the

effective coupling constants and can be neglected. Then, using the standard expansion:

exp

[
∞

∑
k=1

a±kEk

k!

]
=

∞

∑
k=0

Bk(a±1, a±2, . . .)
k!

Ek, (A6)

where Bk(a±1, a±2, . . .) are complete Bell polynomials [36], we finally obtain the required
resonance expansion, which contains only the resonant terms i.e., terms that become
time-independent under appropriate relations between the frequencies ω and ν,

HF
RE± ≈ ω̃X0 + νE0 + g1

∞

∑
k=0

ε±k

(
Ek+1X+ + Ek+1X−

)
, (A7)

where ε±0 = 1,

ε±k =
Bk(a±1, a±2, . . .)

k!
, a±k = −k!δ±k

for n = 1, . . ..
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The resonance expansion (A7) contains all possible effective resonant transitions
(resonances) that take place only at ω̃ ≈ (k + 1)ν. It is noticeable that in the vicinity of
every resonance ∼

(
Ek+1X+ + h.c.

)
the effect of all the other resonances can be neglected.

In order to see this we remove all the terms that are non-resonant at ω̃ ≈ (k + 1)ν by
applying the transformation:

W±m = eB±m , B±m = ε̃±m

(
EmX+ − E†mX−

)
,

for m = 1, . . . and m 6= k + 1, where:

T(2ε̃±m) =
2g1ε±m−1

ω−mν
,

to the expansion (A7). This results in the following effective Hamiltonian describing the
resonant transition ω̃ ≈ (k + 1)ν implicitly present in the Hamiltonian (6),

HF
e f f± ≈ ω̃X0 + νE0 +

g1

2

[
1

∆̃±m
+ 1
] ∞

∑
m−1 6=k=0

ε±k

(
Ek+1X+ + E†k+1X−

)
(A8)

+
g1

2

[
1

∆̃±m
− 1
] ∞

∑
m−1 6=k=0

ε±k

(
E2mE†k+1X+ + E†2mEk+1X−

)
(A9)

+
g2

1ε±m

(ω−mν)∆̃±m

∞

∑
m−1 6=k=0

ε±k

(
EmE†k+1 + E†mEk+1

)
X0, (A10)

where ∆̃±m =
√

1± 4g2
1ε2
±m−1/(ω−mν)2. It can observed that the modified frequency ω̃

is changed, but the principal order of the coupling constant corresponding to the resonant
term ∼

(
Ek+1X+ + h.c.

)
in (A8) remains the same as in (A7). All of the other terms

(A9)–(A10) generate contributions of a smaller order.

Appendix A.1. Frequency Corrections

Here we detail the procedure that can be applied for obtaining the higher order
frequency corrections in the vicinity of the k-th resonance, ω ≈ kν.

After some algebra we find the operational coefficients A± and B± appearing in (18),

A±
(

α, α†, β, β†
)

= A±1 + A±2
C(η±)− 1

η2
±

+ A±3
S(η±)

η±
+ A±4

S(η±)− η±
η3
±

, (A11)

B±
(

α, α†, β, β†
)

= B±1 + B±2
C(η±)− 1

η2
±

+ B±3
S(η±)

η±
+ B±4

S(η±)− η±
η3
±

, (A12)

where

A±1 = ω−
(

α̃† + α̃
)

ν + g0

(
E† + E

)
,

A±2 = 4β†β
[
ω + g0

(
E† + E

)]
− 2ν

(
β̃β† + β̃†β

)
−2g1

(
E† + E

)(
α† − α

)(
β† − β

)
,

A±3 = ±2g1

(
E† + E

)(
β† + β

)
,

A±4 = −2νξ,
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and

B±1 = g1

(
E† + E

)
+ νβ

β̃β† − β̃†β

2ββ† ,

B±2 = ±β
[
ω + g0

(
E† + E

)](
α† − α

)
∓ ν
[

β̃
(

α† − α
)
+ β

(
α̃† + α̃

)]
+g1

(
E† + E

)[
2β
(

β† + β
)
+
(

α† − α
)2
]

