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Abstract: In this paper we introduce a new method for constructing coherent states for 2D harmonic
oscillators. In particular, we focus on both the isotropic and commensurate anisotropic instances of
the 2D harmonic oscillator. We define a new set of ladder operators for the 2D system as a linear
combination of the x and y ladder operators and construct the SU(2) coherent states, where these
are then used as the basis of expansion for Schrödinger-type coherent states of the 2D oscillators.
We discuss the uncertainty relations for the new states and study the behaviour of their probability
density functions in configuration space.

Keywords: coherent states; harmonic oscillator; SU(2) coherent states; 2D coherent states; resolution
of the identity; uncertainty principle, isotropic harmonic oscillator, anisotropic harmonic oscillator

1. Introduction

Degeneracy in the spectrum of the Hamiltonian is one of the first problems we encounter when
trying to define a new type of coherent state for the 2D oscillator. Klauder described coherent states
of the hydrogen atom [1] which preserved many of the usual properties required by coherent state
analysis [2]. Fox and Choi proposed the Gaussian Klauder states [3], an alternative method for
producing coherent states for more general systems with degenerate spectra. An analysis of the
connection between the two definitions was studied in [4].

When labeling energy eigenstates of a 2D system, |n, m〉, there exist several representations of
the state space. In this paper, we present a motivation for an SU(2) representation of the state space.
Discussions of alternate state-space representations, as well as its application to 2D magnetism, may
be found in [5,6]. When generalising beyond 2D, there exist many more state-space representations,
leading to many definitions of coherent states in higher dimensions.

In this work, we aim to develop an approach for constructing coherent states for 2D oscillators
in both isotropic and commensurate anisotropic settings. We aim to minimally extend the standard
definitions of coherent states in the 1D setting, and we determine new properties of the constructed
coherent states for the 2D system.

In the first part of the paper, we address the degeneracy in the energy spectrum by constructing
non-degenerate states, the SU(2) coherent states. We define a generalised ladder operator formed
from a linear combination of the 1D ladder operators with complex coefficients. The SU(2) coherent
states are then used as a basis of expansion to describe the Schrödinger-type coherent states for
the 2D system.
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In the second part of the paper, we modify the SU(2) coherent states according to Chen [7] to
produce coherent states for the commensurate anisotropic oscillator, and we discuss the emergent
properties and their correspondence to Lissajous figures in configuration space. Finally, we suggest
some future directions the work can take, as well as problems that may arise in more complicated
systems than the oscillator.

2. Coherent States of the 1D Harmonic Oscillator

The very well-known coherent states of the 1D harmonic oscillator, labelled by z ∈ C, satisfy

a− |z〉 = z |z〉 ; (1)

|z〉 = e(za+−z̄a−) |0〉 ≡ D(z) |0〉 ; (2)

|z〉 = e−
|z|2

2

∞

∑
n=0

zn
√

n!
|n〉 ; (3)

∆ x̂∆ p̂ =
1
2

, ∀ |z〉 with ∆ x̂ = ∆ p̂. (4)

Equations (1)–(4) describe some of the basic definitions of coherent states. These definitions
were formalised by Glauber and Sudarshan [8,9], but these minimal uncertainty wave-packets
were first studied by Schrödinger [10], and so we will refer to them as Schrödinger-type coherent
states throughout.

Furthermore, these properties can be used to show that the states |z〉 form an over-complete basis,
and they resolve the identity in the following way:

∫ d2z
π
|z〉 〈z| =

∞

∑
n=0
|n〉 〈n| = IH. (5)

Here, d2z = d<z d=z. The basis is over-complete because the states |z〉 are not orthogonal,
〈z′|z〉 6= 0. In the theory of coherent states, the resolution of the identity is often taken as a basic
requirement. This allows one to use the coherent states as a basis for describing other states in the
space.

