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Abstract: We employ another approach to quantize electromagnetic fields in the coordinate space,
instead of the mode (or Fourier) space, such that local features of photons can be efficiently, physically,
and more intuitively described. To do this, coordinate-ladder operators are defined from mode-ladder
operators via the unitary transformation of systems involved in arbitrary inhomogeneous dielectric
media. Then, one can expand electromagnetic field operators through the coordinate-ladder operators
weighted by non-orthogonal and spatially-localized bases, which are propagators of initial quantum
electromagnetic (complex-valued) field operators. Here, we call them QEM-CV-propagators. However,
there are no general closed form solutions available for them. This inspires us to develop a quantum
finite-difference time-domain (Q-FDTD) scheme to numerically time evolve QEM-CV-propagators.
In order to check the validity of the proposed Q-FDTD scheme, we perform computer simulations to
observe the Hong-Ou-Mandel effect resulting from the destructive interference of two photons in a
50/50 quantum beam splitter.
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1. Introduction

The standard method to solve quantum Maxwell’s equations [1–5] is via canonical quantization
where electromagnetic (EM) fields in the vacuum are quantized in the mode (or Fourier) space [6],
inspired by the motion of uncoupled harmonic oscillators and Hamiltonian mechanics, and many
textbooks [4,7–15] explain the process in detail. Similarly, based on the theory of macroscopic quantum
electrodynamics [5,16,17], EM fields can be also quantized in inhomogeneous and anisotropic lossless
media once normal modes of the systems are properly found [2,17,18]. In more recent works,
various quantization methods have been proposed for even dispersive and lossy media, keeping
the commutator relations [5,19–25].

The fundamental assumption in the above is that photon is treated as the smallest energy lump,
which is carried in the form of EM fields, having a definite value of h̄ω while being spatially
indeterministic (for example, the expectation value of the energy density for a monochromatic photon
in the vacuum is uniform over all space due to the characteristics of a plane wave). As a consequence,
these formulations correctly account for the anomalous observations including black-body radiation
and photoelectric effects; however, it is possible, though, inefficient and, more importantly, physically
less intuitive to characterize local features of photons observed in many quantum optics experiments.
Basically, this difficulty comes from the wave-particle duality principle, which has been one of the
bizarre properties of quantum physics. In a word, canonical quantization is not a universal formulation
to describe the behaviors of photons; but one way to characterize photons from the viewpoint of waves,
that is, deterministic momentum and indeterministic position.
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In this report, we (1) employ another approach to quantize EM fields in the coordinate
space [1,26], instead of the conventional mode space, and (2) develop a quantum finite-difference
time-domain scheme to numerically time evolve EM field operators such that it is best suited for
capturing the local features of photons. To do this, we define coordinate-ladder (CL) operators from
mode-ladder (ML) operators via the unitary transformation of the systems involved in arbitrary
inhomogeneous dielectric media. Then, EM field operators are expanded by the CL operators
weighted by non-orthogonal and spatially-localized bases, which can be interpreted as propagators of
initial quantum electromagnetic (complex-valued) field operators (QEM-CV-propagators); however,
unlike the classical propagator [27,28] there are no closed form solutions available for general
QEM-CV-propagators. This inspires us to develop a quantum finite-difference time-domain (Q-FDTD)
scheme which can numerically time evolve QEM-CV-propagators. In order to test the validity of
the proposed Q-FDTD scheme, we perform computer simulations to observe the Hong-Ou-Mandel
effect [29], which is widely utilized in many quantum optics experiments [30,31], resulting from the
destructive interference of two photons in a 50/50 quantum beam splitter.

It is to be mentioned that there are some previous works adopting the coordinate space to
describe coupled-resonator optical waveguide based on the tight-binding model or nearest hopping
terms [32,33]. But, the present work provides the specific computational framework by fully taking
into account the long-range characteristics of the hopping terms to accurately describe the quantum
information propagation in arbitrary non-medium-dispersive and lossless EM environments.