,

B±3 = −β
[
ω + g0

(
E† + E

)]
+ g1β

(
E† + E

)(
α† − α

)
+ νβ

β̃β† + β̃†β

2ββ† ,

B±4 = ∓νβ
ξ
(
α† − α

)
2ββ† ,

here C(η±) = cos η±, cosh η±, S(η±) = sin η±, sinh η±, correspond to SU(2) and SU(1, 1)
algebras respectively, with:

η± =

√
4β†β∓ (α† − α)

2,

ξ = 2β†β
(

α̃† + α̃
)
+
(

α† − α
)(

β̃β† − β̃†β
)

.

The operators α̃ and β̃ admit the following expansion on the small parameter ε,

α̃ = ∑
j=1

jajEj, β̃ = ∑
j=1

j
(

bjEj − cjE†j
)

,

where
x±j = ∑

m
x(m)
±j , x(m)

±j ∼ ε(j+2m), x±j = a±j, b±j, c±j, (A13)

except for b±0 = c±0 = ∑ b(m)
±0 , with b(m)

±0 ∼ ε(2m+2).
Expanding A± and B± in series according to (A13) and equaling O†

±HFO± to H±(k+1)

up to ε(k) as in (13), one can determine the required coefficients x(m)
±j , m ≤ k and find the

corrected frequency ω̃±(k+1).
Let us consider, for instance, the effective Hamiltonian (13) in the vicinity of the

second-order resonance, k = 1,

HF
±2 = ω̃±2X0 + νE0 + ε±1

(
E2X+ + E†2X−

)
+O(ε(2)).

In this case it is sufficient to expand the coefficients (A11) and (A12) up to the first
order on the small parameters, obtaining:

A±
(

α, α†, β, β†
)

= ω∓ 2ω
(

b(0)21 + c(0)21

)
± 2ν

(
b(0)21 − c(0)21

)
± 4g1

(
b(0)1 + c(0)1

)
(A14)

+
(

g0 − νa(0)1

)(
E + E†

)
(A15)

+
[
−2νa0

2 ± 2g1

(
b(0)1 + c(0)1

)
∓ 2ωb(0)1 c(0)1

](
E2 + E†2

)
, (A16)

and
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B±
(

α, α†, β, β†
)

= −2ωb(0)0 +
(

νa(0)1 − g0

)(
b(0)1 + c(0)1

)
− ω

2
a(0)1

(
b(0)1 − c(0)1

)
(A17)

+
(

g1 −ωb(0)1 + νb(0)1

)
E +

(
g1 −ωc(0)1 − νc(0)1

)
E† (A18)

−
[
(2ν + ω)c(0)2 +

ω

2
a(0)1 c(0)1

]
)E†2 (A19)

+
[
(2ν−ω)b(0)2 +

ω

2
a(0)1 b(0)1

]
E2. (A20)

Equaling HF
±2 to O†

±HFO± according to the general procedure (18),

ω̃±2X0 + νE0 + ε±1

(
E2X+ + E†2X−

)
+O(ε(2)) = A±

(
α±, α†

±, β±, β†
±
)

X0 + νE0

+B±
(

α±, α†
±, β±, β†

±
)

X+ + h.c., (A21)

one can immediately observe that (i) Equation (A14) gives the frequency correction; (ii)
the parameters x±1 (A13) are obtained by equaling to zero Equations (A15)–(A19), giving
in particular:

b(0)1 =
g1

ω− ν
c(0)1 =

g1

ω + ν
. (A22)

which are required for the first correction to the frequency ω.
Substituting (A22) to (A14) we arrive at the first order correction, which is valid close

to any resonance except the principal one, ω = kν, k > 1,

ω̃±2 = ω± 4ωg1

ω2 − ν2 +O(ε(3)). (A23)

The above procedure is directly generalizable to the order ε(k), required for determina-
tion of the frequency corrections in the vicinity of the k-th resonance.