3. The 2D Oscillator

For a 2D isotropic oscillator, we have the quantum Hamiltonian

Ĥ = −1
2

d2

dx2 −
1
2

d2

dy2 +
1
2

x2 +
1
2

y2, (6)

where we have set h̄ = 1, the mass m = 1, and the frequency ω = 1. We solve the time-independent
Schrödinger equation H |Ψ〉 = E |Ψ〉 and obtain the usual energy eigenstates (or Fock states) labelled
by |Ψ〉 = |n, m〉 with eigenvalue En,m = n + m + 1 and n, m ∈ Z≥0. These states may all be generated
by the action of raising and lowering the operators in the following way [11]:

a−x |n, m〉 =
√

n |n− 1, m〉 , a+x |n, m〉 =
√

n + 1 |n + 1, m〉 ;

a−y |n, m〉 =
√

m |n, m− 1〉 , a+y |n, m〉 =
√

m + 1 |n, m + 1〉 .
(7)

In configuration space, the states |n, m〉 have the following wave-function:

〈x, y|n, m〉 = ψn(x)ψm(y) =
1√

2n+mn!m!

√
1
π

e−
x2
2 −

y2
2 Hn (x) Hm (y) , (8)
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where ψn(x) = 1√
2nn!

(
1
π

) 1
4 e−

x2
2 Hn (x) is the wave-function of the 1D oscillator, and Hn(x) are the

Hermite polynomials. For the physical position and momentum operators, X̂i = 1√
2
(a+i + a−i ),

P̂i =
1√
2i
(a−i − a+i ), respectively, and in the i direction, the states |n, m〉 satisfy the following

(∆ X̂)2
|n,m〉 = (∆P̂x)

2
|n,m〉 =

1
2
+ n; (9)

(∆ Ŷ)2
|n,m〉 = (∆P̂y)

2
|n,m〉 =

1
2
+ m, (10)

where (∆ Ô)2
|ψ〉 ≡ 〈ψ| Ô

2 |ψ〉 − 〈ψ| Ô |ψ〉2 is the variance of the operator Ô in the state |ψ〉. They satisfy

the Heisenberg uncertainty relation (∆ X̂)|n,m〉(∆P̂x)|n,m〉 = 1
2 + n, which grows linearly in n,

and similarly for the Y quadratures.
In what follows, we will construct two new ladder operators as linear combinations of the

operators in (7) and proceed to define a single indexed Fock state for the 2D system which yields
the SU(2) coherent states, as well as extend the definitions in Section 2 to obtain Schrödinger-type
coherent states for the 2D system.

4. SU(2) Coherent States

We extend the definitions of the ladder operators presented in Section 3 to apply to the 2D
oscillator. Introducing a set of states {|ν〉}, and defining a new set of ladder operators through their
action on the set,

A− |ν〉 =
√

ν |ν− 1〉 , A+ |ν〉 =
√

ν + 1 |ν + 1〉 , 〈ν|ν〉 = 1, ν = 0, 1, 2, . . . . (11)

These states have a linear increasing spectrum, Eν = ν + 1. We may build the states by hand,
starting with the only non-degenerate state, the ground state, |0〉 ≡ |0, 0〉, and we take simple linear
combinations of the 1D ladder operators:

A+
α,β = α a+x ⊗ Iy + Ix ⊗ β a+y ;

A−α,β = ᾱa−x ⊗ Iy + Ix ⊗ β̄a−y ;

[A−α,β, A+
α,β] = (|α|2 + |β|2)Ix ⊗ Iy ≡ I,

(12)

for α, β ∈ C and Ix ⊗ Iy = Iy⊗ Ix ≡ I. Equation (12) defines the normalisation condition, |α|2 + |β|2 =

1. Constructing the states {|ν〉} starting with the ground state gives us the following table:

Table 1. Construction of the states |ν〉 using the relation A+ |ν〉 =
√

ν + 1 |ν + 1〉.

|ν〉 |n, m〉
|0〉 |0, 0〉
|1〉 α |1, 0〉+ β |0, 1〉
|2〉 α2 |2, 0〉+

√
2αβ |1, 1〉+ β2 |0, 2〉

...
...

|ν〉 ∑n+m=ν
n,m αnβm

√
(ν

n) |n, m〉

The states, |ν〉, in Table 1 depend on α, β and may be expressed as

|ν〉α,β =
ν

∑
n=0

αnβν−n

√(
ν

n

)
|n, ν− n〉 . (13)
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The states |ν〉α,β are precisely the SU(2) coherent states in the Schwinger boson representation [2].
This makes sense from our construction, where the degeneracy present in the spectrum En,m is an
SU(2) degeneracy, and so we created states which averaged out the degenerate contributions to a given
ν.

