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Sibel Başkal 1 , Young S. Kim 2,* , and Marilyn E. Noz 3

1 Department of Physics, Middle East Technical University, 06800 Ankara, Turkey; sibelbaskal@gmail.com
2 Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA
3 Department of Radiology, New York University, New York, NY 10016, USA; marilyne.noz@gmail.com
* Correspondence: yskim@umd.edu; Tel.: +1-301-937-1306

Received: 12 September 2019; Accepted: 7 November 2019; Published: 9 November 2019 ����������
�������

Abstract: Heisenberg’s uncertainty relation can be written in terms of the step-up and step-down
operators in the harmonic oscillator representation. It is noted that the single-variable Heisenberg
commutation relation contains the symmetry of the Sp(2) group which is isomorphic to the Lorentz
group applicable to one time-like dimension and two space-like dimensions, known as the O(2, 1)
group. This group has three independent generators. The one-dimensional step-up and step-down
operators can be combined into one two-by-two Hermitian matrix which contains three independent
operators. If we use a two-variable Heisenberg commutation relation, the two pairs of independent
step-up, step-down operators can be combined into a four-by-four block-diagonal Hermitian matrix
with six independent parameters. It is then possible to add one off-diagonal two-by-two matrix
and its Hermitian conjugate to complete the four-by-four Hermitian matrix. This off-diagonal
matrix has four independent generators. There are thus ten independent generators. It is then
shown that these ten generators can be linearly combined to the ten generators for Dirac’s two
oscillator system leading to the group isomorphic to the de Sitter group O(3, 2), which can then be
contracted to the inhomogeneous Lorentz group with four translation generators corresponding
to the four-momentum in the Lorentz-covariant world. This Lorentz-covariant four-momentum is
known as Einstein’s E = mc2.

Keywords: E = mc2 from Heisenberg’s uncertainty relations; one symmetry for quantum mechanics
and special relativity

1. Introduction

Let us start with Heisenberg’s commutation relations[
xi, Pj

]
= i δij, (1)

with
Pi = −i

∂

∂xi
, (2)

where i = 1, 2, 3, corresponds to the x, y, z coordinates respectively.
With these xi and Pi, we can construct the following three operators,

Ji = εijkxjPk. (3)

These three operators satisfy the closed set of commutation relations:[
Ji, Jj

]
= iεijk Jk. (4)
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These Ji operators generate rotations in the three-dimensional space. In mathematics, this
set is called the Lie algebra of the rotation group. This is a direct consequence of Heisenberg’s
commutation relations.

In quantum mechanics, each Ji corresponds to the angular momentum along the i direction.
A remarkable fact is that it is also possible to construct the same Lie algebra with two-by-two matrices.
These matrices are of course the Pauli spin matrices, leading to the observable angular momentum not
seen in classical mechanics.

As the expression shows in Equation (2), each Pi generates a translation along the ith direction.
Thus, the three translation generators, together with the three rotation generators constitute the Lie
algebra of the Galilei group, with the additional commutation relations:[

Ji, Pj
]
= iεijkPk. (5)

This set of commutation relations together with those of Equation (4) constitute a closed set for
both Pi and Ji. This set is called the Lie algebra of the Galilei group. This group is the basic symmetry
group for the Schrödinger or non-relativistic quantum mechanics.

In the Schrödinger picture, the generator Pi corresponds to the particle momentum along the i
direction. In addition, the time translation operator is

P0 = i
∂

∂t
. (6)

This corresponds to the energy variable.
Let us go to the Lorentzian world. Here we have to take into account the generators of the boosts.

The generators thus include the time variable, and the generator of boosts along the i direction is

Ki = i
(

xi
∂

∂t
+ t

∂

∂xi

)
. (7)

These generators satisfy the commutation relations[
Ki, Kj

]
= −iεijk Jk. (8)

Thus, these three boost generators alone cannot constitute a closed set of commutation relations
(Lie algebra).

