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Abstract: We present and generalize the basic ideas underlying recent work aimed at the construction
of mutually unbiased bases in finite dimensional Hilbert spaces with the help of group and graph
theoretical concepts. In this approach finite groups are used to construct maximal sets of mutually
unbiased bases. Thus the prime number restrictions of previous approaches are circumvented and
this construction principle sheds new light onto the intricate relation between mutually unbiased
bases and characteristic geometrical structures of Hilbert spaces.
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1. Introduction

Mutually unbiased bases of Hilbert spaces, as originally pioneered by Schwinger [1], are not
only of mathematical interest by exhibiting characteristic geometric properties of Hilbert spaces,
but they have also interesting practical applications in quantum technology. Current applications
range from quantum state discrimination [2] and quantum state reconstruction [3,4], to quantum error
correction [5,6] and quantum key distribution [7]. They also have been used as signature schemes for
CDMA systems in various radio communication technologies [8].

Since the early work of Schwinger [1] the influential work of Wootters and Fields [3] has exhibited
intriguing relations between mutually unbiased bases and discrete mathematics. A major result of
these authors established that in a Hilbert space of d dimensions the maximum possible number of
mutually unbiased bases is (d + 1) provided such bases exist. Mutually unbiased bases that saturate
this bound are called complete. Previously many investigations have constructed complete sets of
mutually unbiased bases (see e.g., [9–16]). Typically, these investigations exploit variants of the two
constructions proposed by Wootters and Fields [3] and rely on the properties of Galois fields in odd
and even characteristics. Within this framework it is possible to construct systematically maximal sets
of mutually unbiased bases in Hilbert spaces whose dimensions are prime powers. Although these
developments have exhibited numerous interesting structural properties of complete sets of mutually
unbiased bases in prime-power dimensional Hilbert spaces, many questions remain open. Especially
interesting is the question of the construction of complete sets of mutually unbiased bases in Hilbert
spaces whose dimensions are not prime powers. The lowest dimensional example is dimension d = 6
for which it is still unknown whether there are mutually unbiased bases saturating the upper bound of
d + 1 = 7 originally established by Wootters and Fields.

Here we discuss and generalize a recently developed group and graph theoretical method aimed
at the systematic construction of large sets of mutually unbiased bases. This approach stems from the
early ideas of Charnes and Beth [17] which were recently developed in [18,19]. The underlying idea
in this approach is the systematic use of groups as the setting for constructing large sets of mutually
unbiased bases. An important new feature of this framework is the formulation of the construction of
systems of mutually unbiased bases as a clique finding problem in Cayley graphs of groups which are
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naturally associated with sets of mutually unbiased bases. Besides the possible practical advantages,
this method is independent of prime power restrictions of previous techniques and thus may offer
interesting novel conceptual advantages and links to other areas of mathematics.

The purpose of this manuscript is to present the central ideas of this group and graph theoretical
method in a self contained way, and to exhibit new connections between mutually unbiased bases
and the symmetries encoded in the related basis groups and basis graphs. Thus, we will explore the
theme for which Hilbert space dimensions the Cayley graphs of basis groups are the 1-skeletons of
polyhedra in Euclidean 3-space cf. polytopal graphs [20]. The examples of polytopal graphs presented
are restricted to low dimensional Hilbert spaces, i.e., d = 2, 3, 4, and thus do not address the still open
questions concerning dimension d = 6. However, these examples demonstrate interesting new links
between mutually unbiased bases and the symmetries of graphs which are not apparent with the more
orthodox constructions based on Galois fields in prime power dimensions.

2. Mutually Unbiased Bases and Their Construction by Finite Groups

Based on the early work of Charnes and Beth [17] we summarize in this section the basic definitions
encompassing the relations between mutually unbiases bases, their basis groups and associated Cayley
graphs which are capable of encoding characteristic features of mutually unbiased bases of Hilbert
spaces [18,19]. In particular, based on a recent theorem of Charnes [19], which establishes a structural
link between complete multipartite Cayley graphs of finite groups and complete sets of mutually
unbiased bases, all polytopal basis graphs in Euclidean 3-space are determined. The cliques of these
graphs yield complete sets of mutually unbiased bases.

2.1. Mutually Unbiased Bases—Basic Concepts

Two orthonormal bases, say B := {|Bi〉; i = 1, · · · , d} and C := {|Ci〉; i = 1, · · · , d} , of a
d-dimensional Hilbert space Hd with scalar product 〈.|.〉 are called mutually unbiased if and only if
the relation

| 〈Bi|Cj〉 |2 =
1
d

(1)

is independent of the chosen pair (Bi, Cj). Simple well known examples are the eigenstates of any pair
of Pauli spin operators in the case of d = 2 or the eigenstates of the quantum mechanical position and
momentuma operators for d = ∞. In the following, however, we shall restrict our considerations to
finite dimensional Hilbert spaces.