These states have the following orthogonality relations

〈µ|γ,δ |ν〉α,β = (γ̄α + δ̄β)νδµ,ν, (14)

which reduces to a more familiar relation when γ = α and δ = β,

〈µ|α,β |ν〉α,β = δµ,ν, (15)

using the normalization condition |α|2 + |β|2 = 1. The states |ν〉α,β have the configuration space wave
function expressed in terms of (8)

〈x, y|ν〉α,β =
ν

∑
n=0

αnβν−n

√(
ν

n

)
ψn(x)ψν−n(y). (16)

In Figure 1, there are two plots of the probability density functions
∣∣∣〈x, y|ν〉α,β

∣∣∣2. In the picture on
the left, there is an imaginary component to the relative phase between α and β, and this causes the
emergence of an elliptical shape to the density. Conversely, on the right, when α and β are exactly in
phase (or out of phase), the probability density is concentrated on a line, and the angle of the line to the
x axis is determined by tan θ = |β|

|α| . The probability densities of the quantum SU(2) coherent states
mimic the spatial distribution of a classical 2D isotropic oscillator—that is, ellipses in the (x, y) plane.

Figure 1. Density plots of
∣∣∣〈x, y|ν〉α,β

∣∣∣2 for α =
√

3
2 ei π

2 , β = 1
2 (left) and α =

√
3

2 , β = 1
2 (right), both at

ν = 40.

The SU(2) coherent states have the following variances for the physical position and momentum
operators X̂i =

1√
2
(a+i + a−i ), P̂i =

1√
2i
(a−i − a+i ), respectively, in the i direction:

(∆ X̂)2
|ν〉α,β

= (∆P̂x)
2
|ν〉α,β

=
1
2
+ |α|2ν; (17)

(∆ Ŷ)2
|ν〉α,β

= (∆P̂y)
2
|ν〉α,β

=
1
2
+ |β|2ν. (18)
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The results are essentially the same as those in (9) and (10), but they are tuned by the continuous
parameters α, β introduced in (12).

5. Schrödinger-Type 2D Coherent States

Using the SU(2) coherent states |ν〉α,β as a Fock basis for defining 2D coherent states in the same
vein as Section 2, we write down the following:

|Ψ〉α,β = e−
|Ψ|2

2

∞

∑
ν=0

Ψν

√
ν!
|ν〉α,β . (19)

These states have the following inner product relation:

〈
Ψ′
∣∣
γ,δ |Ψ〉α,β = e−

|Ψ′ |2+|Ψ|2
2 eΨ̄′Ψ(γ̄α +δ̄β). (20)

Because these states are constructed so as to be analogous with the 1D definitions, we also find
that they are eigenstates of the generalised lowering operator A−

A−α,β |Ψ〉α,β = Ψ |Ψ〉α,β . (21)

The expansion in (19) also implies the existence of a displacement operator, as in the 1D case:

|Ψ〉α,β = e−
|Ψ|2

2

∞

∑
ν=0

Ψν

√
ν!
|ν〉α,β

= e−
|Ψ|2

2

∞

∑
ν=0

Ψν

√
ν!

A+
αβ

ν

√
ν!
|0〉α,β

= e−
|Ψ|2

2 +ΨA+
αβ |0〉α,β ≡ D(Ψ) |0〉α,β .

(22)

A Baker-Campbell-Haussdorf identity, along with the annihilation of the 2D vacuum,
A−α,β |0〉α,β = 0 allows us to rewrite D(Ψ) in the following way:

D(Ψ) = eΨA+
α,β−Ψ̄A−α,β

= e(αΨa+x −ᾱΨ̄a−x )+(βΨa+y −β̄Ψ̄a−y )

= Dx(αΨ)Dy(βΨ),

(23)

where we have split D(Ψ) into operators acting on x and y independently. The Schrödinger-type
coherent states then factorise into two uncoupled 1D coherent states, |α Ψ〉x ⊗ |β Ψ〉y.