With Ji, these boost generators satisfy[
Ji, Kj

]
= i εijkKk. (9)

With Pi, they satisfy the relation
[Pi, Ki] = iδ0iP0. (10)

Thus, the commutation relations of Equations (4),(5),(8–10) constitute a closed set of the ten
generators. This closed set is commonly called the Lie algebra of the Poincaré symmetry.

The three rotation and three translation generators are contained in, or are derivable from,
Heisenberg’s commutation relations, and the time translation operator is seen in the Schrödinger
equation. They are all Hermitian operators corresponding to dynamical variables. On the other hand,
the three boost generators of Equation (7) are not derivable from the Heisenberg relations. Furthermore,
they do not appear to correspond to observable quantities [1].

The purpose of this paper is to show that the Lie algebra of the Poincaré symmetry is derivable
from the Heisenberg commutation relations. For this purpose, we first examine the symmetry of the
Heisenberg commutation relation using the Wigner function in the phase space. It is noted that the
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single-variable relation contains the symmetry of the Lorentz group applicable to two space-like and
one time-like dimensions.

As Dirac noted in 1963 [2], two coupled oscillators lead to the symmetry of the O(3, 2) or
the Lorentz group applicable to the three space-like directions and two time-like directions. As is
illustrated in Figure 1, it is possible to contract one of those two time variables of this O(3, 2) group
into the inhomogeneous Lorentz group, consisting of the Lorentz group applicable to the three
space-like dimensions and one time-like direction, plus four translation generators corresponding to
the energy-momentum four-vector. This of course leads to Einstein’s energy–momentum relation of
E = mc2.

(a) (b)

Figure 1. The Inönü–Wigner contraction procedure interpreted as squeeze transformations. In (a), the
square becomes a narrow rectangle during the squeeze process. When the rectangle becomes narrow
enough, the point A can be moved to the horizontal axis. Then, the inverse squeeze brings back the
rectangle to the original shape. The point A remains on the horizontal axis. In (b), both the hyperbola
and the circle become flattened to the horizontal axis, during the initial squeeze. The point on the curve
moves to the horizontal axis. This point moves back to its finite position during the inverse squeeze.

In Section 2, it is noted that the best way to study the symmetry of the Heisenberg commutation
relation is to use the Wigner function for the Gaussian function for the oscillator state. In the Wigner
phase space, this function contains the symmetry for the Lorentz group applicable to two space-like
dimensions and one time-like dimension. This group has three generators. This operation is equivalent
to constructing a two-by-two block-diagonal Hermitian matrix with quadratic forms of the step-up
and step-down operators.

In Section 3, we consider two oscillators. If these oscillators are independent, it is possible to
construct a four-by-four block diagonal matrix, where each block consists of the two-by-two matrix for
each operator defined in Section 2. Since the oscillators are uncoupled, this four-by-four block-diagonal
Hermitian matrix contains six independent generators.

If the oscillators are coupled, then to keep the overall four-by-four block-diagonal matrix
Hermitian, we need one off-diagonal block matrix, with four independent quadratic forms. Thus,
the overall four-by-four matrix contains ten independent quadratic forms of the creation and
annihilation operators.

It is shown that these ten independent generators can be linearly combined into the ten generators
constructed by Dirac for the the Lorentz group applicable to three space-like dimensions and two
time-like dimensions, commonly called the O(3, 2) group.

In Section 4, using the boosts belonging to one of its time-like dimensions, we contract O(3, 2)
to produce the Lorentz group applicable to one time dimension and four translations leading to the
four-momentum. This Lorentz-covariant four-momentum is commonly known as Einstein’s E = mc2.
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This paper is essentially based on Dirac’s paper published in 1949 and 1963 [1,2]. As is illustrated
in Figure 2, we show here that the space-time symmetry of quantum mechanics mentioned in his 1949
paper is derivable from his two-oscillator system discussed in 1963. The route is the group contraction
procedure of Inönü and Wigner [3].