Appendix B. Two Coupled Systems with Modulated Frequency

In this Appendix we obtain the resonance expansion corresponding to the Hamilto-
nian (37),

HF = ω0X0 +
1
2

ω0γ
(

E† + E
)

X0 + ω1Y0 + νE0 + g(X+ + X−)(Y+ + Y−). (A24)

First, by applying the transformation (28), with ε = ω0γ/ν . 1 we obtain:

VHFV† = ω0X0 + ω1Y0 + νE0 + gJ0(ε)(X+ + X−)(Y+ + Y−)

+g
∞

∑
k=1

Jk(ε)
[

X+

(
E†k + (−1)kEk

)
+ h.c.

]
(Y+ + h.c.). (A25)

Now we consecutively apply the set of transformations:

V1k = exp
[

Jk(ε)εk

(
E†kX+Y+ − h.c.

)]
, k = 0, 1, . . . ,

where εk = g/(ω0 + ω1 + kν), to the Hamiltonain (A25) in order to remove CR terms
Jk(ε)

(
E†kX+Y+ + h.c.

)
in the weak coupling limit, g � ω0,1. The transformed Hamil-

tonain contains, in addition to the resonant terms, CR contributions of the form: ∼
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ε(1)E†kX2
+ + h.c., ∼ ε(1)E†kY2

+ + h.c., ∼ ε(2)E†kX3
+Y+ + h.c., ∼ ε(2)E†kX+Y3

+ + h.c. y ∼
ε(1)E†k∇x,yΦ(X0, Y0) + h.c., where:

Φ(X0, Y0) = φx(X0)φy(Y0), (A26)

∇mx,ny f (X0, Y0) = f (X0, Y0)− f (X0 + m, Y0 + n). (A27)

After eliminating all those CR terms we eventually arrive at a resonance expansion
that contains a diagonal contribution K(X0, Y0) as an important ingredient. The operator
K(X0, Y0) depends non-linearly on X0 and Y0, except for the case when both X and Y
systems are described by h(1) algebra and can be interpreted as an intensity-dependent
frequency shift. Up to third order on small parameters εk � 1, it has the form:

K(X0, Y0) ≈ ε(1)(ε)∇x,yΦ(X0, Y0) (A28)

+ε(3)(ε)∇x,y

[
Φ(X0, Y0)∇2

x,yΦ(X0 − 1, Y0 − 1)
]

(A29)

+ε(3)(ε)
[(
∇yφy(Y0)

)2∇2x(φx(X0)φx(X0 − 1))
]

(A30)

+ε(3)(ε)
[
(∇xφx(X0))

2∇2y
(
φy(Y0)φy(Y0 − 1)

)]
, (A31)

where
ε(m)(ε) = ∑

l1,...,ls

cl1,...,ls J
nl1
l1

(ε) . . . Jnls
ls

(ε)Jls+1(ε)ε
nl1
l1

. . . ε
nls
ls

, (A32)

nl1 + . . . nls = m, are some homogeneous polynomials of the Bessel functions.
The intensity dependent frequency shift (A28)–(A31) automatically suppresses higher-

order transitions leading to the excitation of X and Y systems. Since we consider only h(1),
SU(2), and SU(1, 1) algebras, the maximum degree of Φ(X0, Y0) on X0 and Y0 is four. Thus,
the resonance expansion that includes only possible efficient transitions takes the form:

HF
RE ≈ ω0X0 + ω1Y0 + νE0 + gK(X0, Y0) + Hint,

where the effective interaction Hamiltonian Hint has the following structure:

Hint = ∑
k=1

3

∑
m=0

∑
n

ε
(m)
nk H(m)

nk ,

and H(m)
nk are given in the following Tables.

Higher orders of the interaction Hamiltonians contain higher discrete derivatives
of the structural functions φx(X0) and φy(Y0). This in particular, allows to determine all
possible resonances when both X and Y systems are described by h(1) algebras.