The Schrödinger-type coherent states represent an infinite sum of the elliptical, or SU(2) coherent
states established previously, with a Poissonian probability of being in a state |µ〉α,β given by

∣∣∣〈µ|α,β |Ψ〉α,β

∣∣∣2 = e−|Ψ|
2 |Ψ|2µ

µ!
, (24)

analogous to the 1D coherent states, |〈n|z〉|2 = e−|z|
2 |z|2n

n! .
It is clear from the factorisation of the displacement operator (23) that the wave-function of

the Schrödinger-type coherent states must also factorise into the product of two 1D coherent state
wave-functions. Using the general form of the 1D coherent state wave-function [2], we get the position
representation of the 2D Schrödinger-type coherent states:

〈x, y|Ψ〉α,β =
1√
π

exp
(
−1

2
[(x−

√
2 Re(αΨ))2 + (y−

√
2 Re(βΨ))2]

)
e(i
√

2[x Im(αΨ)+y Im(βΨ)]). (25)
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In Figure 2, we see the probability densities
∣∣∣〈x, y|Ψ〉α,β

∣∣∣2 are Gaussian in the (x, y) plane. The peak

of the probability density is located at the coordinates (x, y) = (
√

2 Re(αΨ),
√

2 Re(βΨ)).

Figure 2. Density plots of
∣∣∣〈x, y|Ψ〉α,β

∣∣∣2 for Ψ = 8, α =
√

3
2 ei π

2 , β = 1
2 (left) and Ψ = 8ei π

4 , α =
√

3
2 ei π

2 , β = 1
2 (right).

The Schrödinger-type 2D isotropic coherent states are minimal uncertainty states in both x and y,
and this follows from the factorisation of the displacement operator,

(∆X̂)|Ψ〉α,β
(∆ P̂x)|Ψ〉α,β

=
1
2

, (∆X̂)|Ψ〉α,β
= (∆ P̂x)|Ψ〉α,β

; (26)

(∆Ŷ)|Ψ〉α,β
(∆ P̂y)|Ψ〉α,β

=
1
2

, (∆Ŷ)|Ψ〉α,β
= (∆ P̂y)|Ψ〉α,β

. (27)

6. Resolution of the Identity

The SU(2) coherent states resolve the identity in the following way:

ν + 1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1) |ν〉α,β 〈ν|α,β = Iν, (28)

where Iν is the identity operator for the states {|ν〉α,β}—in other words, the sum of the projectors
onto states with a total occupation number of n + m = ν—for example, I2 = |2, 0〉 〈2, 0|+ |1, 1〉 〈1, 1|+
|0, 2〉 〈0, 2|.

We retrieved the identity operator for the entire Hilbert space by summing over ν

∞

∑
ν=0

(
ν + 1

π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1) |ν〉α,β 〈ν|α,β

)
=

∞

∑
n=0

∞

∑
m=0
|n, m〉 〈n, m| = IH. (29)

The resolution of the identity allowed us to express any other state in the Hilbert space in terms
of the states {|ν〉α,β}. The energy eigenstates were then given by

|n, m〉 =
∞

∑
ν=0

{
ν + 1

π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1)

√(
ν

n

)
ᾱn β̄m |ν〉α,β

}
. (30)
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The Schrödinger-type 2D coherent states resolve the identity with a slightly modified measure.
It is insufficient to combine the measures used for the 1D coherent states and SU(2) coherent states in
Equations (5) and (28), where doing so, we would obtain

1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2− 1)
∫
C

d2Ψ
π
|Ψ〉α,β 〈Ψ|α,β =

∞

∑
ν=0

Iν

ν + 1
=

∞

∑
n=0

∞

∑
m=0

|n, m〉 〈n, m|
n + m + 1

6∝ IH. (31)

However, the identity operator for the full Hilbert space can be retrieved by the inclusion of |Ψ|2

into the measure as follows:

1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1)
∫
C

d2Ψ
π
|Ψ|2 |Ψ〉α,β 〈Ψ|α,β = IH, (32)

thus, the Schrödinger-type coherent states for the 2D oscillator represent an over-complete basis for
the full Hilbert space of the 2D oscillator. The resolution of the identity means the states could have
some application in 2D coherent state quantization [2].

7. Commensurate Anisotropic SU(2) Coherent States

In order to generalise coherent states to the commensurate anisotropic oscillator, we introduce
two integers, p, q, in the Hamiltonian as

Ĥ = −1
2

d2

dx2 −
1
2

d2

dy2 +
1
2

ω2
xx2 +

1
2

ω2
yy2

= −1
2

d2

dx2 −
1
2

d2

dy2 +
p2

2
ω2x2 +

q2

2
ω2y2,

(33)

where the frequencies are related by ωx = pω and ωy = qω, and the ratio, p
q , represents the ratio of

the two frequencies, ωx
ωy

. Without loss of generality, we will set the common frequency ω = 1 in what
follows and choose p, q such that they are relative prime integers. A hypothesis made by Chen [12]
says that the integers p, q enter the quantum SU(2) coherent states in the following way:

|ν〉p,q
α,β =

ν

∑
n=0

αnβν−n

√(
ν

n

)
|pn, q(ν− n)〉 , (34)

where the states are normalised in the usual way: 〈ν|p,q
α,β |ν〉

p,q
α,β = 1 and |α|2 + |β|2 = 1.