Dirac 1949                                                                       Dirac 1963 

Group contraction

      We can make this detour.

Impossible?

Figure 2. According to Dirac’s 1949 paper, the task of constructing quantum mechanics is essentially
constructing a representation of the inhomogeneous Lorentz group. In his 1963 paper, Dirac constructed
the Lie algebra of the O(3, 2) de Sitter group from the algebra of two harmonic oscillators, which is
a direct consequence of Heisenberg’s uncertainty commutation relations. It is possible to derive the
Lie algebra of the inhomogeneous Lorentz group from that of O(3, 2) using the group-contraction
procedure of Inönü and Wigner [3].

Indeed, from 1927 Dirac made lifelong efforts to synthesize quantum mechanics and special
relativity [4]. In 1949 and before, he treated quantum mechanics and special relativity as two separate
scientific disciplines, and then in 1949 he attempted to synthesize them. Thus, it is of interest to see
how Dirac’s ideas evolved during the period 1929–1949. We shall give a brief review of Dirac’s efforts
during the period in Appendix A.

2. Symmetries of the Single-Mode States

Heisenberg’s uncertainty relation for a single Cartesian variable takes the form

[x, p] = i (11)

with
p = −i

∂

∂x
.

Very often, it is more convenient to use the operators

a =
1√
2
(x + ip), a† =

1√
2
(x− ip) (12)

with [
a, a†

]
= 1. (13)

This aspect is well known.
The representation based on a and a† is known as the harmonic oscillator representation of

the uncertainty relation and is the basic language for the Fock space for particle numbers. This
representation is therefore the basic language for quantum optics.

Let us next consider the quadratic forms: aa, a†a†, aa†, and a†a. Then the linear combination

aa† − a†a = 1, (14)
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according to the uncertainty relation. Thus, there are three independent quadratic forms, and we are
led to the following two-by-two matrix:((

aa† + a†a
)

/2 aa
a†a† (

aa† + a†a
)

/2

)
. (15)

This matrix leads to the following three independent operators:

J2 =
1
2

(
aa† + a†a

)
, K1 =

1
2

(
a†a† + aa

)
, K3 =

i
2

(
a†a† − aa

)
. (16)

They produce the following set of closed commutation relations:

[J2, K1] = −iK3, [J2, K3] = iK1, [K1, K3] = i J2. (17)

This set is commonly called the Lie algebra of the Sp(2) group, locally isomorphic to the Lorentz
group applicable to one time and two space coordinates.

The best way to study the symmetry property of these operators is to use the Wigner function for
the ground-state oscillator which takes the form [5–8]

W(x, p) =
1
π

exp
[
−
(

x2 + p2
)]

. (18)

This distribution is concentrated in the circular region around the origin. Let us define the circle as

x2 + p2 = 1. (19)

We can use the area of this circle in the phase space of x and p as the minimum uncertainty.
This uncertainty is preserved under rotations in the phase space and also under squeezing. These
transformations can be written as(

cos θ − sin θ

sin θ cos θ

)(
x
p

)
,

(
eη 0
0 e−η

)(
x
p

)
, (20)

respectively. The rotation and the squeeze are generated by

J2 = −i
(

x
∂

∂p
− p

∂

∂x

)
, K1 = −i

(
x

∂

∂x
− p

∂

∂p

)
. (21)

If we take the commutation relation with these two operators, the result is

[J2, K1] = −iK3, (22)

with

K3 = −i
(

x
∂

∂p
+ p

∂

∂x

)
. (23)

Indeed, as before, these three generators form the closed set of commutation which form the Lie
algebra of the Sp(2) group, isomorphic to the Lorentz group applicable to two space and one time
dimensions. This isomorphic correspondence is illustrated in Figure 3.
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p

x

boost along z

boost along x

Figure 3. Rotations and squeezes in the phase space produced by the Sp(2) transformations. The
squeeze along the x direction corresponds to the Lorentz boost along the z direction, while the squeeze
along the 45◦ angle corresponds to the boost along the x direction. The rotation by 45◦ corresponds to
the rotation by 90◦ around the y axis.