It should be also emphasized that the classical FDTD method [34,35] is one of the most popular
and powerful numerical solvers widely used in a variety of research areas. This is due to the simplicity
w.r.t. both formulation and implementation with a high reliability on simulation results. Hence,
the proposed Q-FDTD scheme would be a useful and accessible tool for theoretical/experimental
scientists/laboratories in quantum optics.

2. Numerical Canonical Quantization

Many previous theoretical works [2,17,18] showed that, in principle, the concept of the standard
canonical quantization in the vacuum can be extended to that of inhomogeneous and anisotropic
lossless media once normal modes of the systems are properly found even though their closed form
solutions are often restricted due to the geometrical complexity. As an effective solution to such
difficulty, for the first time, we recently proposed in Reference [36] the so-called numerical canonical
quantization in which normal modes are numerically obtained by solving the Helmholtz wave equations
for arbitrary inhomogeneous dielectric media through computational electromagnetic (CEM) tools
such as finite-difference or -element methods.

Suppose that an arbitrary inhomogeneous dielectric object is present in the vacuum. We assume
that a finite-sized periodic vacuum box includes the inhomogeneous dielectric object, as illustrated
in Figure 1. To extract traveling-wave normal modes, one should employ Bloch-periodic boundary
conditions instead of periodic boundary conditions that only permit the existence of standing-wave
normal modes. Thus, the local dynamics of photons can be correctly captured within a proper
time window. Consider a given Nx number of grid points evenly-spaced by ∆x, that is,
X = {xm : xm = m∆x for m ∈ [1, 2, · · · , Nx]} that discretizes the primitive cell of the periodic media [37],
as depicted in Figure 1.
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Figure 1. Example 2-D problem geometry. In a periodic vacuum box, there is an arbitrarily-shaped
inhomogeneous dielectric object. To extract traveling-wave normal modes of the system, we
use Bloch-periodic boundary condition instead of periodic boundary condition under which only
standing-wave normal modes can exist [36].

Using a countably-finite set (Nk = Nx number) of numerical normal modes, one can quantize a
vector potential operator [36] as

Â (x, t) =
Nk

∑
p=1

√
h̄

2ωp
Φp (x) e−iωpt âkp + h.c.

[
V · s ·m−1

]
, (1)

where kp, ωp, and âkp are Bloch wavenumber, eigenfrequency, and mode-annihilation operator for m-th
numerical normal mode, denoted by Φp (x), respectively. The corresponding electric field operator
becomes (based on Φ = 0 gauge or generalized radiation or transverse gauge [38])

Ê (x, t) = −∂Â(+) (x, t)
∂t

= i
Nk

∑
p=1

√
h̄ωp

2
Φp (x) e−iωpt âkp + h.c.

[
V ·m−1

]
. (2)

For convenience, we employ the linear algebra notation to represent the positive frequency
component of (2) as

Ê(+) (t) = iΦ ·D(q)
(t) · â

[
V ·m−1

]
(3)

where
[
Ê(+)

]
m
(t) = Ê(+) (xm, t)

[
V ·m−1], [Φ]m,p = Φp (xm)

[
F−

1
2 ·m−1

]
,
[
D(q)

(t)
]

p,p
=√

h̄ωp/2e−iωpt
[
J

1
2

]
, and [â]p = âkp [one] Note that, in what follows, a boldface letter stands for

a column vector and a boldface letter with a bar represents a matrix and a dimensionless quantity is
measured in the unit of [one]. The numerical normal modes satisfy the orthonormal condition [2,39] as

Φ
† ·M ·Φ = Φ

† ·
(

C† · C
)
·Φ =

(
Φ

† · C
)†
·
(
C ·Φ

)
= I, (4)

where I is the identity matrix, M is a mass matrix, incorporating medium and metric properties,
and C is the Cholesky decomposition of M, that is, M = C† · C; hence,

(
C ·Φ

)
becomes a unitary

matrix. It should be mentioned that both M and C are diagonal matrices when using a finite-difference
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method and their elements are given by
[
M
]

m,m = εm∆x and
[
C
]

m,m =
√

εm∆x where εm = ε (xm).
Consequently, the Hamiltonian operator can be diagonalized as