Chen’s hypothesis (34) suitably addresses the extension of our construction to the commensurate
anisotropic oscillator. Energy eigenstates of (33) have eigenvalues En,m = p

(
n + 1

2

)
+ q

(
m + 1

2

)
,

which do not have the same degenerate structure as in the isotropic case where p = q = 1, and instead
we are considering a superposition of states |pn, qm〉 such that n + m = ν for given p, q.

The energy eigenvalues of the states |ν〉p,q
α,β may be calculated from

〈ν|p,q
α,β a+x a−x + a+y a−y + 1 |ν〉p,q

α,β = (p− q)

(
ν

∑
n=0
|α|2n|β|2(ν−n)

(
ν

n

)
n

)
+ qν + 1

= (p− q)|α|2ν + qν + 1

= p|α|2ν + q|β|2ν + 1

≡ Ep,q
ν ,

(35)
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which was computed by observing that

∂

∂|α|2
ν

∑
n=0
|α|2n|β|2(ν−n)

(
ν

n

)
=

∂

∂|α|2
(|α|2 + |β|2)ν, (36)

yielding
ν

∑
n=0
|α|2(n−1)|β|2(ν−n)

(
ν

n

)
n = ν(|α|2 + |β|2)ν−1 = ν. (37)

The states |ν〉p,q
α,β correspond to Lissajous-type probability densities in configuration space,

a feature present in the classical spatial distribution of an anisotropic oscillator with commensurate
frequencies [7,13].

In Figure 3, we have two types of Lissajous figures, where on the left is a closed figure and on
the right, an open figure. The frequency ratio p

q determines the type of Lissajous figure, and the
relative phase between α and β deforms the figures such that when they are completely in (or out
of) phase, the figure is open, and when there is an imaginary component to the relative phase, the
figure is closed. Tables of Lissajous figures corresponding to different choices of p and q can be found
in [14]. The correspondence of the quantum probability densities to the classical spatial distribution
of a 2D commensurate anisotropic oscillator confirms Chen’s definition as a suitable description of
coherent states.

Figure 3. Density plots of
∣∣∣〈x, y|ν〉p,q

α,β

∣∣∣2 for α =
√

3
2 ei π

2 , β = 1
2 (left) and α =

√
3

2 , β = 1
2 (right) for

p = 2, q = 1 at ν = 40.

The commensurate anisotropic SU(2) coherent states have slightly modified variances compared
with the isotropic case

(∆ X̂)2
|ν〉p,q

α,β
= (∆P̂x)

2
|ν〉p,q

α,β
=

1
2
+ |α|2 pν; (38)

(∆ Ŷ)2
|ν〉p,q

α,β
= (∆P̂y)

2
|ν〉p,q

α,β
=

1
2
+ |β|2qν. (39)
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8. Commensurate Anisotropic 2D Schrödinger-Type Coherent States

As with the isotropic case, we can build 2D Schrödinger-type coherent states using the
commensurate anisotropic SU(2) coherent states as a basis, defining the states |Ψ〉p,q

α,β

|Ψ〉p,q
α,β = e−

|Ψ|2
2

∞

∑
ν=0

Ψν

√
ν!
|ν〉p,q

α,β . (40)

These Schrödinger-type coherent states are normalised 〈Ψ|p,q
α,β |Ψ〉

p,q
α,β = 1 with inner product

〈
Ψ′
∣∣p,q
α,β |Ψ〉

p,q
α,β = e−

|Ψ′ |2+|Ψ|2
2 eΨ̄′Ψ. (41)

Similarly to the isotropic case, (40) may be interpreted as the infinite sum of commensurate
anisotropic SU(2) coherent states, determined by p, q, with a probability of being in a given coherent
state, |µ〉p,q

α,β, given by ∣∣∣〈µ|p,q
α,β |Ψ〉

p,q
α,β

∣∣∣2 = e−|Ψ|
2 |Ψ|2µ

µ!
. (42)

Figures 4 and 5 show four density plots for the probability density of the commensurate
anisotropic 2D Schrödinger-type coherent states. We have finitely used many terms in the expansion
of |Ψ〉p,q

α,β, and so we can see the emergence of localisation, but the pictured graphs are not properly
normalised as a result. An interesting difference between the isotropic and commensurate anisotropic
Schrödinger-type coherent states is that for certain values of (α, β, Ψ, p, q), the probability density can
localise onto two or more separate points. This can be seen clearly in the left-most image in Figure 5,
unlike the isotropic Schrödinger states which were seen to have Gaussian probability distributions in
configuration space with a single maximum.