Let us consider the Minkowski space of (x, y, z, t). It is possible to write three four-by-four
matrices satisfying the Lie algebra of Equation (17). The three four-by-four matrices satisfying this set
of commutation relations are:

J2 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , K1 =


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 , K3 =


0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0

 . (24)

However, these matrices have null second rows and null second columns. Thus, they can
generate Lorentz transformations applicable only to the three-dimensional space of (x, z, t), while the
y variable remains invariant. Thus, this single-oscillator system cannot describe what happens in the
full four-dimensional Minkowski space.

Yet, it is interesting that the oscillator system can produce three different representations sharing
the same Lie algebra with the (2 + 1)-dimensional Lorentz group, as shown in Table 1.

Table 1. Transformation for the Gaussian function, in terms of harmonic oscillators, two-dimensional
phase space, and the four-dimensional Minkowski space.

Generators Oscillator Phase Space Lorentz

J2
1
2
(
aa† + a†a

) 1
2 σ2


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0



K1
1
2i
(
a†a† + aa

) i
2 σ1


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0



K3
1
2
(
a†a† − aa

)
, i

2 σ3


0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0


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3. Symmetries from Two Oscillators

In order to generate Lorentz transformations applicable to the full Minkowskian space, we may
need two Heisenberg commutation relations. Indeed, Paul A. M. Dirac started this program in 1963 [2].
It is possible to write the two uncertainty relations using two harmonic oscillators as[

ai, a†
j

]
= δij, (25)

with
ai =

1√
2
(xi + ipi) , a†

i =
1√
2
(xi − ipi) , (26)

and
xi =

1√
2

(
ai + a†

i

)
, pi =

i√
2

(
a†

i − ai

)
, (27)

where i and j could be 1 or 2.
As in the case of the two-by-two matrix given in Equation (15), we can consider the following

four-by-four block-diagonal matrix if the oscillators are not coupled:
(
a1a†

1 + a†
1a1
)

/2 a1a1 0 0
a†

1a†
1

(
a1a†

1 + a†
1a1
)

/2 0 0
0 0

(
a2a†

2 + a†
2a2
)

/2 a2a2

0 0 a†
2a†

2
(
a2a†

2 + a†
2a2
)

/2

 . (28)

There are six generators in this matrix.
We are now interested in coupling them by filling in the off-diagonal blocks. The most general

forms for this block are the following two-by-two matrix and its Hermitian conjugate:a†
1a2 a1a2

a†
1a†

2 a1a†
2

 (29)

with four independent generators. This leads to the following four-by-four matrix with
ten (6 + 4) generators:

(
a1a†

1 + a†
1a1
)

/2 a1a1 a†
1a2 a1a2

a†
1a†

1
(
a1a†

1 + a†
1a1
)

/2 a†
1a†

2 a1a†
2

a1a†
2 a1a2

(
a2a†

2 + a†
2a2
)

/2 a2a2

a†
1a†

2 a†
1a2 a†

2a†
2

(
a2a†

2 + a†
2a2
)

/2

 . (30)

With these ten elements, we can now construct the following four rotation-like generators:

J1 =
1
2

(
a†

1a2 + a†
2a1

)
, J2 =

1
2i

(
a†

1a2 − a†
2a1

)
,

J3 =
1
2

(
a†

1a1 − a†
2a2

)
, S0 =

1
2

(
a†

1a1 + a2a†
2

)
, (31)
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and six squeeze-like generators:

K1 = −1
4

(
a†

1a†
1 + a1a1 − a†

2a†
2 − a2a2

)
,

K2 = +
i
4

(
a†

1a†
1 − a1a1 + a†

2a†
2 − a2a2

)
,

K3 = +
1
2

(
a†

1a†
2 + a1a2

)
, (32)

and

Q1 = − i
4

(
a†

1a†
1 − a1a1 − a†

2a†
2 + a2a2

)
,

Q2 = −1
4

(
a†

1a†
1 + a1a1 + a†

2a†
2 + a2a2

)
,

Q3 = +
i
2

(
a†

1a†
2 − a1a2

)
. (33)

There are now ten operators from Equations (31)–(33), and they satisfy the following Lie algebra
as was noted by Dirac in 1963 [2]:

[Ji, Jj] = iεijk Jk, [Ji, Kj] = iεijkKk,

[Ji, Qj] = iεijkQk, [Ki, Kj] = [Qi, Qj] = −iεijk Jk,

[Ki, Qj] = −iδijS0, [Ji, S0] = 0, [Ki, S0] = −iQi, [Qi, S0] = iKi. (34)

Dirac noted that this set is the same as the Lie algebra for the O(3, 2) de Sitter group, with ten
generators. This is the Lorentz group applicable to the three-dimensional space with two time variables.
This group plays a very important role in space-time symmetries.

In the same paper, Dirac pointed out that this set of commutation relations serves as the Lie
algebra for the four-dimensional symplectic group commonly called Sp(4). For a dynamical system
consisting of two pairs of canonical variables x1, p1 and x2, p2, we can use the four-dimensional phase
space with the coordinate variables defined as [9]

(x1, p1, x2, p2) . (35)

Then the four-by-four transformation matrix M applicable to this four-component vector is
canonical if [10,11]

MJM̃ = J, (36)

where M̃ is the transpose of the M matrix, with

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (37)

which we can write in the block-diagonal form as

J = i

(
I 0
0 I

)
σ2, (38)
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where I is the unit two-by-two matrix.
According to this form of the J matrix, the area of the phase space for the x1 and p1 variables

remains invariant, and the story is the same for the phase space of x2 and p2.
We can then write the generators of the Sp(4) group as [12]

J1 = −1
2

(
0 I
I 0

)
σ2, J2 =

i
2

(
0 −I
I 0

)
I, J3 =

1
2

(
−I 0
0 I

)
σ2, S0 =

1
2

(
I 0
0 I

)
σ2, (39)

and

K1 =
i
2

(
I 0
0 −I

)
σ1, K2 =

i
2

(
I 0
0 I

)
σ3, K3 = − i

2

(
0 I
I 0

)
σ1,

Q1 = − i
2

(
I 0
0 −I

)
σ3, Q2 =

i
2

(
I 0
0 I

)
σ1, Q3 =

i
2

(
0 I
I 0

)
σ3. (40)

Among these ten matrices, six of them are in block-diagonal form. They are S0, J3, K1, K2, Q1,
and Q2. In the language of two harmonic oscillators, these generators do not mix up the first and
second oscillators. There are six of them because each operator has three generators for its own Sp(2)
symmetry. These generators, together with those in the oscillator representation, are tabulated in
Table 2.

Table 2. Transformation generators for the two-oscillator system.

Generators Two Oscillators Phase Space

J1
1
2
(
a†

1a2 + a†
2a1
)

− 1
2

(
0 I
I 0

)
σ2

J2
1
2i
(
a†

1a2 − a†
2a1
) i

2

(
0 −I
I 0

)
I

J3
1
2
(
a†

1a1 − a†
2a2
)

, 1
2

(
−I 0
0 I

)
σ2

S0
1
2
(
a†

1a1 + a2a†
2
)