Ĥ =
Nk

∑
p=1

h̄ωp

(
â†

kp
âkp +

1
2

Î
)
= â† ·D(e) · â + E0 Î, (5)

where
[
D(e)

]
p,p

= h̄ωp and E0 denotes the zero-point energy. One can think of numerical

normal modes as uncoupled harmonic oscillators. Therefore, there is no energy coupling between
different uncoupled harmonic oscillators; consequently, the Hamiltonian operator in the mode space
becomes diagonalizable.

3. Quantization of Electromagnetic Fields in the Coordinate Space

3.1. Relation between Mode- and Coordinate-Ladder Operators

One can define coordinate-ladder (CL) operators, denoted by b̂ or b̂†, from mode-ladder (ML)
operators via the unitary transformation or matrix shown in (4) as

b̂ =
(
C ·Φ

)
· â, (6)

b̂† = â† ·
(
C ·Φ

)† , (7)

where
[
b̂
]

n
= b̂xn for n-th grid point. Inversely, one can also write

â =
(
C ·Φ

)† · b̂, (8)

â† = b̂† ·
(
C ·Φ

)
. (9)

Note that CL operators still hold the commutator relation as[
b̂xn , b̂†

xn′

]
= δn,n′ , (10)[

b̂xn , b̂xn′

]
=
[
b̂†

xn , b̂†
xn′

]
= 0 (11)

and the lowering and raising process as

b̂xn |N〉n =
√

N |N − 1〉n , (12)

b̂†
xn |N〉n =

√
N + 1 |N + 1〉n . (13)

Note that, in what follows, the index n is reserved to indicate n-th grid point (i.e., xn = n∆x) for
CL operators.

3.2. Hamiltonian Operator in the Coordinate Space

By substituting (8) and (9) into (5), one finds that the Hamiltonian operator in the coordinate
space becomes non-diagonalizable as

Ĥ = ∑
n,n′

Jn,n′

(
b̂†

xn b̂xn′ +
1
2

Î
)
= b̂† ·

(
C ·Φ

)
·D(e) ·

(
C ·Φ

)† · b̂ + E0 Î = b̂† · J · b̂ + E0 Î, (14)
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where Jn,n′ is called hopping terms taking the form of

Jn,n′ =
Nk

∑
p=1

h̄ωpΦp (xn)Φ∗p (xn′)
√

εnεn′∆x. (15)

The hopping terms basically dictate the extent of energy coupling between different coupled
harmonic oscillators. Unlike to the nearest hopping terms often used to model electron tunneling,
Ising model, or coupled-resonator optical waveguides [32,33,40,41], the present hopping terms have
the relatively long-range characteristics. These long-range hopping terms of the Hamiltonian operator
play a key role in having the equivalence of solutions from Schrödinger-like quantum state equations
(parabolic) and quantum Maxwell’s equations (hyperbolic). In other words, over-truncation of hopping
terms for arbitrary EM environments may cause the significant amount of artificial dispersion errors to
the quantum information propagation.

3.3. Electric Field Operator in the Coordinate Space

Substituting (8) into (3), one can rewrite (3) w.r.t. CL operators as

Ê(+)(t) = iK(+)
(t) · b̂ (16)

where

K(+)
(t) = Φ ·D(q)

(t) ·
(
C ·Φ

)†
= Φ ·D(q)

(t) ·Φ† · C·† (17)

or

[
K(+)

(t)
]

m,n
= K(+)

n (xm, t) =
Nk

∑
p=1

√
h̄ωpεn∆x

2
Φp (xm)Φ∗p (xn) e−iωpt. (18)

The new basis, denoted by K(+)
n (xm, t), can be thought as a propagator for n-th CL operator

(QEM-CV-propagator). For more intuitive understanding, consider n-th QEM-CV-propagator for the
vacuum which can be simplified as