Subsequent non-selective quantum measurements of two observables associated with mutually
unbiased states completely erase any quantum information contained in an arbitrarily prepared
quantum state. This becomes apparent if for example we consider two such observables, namely

ÔB =
d

∑
i=1

bi|Bi〉〈Bi|, bi ∈ R,

ÔC =
d

∑
j=1

cj|Cj〉〈Cj|, cj ∈ R, (2)

and an arbitrary quantum state with density operator ρ̂. The subsequent non-selective
measurement [21] of observables ÔB and ÔC yields the chaotic quantum state Î/d, i.e.,

ρ̂′ =
d

∑
j=1
|Cj〉〈Cj|

(
d

∑
i=1
|Bi〉〈Bi|ρ̂|Bi〉〈Bi|

)
|Cj〉〈Cj| =

Tr(ρ̂)
d

d

∑
j=1
|Cj〉〈Cj| =

Î
d

, (3)

thus erasing all previous quantum information contained in the quantum state ρ̂. In Equation (3) we
have used the completeness relation Î = ∑d

j=1 |Cj〉〈Cj| in the Hilbert spaceHd.



Quantum Rep. 2019, 1 228

2.2. Mutually Unbiased Bases and Their Encoding by Unitary Matrices

It should be noted that within quantum theory the ordering of an orthonormal basis is physically
relevant. This is apparent from Equation (2), for example, because each basis vector |Bi〉 can be
associated with a different physically measurable eigenvalue bi of the associated observable ÔB.
Therefore, the different elements of an orthonormal basis B are distinguishable physically.

Hence in our subsequent discussion we select an arbitrarily chosen orthonormal ordered basis
(|α〉; α = 1, · · · , d) of a finite dimensional Hilbert space Hd. Based on this choice any other ordered
orthonormal basis, say B := (|Bi〉; i = 1, · · · , d), can be mapped onto a unitary matrix MB ∈ U(d) by

(MB)iα := 〈Bi|α〉∗ (4)

with ∗ denoting complex conjugation. In this mapping row i of the matrix MB contains the components
of the basis vector |Bi〉 in the canonical basis (|α〉; α = 1, · · · , d). The group of d-dimensional unitary
matrices U(d) acts transitively on all ordered orthonormal bases of the Hilbert space Hd by right
multiplication. So to each pair of ordered orthonormal bases, say B and C, there corresponds a unique
unitary matrix U satisfying the relation

MBU = MC. (5)

Consequently the defining property (1) of mutually unbiases bases can be reformulated in terms
of the matrices associated with different ordered orthonormal bases. Thus, two ordered orthonormal
bases B and C are mutually unbiased if and only if for all i, j ∈ {1, · · · , d}

| 〈Bi|Cj〉 |2 = |
(

MC M†
B

)
ji
|2= 1

d
. (6)

Note that the map ÔB −→ B −→ MB takes into account the distinguishability of the
orthonormal basis vectors associated with different eigenvalues of the observable ÔB, contrary to
previous approaches [12].

2.3. Mutually Unbiased Bases and Their Basis Groups

With a set of n + 1 pairwise mutually unbiased ordered orthonormal bases {B(0), B(1), · · · , B(n)}
of a Hilbert space Hd one can associate a basis group G, which is generated by the corresponding
unitary matrices, i.e.,

G =
〈

MB(0) , MB(1) , · · · , MB(n)

〉
⊂ U(d). (7)

This subgroup of the unitary group in d dimensions U(d) has the following properties:

• One of the matrices, e.g., MB(0) , is the unit matrix Ed. So it can be removed from the generating
set, i.e.,

G =
〈

MB(1) , · · · , MB(n)

〉
. (8)

• G is a subgroup of U(d) which has finite or infinite order.
• Not all pairs of elements of G correspond to mutually unbiased bases.
• The structure of the mutually unbiased bases contained in G can be captured by an associated

Cayley graph.

2.4. Basis Groups of Mutually Unbiased Bases and Their Cayley Graphs

To each (finite) basis group G there is an associated Cayley graph Γ(G, S) defined by the following
properties:
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• The vertices of Γ(G, S) are the group elements of G.
• A generating set S ⊂ G is defined as all the elements of G which are mutually unbiased to the

canonical basis, i.e., mutually unbiased to Ed in the case of a d dimensional Hilbert space. (S does
not contain the identity matrix Ed.) Therefore, z ∈ S implies z−1 ∈ S, i.e., S = S−1.