, 1
2

(
I 0
0 I

)
σ2

K1 − 1
4
(
a†

1a†
1 + a1a1 − a†

2a†
2 − a2a2

) i
2

(
I 0
0 −I

)
σ1

K2 + i
4
(
a†

1a†
1 − a1a1 + a†

2a†
2 − a2a2

) i
2

(
I 0
0 I

)
σ3

K3
1
2
(
a†

1a†
2 + a1a2

)
− i

2

(
0 I
I 0

)
σ1

Q1 − i
4
(
a†

1a†
1 − a1a1 − a†

2a†
2 + a2a2

)
− i

2

(
I 0
0 −I

)
σ3

Q2 − 1
4
(
a†

1a†
1 + a1a1 + a†

2a†
2 + a2a2

) i
2

(
I 0
0 I

)
σ1

Q3
i
2
(
a†

1a†
2 − a1a2

) 1
2

(
I 0
0 I

)
σ2
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The off-diagonal matrix J2 couples the first and second oscillators without changing the overall
volume of the four-dimensional phase space. However, in order to construct the closed set of
commutation relations, we need the three additional generators: J1, K3, and Q3. The commutation
relations given in Equations (34) are clearly consequences of Heisenberg’s uncertainty relations.

As for the O(3, 2) group, the generators are five-by-five matrices, applicable to (x, y, z, t, s), where
t and s are time-like variables. These matrices can be written as

J1 =


0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0

 , J2 =


0 0 i 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , J3 =


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

K1 =


0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0

 , K2 =


0 0 0 0 0
0 0 0 i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

 , K3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 i 0
0 0 i 0 0
0 0 0 0 0

 ,

Q1 =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0

 , Q2 =


0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0

 , Q3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 i 0 0

 ,

S0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0

 . (41)

Next, we are interested in eliminating all the elements in the fifth row. The six generators Ji and
Ki are not affected by this operation, but Q1, Q2, Q3, and S0 become

P1 =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , P2 =


0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , P3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0

 ,

P0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0

 , (42)

respectively. While Ji and Ki generate Lorentz transformations on the four dimensional Minkowski
space, these Qi and S0 in the form of the Pi, P0 matrices generate translations along the x, y, z, and t
directions respectively. We shall study this aspect in detail in Section 4.
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4. Contraction of O(3, 2) to the Inhomogeneous Lorentz Group

We can contract O(3, 2) according to the procedure introduced by Inönü and Wigner [3].
They introduced the procedure for transforming the four-dimensional Lorentz group into the
three-dimensional Galilei group. Here, we shall contract the boost generators belonging to the time-like
s variable, Qi , along with the rotation generator between the two time-like variables, S0.

Here, we illustrate the Inönü-Wigner procedure using the concept of squeeze transformations.
For this purpose, let us introduce the squeeze matrix

C(ε) =


1/ε 0 0 0 0

0 1/ε 0 0 0
0 0 1/ε 0 0
0 0 0 1/ε 0
0 0 0 0 ε

 . (43)

This matrix commutes with Ji and Ki. The story is different for Qi and S0.
For Q1,

C Q1 C−1 =


0 0 0 0 i/ε2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

iε2 0 0 0 0

 , (44)

which, in the limit of small ε, becomes

Q′1 =


0 0 0 0 i/ε2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (45)

We then make the inverse squeeze transformation:

C−1 Q′1 C =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (46)

Thus, we can write this contraction procedure as

P1 = lim
ε→0

(
ε2 C Q1 C−1

)
, (47)

where the explicit five-by-five matrix is given in Equation (42). Likewise

P2 = lim
ε→0

(
ε2 C Q2 C−1

)
, P3 = lim

ε→0

(
ε2 C Q3 C−1

)
, P0 = lim

ε→0

(
ε2 C S0 C−1

)
. (48)

These four contracted generators lead to the five-by-five transformation matrix, as can be seen from

exp {−i (aP1 + bP2 + cP3 + dP0)} (49)
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performing translations in the four-dimensional Minkowski space:
1 0 0 0 a
0 1 0 0 b
0 0 1 0 c
0 0 0 1 −d
0 0 0 0 1




x
y
z
t
1

 =


x + a
y + b
z + c
t− d

1

 . (50)