K(+)
n (xm, t) =

Nk

∑
p=1

√
h̄ωp

2Nx

eikp(xm−xn)

√
ε0Nx∆x

e−iωpt =
Nk

∑
p=1

√
h̄ωp

2Nk

eikp(xm−xn)

√
ε0Nx∆x

e−iωpt (19)

for m = 1, 2, · · · , Nx. Except for the existence of
√

h̄ωp/2Nk, QEM-CV-propagators look quite similar
to the classical counterpart (CEM-CV-propagator) [27,28] of which continuum expression can be
defined by

K(+)
(

x, t; x′, t′ = 0
)
=
∫ ∞

−∞
dk
[
eik(x−x′)e−iωt

]
=
∫ ∞

−∞
dk
[
eik(x−x′)e−i|ck|t

]
=
∫ 0

−∞
dk
[
eik(x−x′)eickt

]
+
∫ ∞

0
dk
[
eik(x−x′)e−ickt

]
= π

[
δ
(
x− x′ ± ct

)
∓ P.V.

{
i

π (x− x′ ± ct)

}]
.

(20)

In other words, the resultant classical (real-valued) fields are given by the sum of two convolutions
which are equivalent to (1) the delta function sifting property and (2) the Hilbert transform w.r.t. x′ as

E (x, t) = E(+) (x, t) + E(−) (x, t)

=
∫ ∞

−∞
dx′
[
K(+)

(
x, t; x′, t′ = 0

)
bx′
]
+
∫ ∞

−∞
dx′
[
K(−) (x, t; x′, t′ = 0

)
b∗x′ ,

] (21)
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where Ω denotes the 1-D problem domain and bx′ is a complex-valued intial field scalar value at x = x′.
Note that the Hilbert transform plays a key role to model one-way wave propagations, provided that
a set of bx′ describes the phasor form of one-way traveling waves. This formulation is particularly
feasible to deal with a wave equation (for a single-species unknown variable) rather than Maxwell’s
curl equations. It should be noted that previous classical 1-D Maxwell-curl-propagators [27,28,42]
consist of the time-derivative of retard and advanced time-domain Green’s functions and are supposed
to carry real-valued initial electric and magnetic field values as

E (x, t) =
1
2

∫ ∞

−∞
dx′θ (t)

[
(Ex′ − ηHx′) δ

(
x− x′ + ct

)
+ (Ex′ + ηHx′) δ

(
x− x′ − ct

)]
, (22)

where Ex′ and Hx′ are real-valued initial electric and magnetic field values at x = x′ and θ(t) is a
unit time-step function. As seen in (22), the underlying principle of one-way wave propagations is
to cancel one of the two delta functions by controlling the initial electric or magnetic field values.
In the quantum realm, positive- and negative-frequency components of QEM-CV-propagators become
bases of annihilation and creation operators of which actions on quantum states have their own
physical meaning such as annihilation and creation of photons, respectively. Thus, one has to treat
positive- and negative-frequency propagators individually for quantum electromagnetics. The discrete
representation of (20) can be written as

K(+)
n (xm, t) =

Nk

∑
p=1

eikp(xm−xn)

√
ε0Nx∆x

e−iωpt =
Nk

∑
p=1

eikp(xm−xn)

√
ε0Nx∆x

e−iωpt (23)

for m = 1, 2, · · · , Nx.
One can think of QEM-CV-propagators as the convolution between the inverse Fourier transform

of (band-limited)
√

h̄ωp/2Nk and CEM-CV-propagators (see Figure 2). Furthermore, employing the
concept of fractional derivatives, one can associate CEM-CV-propagator with QEM-CV-propagator as

K(+)
n (xm, t) =

(
ih̄

2Nk

)0.5
D0.5

t K(+)
n (xm, t) , (24)

where D0.5
t denotes the half derivative w.r.t. time. As implied in (24), the vector space of the expectation

value of the energy in the quantum regime becomes the subset of that of the classical EM energy. This
results from the restriction to field amplitudes of quantum EM fields so as to enforce the energy of N
number of photons in a monochromatic wave to be Nh̄ω whereas there is no restriction in classical field
amplitudes, hence, classical EM energy can take any positive real value. Figure 2 depicts an example
of the temporal behaviors of a CEM-/QEM-CV-propagators. It is worth noting that the factor

√
1/ωp

in (23) prevents to arrive at the correspondence principle between classical and quantum propagators
even for the vacuum, that is, (23) and (20). This is a consequence of non-covariant normalization of
the plane wave basis [43]. The invariant normalization approach [43,44] can be used to eliminate the
factor. We will investigate the invariant normalization approach for our future work.