Figure 4. Density plots of
∣∣∣〈x, y|Ψ〉p,q

α,β

∣∣∣2 for Ψ = 8, α =
√

3
2 ei π

2 , β = 1
2 (left) and Ψ = 8ei π

2 , α =
√

3
2 ei π

2 , β = 1
2 (right), with p = 2, q = 1 in both instances. Thirty terms are kept in the expansion

of |Ψ〉p,q
α,β. We see the emergence of localisation onto parts of the SU(2) coherent state used in the

expansion.
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Figure 5. Density plots of
∣∣∣〈x, y|Ψ〉p,q

α,β

∣∣∣2 for Ψ = 4, α =
√

3
2 ei π

2 , β = 1
2 (left) and Ψ = 4ei π

2 , α =
√

3
2 ei π

2 , β = 1
2 (right), with p = 2, q = 1 in both instances. Thirty terms are kept in the expansion of

|Ψ〉p,q
α,β.

In the right-most density plot in Figure 5 there is good localisation, but the probability distribution
is fringed around the origin, and this behaviour differs from the isotropic counterparts. The graphs in
Figure 4 are clearly far from normalisation (because larger Ψ was used), but they demonstrate how the
first few terms in the expansion of |Ψ〉p,q

α,β begin to localise onto the Lissajous figure. The parameters
(α, β, p, q) determine the topology of the Lissajous figure, as described in Section 7, while arg Ψ controls
the points on the Lissajous figure where the probability density will concentrate.

9. Conclusions

In this paper we have described a method for constructing coherent states for the 2D oscillator,
which relies on using the minimal set of definitions used to describe the coherent states of the 1D
oscillator. We found that most of the properties of the 1D coherent states were also present in their
2D isotropic Schrödinger-type counterparts: minimisation of the uncertainty principle, existence of
a displacement operator, eigenstates of an annihilation operator, and correspondence to classical
dynamics. A suitable measure was also found for the resolution of the identity.

Using the hypothesis of Chen, we generalised these results to the commensurate anisotropic 2D
harmonic oscillator and found that their probability densities corresponded to Lissajous orbits. It is not
clear at present how these results can be extended to the non-commensurate case. The relative prime
integers p, q enter the SU(2) coherent states in a very natural way, but it seems that a different formalism
altogether would be required when dealing with non-commensurable ωx, ωy, where classically this
would correspond to quasi-periodicity [15].

As an outlook, it would be interesting to obtain detailed results on the variances of the physical
quadratures in the commensurate anisotropic Schrödinger-type coherent states. We were able to assess
the localisation of the probability densities, but they lacked accurate numerical values as a result
of using a finite number of terms in the expansion of |Ψ〉p,q

α,β. A further consideration would be to
define a squeezing operator with the generalised ladder operators A− and A+, analogously to the 1D

squeezing operator, S(Ξ) = e
Ξ
2 (A+)2− Ξ̄

2 (A−)2
. When acting on the ground state with this operator to

produce a 2D squeezed vacuum S(Ξ) |0〉, we obtained non-trivial interactions between the x and y
oscillators due to the bilinear terms appearing in the exponent. A two-mode-like squeezing between
x and y modes was found to arise.

Finally, this method could perhaps be used to describe coherent states for degenerate systems
other than the harmonic oscillator, where the 2D oscillator is the simplest example of a degenerate
2D spectrum, and the next simplest example would be the particle in a 2D box. Work has been
done on defining coherent states with degenerate spectra by Fox and Choi [3], and the example
of the particle in a 2D box was looked at in [4]. The extension of our framework is not extremely
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straightforward; however, the spectrum of the particle in a box goes as n2 + m2, which contains
non-algebraic degeneracies (such as 12 + 72 = 52 + 52) and would require more careful thought when
counting states in a given degenerate subgroup |ν〉.
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