Table A1. Frequency shifts δω−(k+1) = ω̃−(k+1) − ω +O(ε(k+1)) and effective couplings g−(k+1),
k = 0, 1, 2 for the parametric quantum oscillator in terms of the small parameter ε = g/ω.

Interaction ge f f δω−(k+1)

Ea†2 + h.c. 1
2 g − 1

4 gε

E2a†2 + h.c. −gε − 4
3 gε +O(ε3)

E3a†2 + h.c. 81
32 gε2 − 9

8 gε +O(ε3)
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Table A2. Terms of order ∼ ε(1) and ∼ ε(2) for Hamiltonian (39).

H(0)
nk H(1)

nk H(2)
nk

J0(ε)(X+Y− + h.c.) EkX2
+∇yφy(Y0) + h.c. EkX3

+Y+∇2
yφy(Y0) + h.c.

Jk(ε)
(

E†kX+Y− + h.c.
)

EkY2
+∇xφx(X0) + h.c. EkX+Y3

+∇2
xφx(X0) + h.c.

Jk(ε)
(

EkX+Y− + h.c.
)

EkX3
+Y−∇2

yφy(Y0) + h.c.

Jk(ε)
(

EkX+Y+ + h.c.
)

EkY3
+X−∇2

xφx(X0) + h.c.

E†kX3
+Y−∇2

yφy(Y0) + h.c.

E†kY3
+X−∇2

xφx(X0) + h.c

Table A3. Terms of order ∼ ε(3) for Hamiltonian (39).

H(3)
nk

EkX2
+Y2

+∇3
x,yΦ(X0, Y0) + h.c.

EkX2
+Y2

+∇−2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX2
+Y2

+∇2y∇yφy(X0)∇−2x∇xφx(X0) + h.c.

EkX2
+Y2

+∇−2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX2
+Y2
−∇2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX2
+Y2
−∇2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX2
+Y2

+∇2y∇yφy(X0)∇−2x∇xφx(X0) + h.c.

EkX2
+Y2

+∇2y∇yφy(X0)∇−2x∇xφx(X0) + h.c.

EkX2
+Y2
−∇2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX2
+Y2
−∇2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX2
+Y2
−∇2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX2
+Y2
−∇2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

E†kX2
+Y2
−∇2y∇yφy(X0)∇2x∇xφx(X0) + h.c.

EkX3
+∇x,−y

[
φx(X0)∇2

yφy(Y0 + 1)
]
+ h.c.

EkY3
+∇−x,y

[
φy(Y0)∇2

xφx(X0 + 1)
]
+ h.c.

Appendix B.1. Non-Symmetric Excitation of an Atomic System in a Vacuum

Applying an elimination procedure similar to that described in Appendix A to the
Hamiltonian (49) we arrive at the following resonance expansion up to the second order
on ε:



Quantum Rep. 2021, 3 194

HF
RE ≈

2

∑
i=1

(ωi + giε1i)szi + ωca†a + νE0

+2g1

2

∑
i=1

(ωi + giε1i)a†aszi − g2ε11(s−1s+2 + h.c.)

+
2

∑
i=1

gi

[(
1 + ε

(
E† − E

)
+

ε2

2

(
E†2 + E2

))
as+i + h.c.

]

−
2

∑
i=1

gi

[(
E− ε

2
E2
)

a†s+i + h.c.
]
−

2

∑
i=1

giε1iε2i

(
a3s+i + h.c.

)
+2

2

∑
i=1

giεε1i

(
E†a2 + h.c.

)
szi

+ε(g1ε12 − g2ε11)
(

E†s−1s+2 − Es−1s+2 + h.c.
)

+ε(g1ε12 + g2ε11)(Es+1s+2 + h.c.), (A33)

where ε = g0/ν, ε1i = gi/(ωc + ωi), and ε2i = gi/ωc.
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