It should be emphasized that the concept of propagators for classical EM fields has been already
discussed in References [27,28]. Their propagators are designed to carry real-valued initial field (scalar)
values. However, propagators shown here can carry arbitrary complex-valued initial fields. Thus, it is
suited to analyze the quantum nature of EM fields wherein probability amplitudes of quantum state
can be arbitrary complex values as long as the normalization condition is satisfied.
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Figure 2. Example of the temporal behaviors of quantum electromagnetic (complex-valued)
(QEM-CV)-propagator and computational electromagnetic (complex-valued) (CEM-CV)-propagator
when xn = 0.

Then, let us initialize a single photon spatially-localized at xn whose initial quantum state is given
by |ψ〉 = b̂†

xn |0〉. The expectation value of the electric energy operator, denoted by Ĥe, for the single
photon can be evaluated as

〈ψ|Ĥe|ψ〉 = 〈ψ|b̂†
xn

(
Nx

∑
m=1

ε0∆xK(−)
n (xm, t)K(+)

n (xm, t)

)
b̂xn |ψ〉 =

1
2Nk

Nk

∑
p=1

h̄ωp, (25)

which corresponds to the half of the average value of all possible eigenenergies of the systems. Hence,
we can say that QEM-CV-propagators describe how EM field operators are time evolving when a single
photon is initialized at a certain grid, having its energy expectation value as 1

Nk
∑Nk

p=1 h̄ωp. In other
words, a single photon described in the coordinate space becomes more (and less) deterministic w.r.t.
position (and energy). Note that the opposite situation happens in the mode space.

4. Quantum Finite-Difference Time-Domain Scheme

We have seen in the previous section that electric field operators could be expanded by CL
operators weighted by QEM-CV-propagators which are given by the summation of numerical normal
modes. However, there are no closed form solutions for general QEM-CV-propagators due to the
energy scaling factor, viz.,

√
h̄ωp/2. Hence, we develop a quantum finite-difference time-domain

scheme to numerically time evolve QEM-CV-propagators.
Here, we discretize the continuum of (16) and (23), that is, xm is the variable to be discretized in

the present Q-FDTD scheme whereas xn denotes the position of initializing n−th QEM-CV propagator.
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In other words, one can think of xm → x and xn → x′. The Hamilton’s equations of motion (or wave
equations) for the positive frequency component of electric field operators can be written as

∂2Ê(+) (x, t)
∂x2 − ε (x) µ0

∂2Ê(+) (x, t)
∂t2 = 0. (26)

Substituting (16) into (26), one can have

∂2
[
∑Nx

n=1K
(+)
n (x, t) b̂xn

]
∂x2 − ε (x) µ0

∂2
[
∑Nx

n=1K
(+)
n (x, t) b̂xn

]
∂t2 = 0. (27)

Since coordinate-annihilation operators do not rely on space and time, the equation (27) can be
further simplified by

Nx

∑
n=1

b̂xn

[
∂2K(+)

n (x, t)
∂x2 − ε (x) µ0

∂2K(+)
n (x, t)
∂t2

]
= 0. (28)

It is to be noted that there should be no coupling between different QEM-CV-propagators; hence,
one can independently find the time evolution of QEM-CV-propagators as

∂2K(+)
n (x, t)
∂x2 − ε (x) µ0

∂2K(+)
n (x, t)
∂t2 = 0 (29)

for n = 1, 2, · · · , Nx. Applying a finite difference method to (29) w.r.t. space and time, one can derive
the discrete counterpart of (29), called a quantum finite-difference time-domain (Q-FDTD) scheme, for
n-th QEM-CV-propagator as[