• The edge set of Γ(G, S) is defined as follows. Two vertices, say x and y, of the graph Γ(G, S) are
connected by an edge, if and only if yx−1 ∈ S, or equivalently if and only if there is an s ∈ S with
y = sx. The totality of edges obtained in this way comprises the edge set of Γ(G, S).

These Cayley graphs Γ(G, S) have the following basic properties:

• As S−1 = S, the graphs Γ(G, S) are simple undirected graphs, i.e., they do not have multiple
edges or vertex loops.

• The graphs are represented by symmetric N × N adjacency matrices with N = |G|. Their rows
and columns are indexed by the group elements. These adjacency matrices have 0 on the diagonal
positions and 0 or 1 elsewhere. Their entries are calculated using Equation (6).

• If two elements of the set S, say MB(i) , MB(j) ∈ S, are mutually unbiased not only with respect to
the canonical basis but also among themselves, the set S also contains the matrix MB(i) M†

B(j) ∈ S.
• Right multiplication by group elements preserves the adjacency relation of Γ(G, S), so G is a

subgroup of the automorphism group of Γ(G, S).
• Since Cayley graphs are connected, there is an edge connected path between every pair of vertices

of Γ(G, S).
• As Cayley graphs are regular, each vertex of Γ(G, S) is connected to the same number of

neighbouring vertices, i.e., it has constant valency. The valency k of a graph is the number
of non-zero entries in any row or column of its adjacency matrix.

It should now be apparent that the cliques of a Cayley graph Γ(G, S), i.e., the complete subgraphs
in which any two vertices are joined by an edge, correspond to mutually unbiased bases. In view of
this correspondence, the clique number ω(Γ(G, S)) of the Cayley graph Γ(G, S), i.e., the size of its
largest clique, is not only a mathematically interesting characteristic property of Γ(G, S) but it also
determines the maximal number of mutually unbiased bases characterized by this graph.

2.5. Maximal Sets of Mutually Unbiased Bases and the Structure of Their Associated Cayley Graphs

The physical relevance of the clique number ω(Γ(G, S)) raises the interesting question whether
there is a relationship between the maximal possible number of mutually unbiased bases in a
d-dimensional Hilbert space, i.e., d + 1, and the structure of the corresponding Cayley graphs
Γ(G, S). The following recent theorem [19] demonstrates that for finite basis groups G there is such
a relationship.

Theorem 1. (Charnes Theorem 2 [19]) Let G be a finite basis group of order N with S a generating set of
mutually unbiased bases in a Hilbert space Hd. The corresponding Cayley graph Γ(G, S) of valency k has a
clique of maximum size d + 1 whenever the condition

N
N − k

= ω(Γ(G, S)) = d + 1 (9)

is fulfilled. In such a case Γ(G, S) is a k-regular and complete multipartite graph.

A detailed proof of this theorem is presented in [19]. Here we just outline its basic idea. For this
purpose let us consider a Cayley graph Γ(G, S) with N vertices and with constant valency k. It is
known [22,23] that the clique number ω(Γ(G, S)) of such a Cayley graph, i.e., the largest clique size,
is lower bounded by the relation

N
N − k

≤ ω(Γ(G, S)). (10)
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In addition, Yildirim [23] has shown that this inequality is saturated for complete multipartite
graphs, i.e.,

N
N − k

= ω(Γ(G, S)). (11)

Therefore, a sufficient condition that a Cayley graph Γ(G, S) yields maximal sets of d + 1 mutually
unbiased bases in a d-dimensional Hilbert space is given by the nested inequalities

d + 1 =
N

N − k
≤ ω(Γ(G, S)) ≤ d + 1 (12)

and the associated Cayley graphs Γ(G, S) are complete multipartite, as stated in the theorem.

2.6. Maximal Sets of Mutually Unbiased Bases and Associated Polyhedra in Euclidean 3-Space

According to the previous section k-regular complete multipartite graphs satisfying Equation (9)
play an important role in the group theoretical construction of maximal sets of mutually unbiased
bases. We will now explore their relation to polyhedra in Euclidean 3-space [20].

Let us start our discussion with the definitions of k-regularity and complete multipartiteness of
graphs. A graph is k-regular if every vertex has exactly k edges. Furthermore, a graph is complete
multipartite if its vertices can be partitioned into independent sets, also called colour classes, in such a
way that

• vertices within an independent set are not connected by any edge and
• there is an edge between every pair of vertices from different independent sets.