In this way, the space-like directions are translated and the time-like t component is shortened
by an amount d. This means the group O(3, 2) derivable from the Heisenberg’s uncertainty relations
becomes the inhomogeneous Lorentz group governing the Poincaré symmetry for quantum mechanics
and quantum field theory. These matrices correspond to the differential operators

Px = −i
∂

∂x
, Py = −i

∂

∂y
, Pz = −i

∂

∂z
, P0 = i

∂

∂t
, (51)

respectively. These translation generators correspond to the Lorentz-covariant four-momentum
variable with

p2
1 + p2

2 + p2
3 − p2

0 = constant. (52)

This energy-momentum relation is widely known as Einstein’s E = mc2.

5. Concluding Remarks

According to Dirac [1], the problem of finding a Lorentz-covariant quantum mechanics reduces to
the problem of finding a representation of the inhomogeneous Lorentz group. Again, according to
Dirac [2], it is possible to construct the Lie algebra of the group O(3, 2) starting from two oscillators.
We have shown in our earlier paper [12] that this O(3, 2) group can be contracted to the inhomogeneous
Lorentz group according to the group contraction procedure introduced by Inönü and Wigner [3].

In this paper, we noted first that the symmetry of a single oscillator is generated by three
generators. Two independent oscillators thus have six generators. We have shown that there are four
additional generators needed for the coupling of the two oscillators. Thus there are ten generators.
These ten generators can then be linearly combined to produce ten generators which were spelled out
in Dirac’s 1963 paper.

For the two-oscillator system, there are four step-up and step-down operators. There are therefore
sixteen quadratic forms [9]. Among those, only ten of them are in Dirac’s 1963 paper [2]. Why ten?
Dirac needed those ten to construct the Lie algebra for the O(3, 2) group. At the end of the same paper,
he stated that this Lie algebra is the same as that for the Sp(4) group, which preserves the minimum
uncertainty for each oscillator.

In this paper, we started with the block-diagonal matrix given in Equation (28) for two totally
independent oscillators with six independent generators. We then added one two-by-two Hermitian
matrix of Equation (29) with four generators for the off-diagonal blocks. The result is the four-by-four
Hermitian matrix given in Equation (30). This four-by-four Hermitian matrix has ten independent
operators which can be linearly combined to the ten operators chosen by Dirac. Thus, in this paper,
we have shown how the two-oscillators are coupled, and how this coupling introduces additional
symmetries.

Paul A. M. Dirac made life-long efforts to make quantum mechanics consistent with special
relativity, starting from 1927 [4]. While we exploited the contents of his paper published in 1963 [2],
it is of interest to review his earlier efforts. In his earlier papers, Dirac started with quantum mechanics
and special relativity as two different branches of science based on two different mathematical bases.

In this paper, based on Dirac’s two papers [1,2], we concluded that both quantum mechanics and
special relativity can be derived from the same mathematical base. A brief review of Dirac’s earlier
efforts is given in Appendix A.
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Appendix A

As we all know, quantum mechanics and special relativity were developed along two separate
routes. As early as 1927, Dirac was interested in understanding whether these two scientific disciplines
are compatible with each other. In his paper of 1927 [4], Dirac noted the the existence of the time-energy
uncertainty relation without excitations. He called this the “c-number” time–energy uncertainty
relation. Dirac pointed out that the space-time asymmetry makes it difficult to construct the uncertainty
relation in the Lorentz-covariant world.

In 1945, Dirac considered the four-dimensional harmonic oscillator wave functions applicable to
the four-dimensional space and time. In so doing, Dirac was considering localized bound states. The
space and time variables in his case are the separations between two constituents, like the proton and
electron in the hydrogen atom.

It was shown later that Dirac’s concern about the c-number time–energy uncertainty is not
necessary in view of the fact that a massive particle at rest has only three space-like dimensions [13].
According to Wigner [14], the little group for the massive particle is isomorphic to O(3) [14]. With
this understanding, we can use a circle in the z t plane as shown in Figure A1, where z and t are
longitudinal and time separations respectively.