K(+)
n

]l

m+1
− 2

[
K(+)

n

]l

m
+
[
K(+)

n

]l

m−1
∆x2 − εmµ0

[
K(+)

n

]l+1

m
− 2

[
K(+)

n

]l

m
+
[
K(+)

n

]l−1

m
∆t2 = 0 (30)

for m = 1, 2, · · · , Nx where superscript l denotes time step and[
K(+)

n

]l

m
≡ K(+)

n (m∆x, l∆t) . (31)

Note that the above Q-FDTD scheme is embarrassingly-parallel due to the independence of index
n while marching-on in time. Finally, numerical solutions of the electric field operator can be found as

Ê(+) (m∆x, l∆t) ≈
Nx

∑
n=1

[
K(+)

n

]l

m
b̂xn . (32)

5. Initial Quantum States for Few Photons

In the mode space, an initial quantum state for a single photon spatially localized in the form of
Gaussian wavepacket is given by

∣∣∣Ψ(1)
〉
=

Nk

∑
p=1

w̃p â†
kp
|0〉 =

(
â† · w̃

)
|0〉 , (33)
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where w̃p is a probability amplitude for â†
kp
|0〉 = |1〉p, which corresponds to a spectral amplitude of

the Gaussian wavepacket. Substituting (9) into (33), one can rewrite the initial quantum state in the
coordinate space as ∣∣∣Ψ(1)

〉
=
(

â† · w̃
)
|0〉 =

(
b̂† · C ·Φ · w̃

)
|0〉 =

(
b̂† ·w

)
|0〉 (34)

where [w]n ∝ e
−
(
(xn−xw)√

2σw

)2

eikw(xn−xw) and xw, σw, and kw are localization center position, localization
degree, and carrier wavenumber of the Gaussian wavepacket, respectively, while satisfying the
normalization condition w† ·w = 1. Note that one can also model wavepackets using Lorentzian or
sinc functions.

An initial composite quantum state for non-entangled two (indistinguishable) photons can be
given by the tensor product of each photon’s quantum state as

∣∣∣Ψ(2)
〉
=
∣∣∣Ψ(1,A)

〉
⊗
∣∣∣Ψ(1,B)

〉
=

[
Nx

∑
n=1

wn b̂†
n

] [
Nx

∑
n′=1

vn′ b̂
†
n′

]
|0〉 =

(
b̂† ·w

) (
b̂† · v

)
|0〉 . (35)

It is to be noted that (35) is invariant under the swapping process, viz.,
(

b̂† ·w
) (

b̂† · v
)
|0〉 =(

b̂† · v
) (

b̂† ·w
)
|0〉, since photons are assumed to be indistinguishable.

6. Initial Conditions of Quantum Finite-Difference Time-Domain Scheme

To run the Q-FDTD scheme, one needs initial values of QEM-CV-propagators and their
time derivatives. Again, due to the non-existence of the closed form solutions for general
QEM-CV-propagators, in order to get the initial values, one has to know numerical normal
modes by solving the Helmholtz wave equations before running the Q-FDTD scheme, but, this
becomes redundant.

Here, we show an alternative way of the initialization of the Q-FDTD scheme devoid of solving
for the normal modes. First, assume that an initialized photon is spatially localized around xw in the
vacuum. This allows one to only take into account some of QEM-CV-propagators that significantly
affect the quantum information propagation. For example, one can select QEM-CV-propagators
defined over grid point index n ∈ Y where Y =

{
xn ∈ X : |[w]n /max (w)| > 1/e2}. Second, assume

that the photon initialized in the vacuum is spatially far away from dielectric objects. In other words,
the photon cannot recognize the presence of dielectric objects before touching them. As a result,
QEM-CV-propagators can be approximated by analytic plane wave solutions as

K(+)
n (xm, t = 0) ≈

Nk

∑
p=1

√
h̄ωp

2Nk

eikp(xm−xn)

√
εmNx∆x

, (36)

∂K(+)
n (xm, t)

∂t

∣∣∣∣∣
t= 1

2 ∆t

≈ −i
Nk

∑
p=1

√
h̄ω3

p

2Nk

eikp(xm−xn)

√
εmNx∆x

e−iωp
1
2 ∆t (37)

for n ∈ Y. Thus, the Q-FDTD scheme can be initialized by letting[
K(+)

n

]l=0

m
= K(+)

n (xm, t = 0) , (38)

[
K(+)

n

]l=1

m
=
[
K(+)

n

]l=0

m
+ ∆t

∂K(+)
n (xm, t)

∂t

∣∣∣∣∣
t= 1

2 ∆t

 . (39)
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7. Numerical Simulations of Quantum Beam Splitter

The Hong-Ou-Mandel effect [29] refers to a two-photon destructive interference effect in a 50/50
quantum beam splitter [45] and widely used in quantum optics experiments. Specifically, when a pair
of photons is impinging on the beam splitter with the perfect temporal overlap, that is, τ = 0, the two
photons will always exit through a same output port while being bunched, having 50:50 chance of
exiting from either one or the other output port. This is often measured through the degree of intensity
coherence, called second order correlation, denoted as g(2), originally related to the Hanbury Brown
and Twiss (HBT) effect [46]. The quantum version of the second order correlation [47] is defined by

g(2) (τ) ≡

〈
Ψ(2)

∣∣∣Ê(−) (x1, t0) Ê(−) (x2, t0 + τ) Ê(+) (x2, t0 + τ) Ê(+) (x1, t0)
∣∣∣Ψ(2)

〉
〈
Ψ(2)

∣∣Ê(−) (x1, t0) Ê(+) (x1, t0)
∣∣Ψ(2)

〉 〈
Ψ(2)

∣∣Ê(−) (x2, t0 + τ) Ê(+) (x2, t0 + τ)
∣∣Ψ(2)

〉 . (40)

In our computer simulation, we set x1 = xl and x2 = xr, as illustrated in Figure 3, and τ = δx0/c [s].
We used same simulation parameters used in Reference [36]. Also, One can evaluate (40) in the same
way explained in Reference [36], which is the crucial part of creating quantum effects.

Figure 3. Schematic of computer simulations for a quantum beam splitter to observe Hong-Ou-
Mandel effect.

Figure 4 depicts τ versus g(2) (τ) for three different cases: (1) numerical canonical quantization,
(2) Q-FDTD with exact initialization (with numerical normal modes obtained from solving the
Helmholtz wave equation), and (3) Q-FDTD with approximate initialization by using from (36) to (39).
There are excellent agreement in all cases, thus, the Q-FDTD scheme with approximate initialization is
correctly validated. Furthermore, as expected, there are the HOM dips in all cases when τ = 0 since
the destructive interference of the pair of photons occurs.

Figure 4. The Hong-Ou-Mandel effects are numerically evaluated by using (1) numerical canonical
quantization (solid line), (2) Quantum finite-difference time-domain (Q-FDTD) with exact initialization
(round markers), and (3) Q-FDTD with approximate initialization (asterisk markers).
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8. Conclusions

We have employed another approach to quantize electromagnetic (EM) fields in the coordinate
space, instead of the mode space. In the coordinate space, EM field operators were expanded
by coordinate-ladder operators weighted by non-orthogonal and spatially-localized bases, which
were propagators of quantum electromagnetic initial field operators (QEM-CV-propagator). Due
to the property of QEM-CV-propagators, the present formulation is suited to describe local
features of photons. Since there were no closed form solutions available for them in arbitrary
EM environments, we developed a quantum finite-difference time-domain method to numerically
time evolve QEM-CV-propagators. In order to check the validity of the proposed quantum
finite-difference time-domain scheme, we performed computer simulations to observe the two-photon
indistinguishability in quantum beam splitters, known as the Hong-Ou-Mandel effect.
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