In his 1949 paper [15], Dirac introduced the light-cone coordinate system which tells us that the
Lorentz boost is a squeeze transformation. This aspect is also illustrated in Figure A1. It is then not
difficult to see how the circle looks to a moving observer.

t

z

z

z

t

t

    Dirac 1927,1945

      Heisenberg 

      Uncertainty

Quantum Mechanics Lorentz Covariance

Let us combine the 

above two figures to 

construct quantum 

mechanics in the 

Lorentz-covariant 

world.

c-number 

 Time-energy

  Uncetainty

Dirac 1949

Figure A1. Dirac’s three papers. His 1927 and 1945 papers can be described by a circle in the
longitudinal space-like and time-like coordinate. Dirac introduced the light-cone coordinate system
in 1949. In this system, the Lorentz boost is a squeeze transformation. It is then natural to synthesize
these two figures to a squeezed circle or an ellipse. Figure A2 will illustrate how this elliptic squeeze
manifests itself in the real world.
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The next question is whether this elliptic squeeze has anything to do with the real world. One
hundred years ago, Niels Bohr and Albert Einstein met occasionally to discuss physics. Their interests
were different. Bohr was worrying about the electron orbit in the hydrogen atom. Einstein was
interested in how things look to moving observers. Then the question arises: How would the hydrogen
atom look to a moving observer? This was a metaphysical issue during the period of Bohr and Einstein,
as there were no hydrogen atoms moving fast enough to exhibit this Einstein effect.

Fifty years later, the physics world was able to produce many protons from particle accelerators.
In 1964 [16], Gell-Mann observed that the proton is a bound state of the more fundamental particles
called “quarks” according to the quantum mechanics applicable also to the hydrogen atom.

However, according to Feynman [17,18], when the proton moves very fast, it appears as a
collection of a large number of free-moving light-like partons with a wide-spread momentum
distribution, as described in Figure A2. Feynman’s parton picture was entirely based on what we
observe in laboratories.

Figure A2. In the harmonic-oscillator regime, the momentum–energy wave function takes the same
mathematical form as that of the space-time wave functions. This figure shows that the quark model
and the parton model are two different aspects of one Lorentz-covariant entity. In 1969 [17], Feynman
observed that the fast-moving proton appears as a collection of a large number of light-like partons
with a wide-spread momentum distribution, and short interaction time with the external signal. This
figure is a graphical illustration of the 1977 paper by Kim and Noz [19]. This figure is from a recent
book by the present authors [20].

Unlike the hydrogen atom, the proton can become accelerated, and its speed could be very close
to that of light. Thus the Bohr–Einstein issue became the Gell-Mann–Feynman issue, as illustrated
in Figure A3. The question is whether Gell-Mann’s quark model and Feynman’s parton picture are
two different aspects of one Lorentz-covariant entity. This question was addressed by Kim and Noz
1977 [19] and was explained in detail by the present authors with a graphical illustration given in
Figure A2.
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Photo of Gell-Mann by Y.S.Kim (2010), all others photos are from the public domain.

100 years ago, Bohr was worrying about the orbit of 

the hydrogen atom.

Einstein was interested in how things look to moving 

observers.  Then how the hydrogen atom would 

look to moving observers?  This was a metaphysical 

ques!on for them.

50 years ago,  the proton became a bound state of 

the quarks sharing the same quantum mechanics as 

that for the hydrogen atom, according to Gell-Mann.   

If it moves with a speed close to that of light, the 

proton appears as a collec!on of partons, according 

to Feynman.

Ques�on.  Does the proton appear like a collec�on 

of Feynman’s partons to a moving observer?

Figure A3. The Bohr–Einstein issue is 100 years old. Fifty years later, it became the quark–parton
puzzle, based on observations made in high-energy laboratories.
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