In Figure 1 the complete multipartite graph K2,2,2 is an example of a k-regular complete
multipartite graph. Its valency is k = 4 and the vertices belong to three independent sets each
containing two vertices. However, this graph is not only complete multipartite with constant
valency, it is also the 1-skeleton of a regular polyhedron in Euclidean 3-space, namely an octahedron.
Therefore, the interesting question arises whether there are other polyhedra in Euclidean 3-space,
whose 1-skeletons are k-regular complete multipartite graphs and are relevant in determining maximal
sets of mutually unbiased bases. Interestingly, all such polyhedra can be determined by combining the
condition of Equation (9) with the Steinitz criterion [24] for polytopal graphs in Euclidean 3-space and
by making use of the four-color theorem [25].

Figure 1. The graph K2,2,2 as an example of a k-regular complete multipartite graph which is also the
1-skeleton of an octahedron in Euclidean 3-space: Each vertex has exactly k = 4 edges. The vertices
can be partitioned into 3 independent sets (color classes) each containing 2 vertices. Vertices within
the same color class are not connected by an edge and there is an edge between every pair of vertices
within different color classes.

According to the Steinitz criterion a graph is polytopal in Euclidean 3-space iff the graph is planar
and 3-connected [24]. A graph is planar if it can be drawn in the plane so that its edges do not intersect,
and a graph is 3-connected if there is an at most 3-connected path between every two vertices of
the graph.
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According to the four-color theorem [25] all planar graphs can be colored using at most 4 colors.
Therefore, by Equation (9) and the four-color theorem a maximal set of d + 1 mutually unbiased bases
can be constructed in a d-dimensional Hilbert space using a finite group G of order N with a generating
set S and associated Cayley graph Γ(G, S) of valency k, if the following relation

N
N − k

= d + 1 ≤ 4 (13)

is statisfied. Therefore, the necessary condition for the existence of complete multipartite polytopal
graphs Γ(G, S) which saturate the bound d + 1 for complete sets of mutually unbiased bases is that the
Hilbert space has dimension d = 2 or 3.

In order to determine the possible orders N of the groups and the possible valencies k a further
relation is needed. The Descartes-Euler relation [26], involving the number of vertices f0, edges f1 and
facets f2 of a finite convex polyhedron, establishes the equation f0 − f1 + f2 = 2. This relation gives
the additional constraint. It places an upper bound on the possible values of the valencies of the form

k ≤ 5, (14)

because every 3-polytopal graph has a vertex of valency at most 5 [24]. Consequently the dimensions
d of the Hilbert spaces, the orders N and valencies k of all Cayley graphs Γ(G, S) can be determined.
Such triples (N, k, d) are the feasibility parameters of polytopal graphs in Euclidean 3-space which
yield maximal sets of mutually unbiased bases. They are summarized in Table 1.

Table 1. Orders of basis groups | G |= N, valencies k of basis Cayley graphs Γ(G, S), dimensions of the
Hilbert spaces d and polytopal Cayley graphs Γ(G, S) in Euclidean 3-space for which maximal sets of
mutually unbiased bases can be constructed.

N k = Nd/(d + 1) d Polyhedron in 3-Space

3 2 2 triangle (degenerate)
6 4 2 octahedron
4 3 3 tetrahedron

3. Examples of Maximal Sets of Mutually Unbiased Bases, Their Basis Groups and Cayley Graphs

In this section examples are presented which exemplify the theoretical developments of the
previous section in Hilbert spaces of low dimensions, i.e., d = 2, 3 and 4. These examples include
complete multipartite polytopal Cayley graphs in Euclidean 3-space as well as more general scenarios.

3.1. A Cyclic Basis Group for d = 2 with an Octahedral Cayley Graph

In two dimensional Hilbert spaces a one-parameter family of cyclic basis groups Gϕ =< Mϕ >

of order N = 6, i.e., M6
ϕ = E2, yielding maximal sets of mutually unbiased bases is generated by

the matrix

Mϕ =
1√
2

(
e−iπ/4 eiϕ

−e−iϕ eiπ/4

)
(15)

with ϕ ∈ [0, 2π). The group generators defining the Cayley graph Γ(Gϕ, Sϕ) = K2,2,2 are

Sϕ = {Mϕ, M2
ϕ, M†

ϕ, M2†
ϕ }. (16)

This Cayley graph is the 1-skeleton of an octahedron. It is 4-regular, complete multipartite and its
vertices are partitioned into N/(N − k) = 3 = d + 1 independent sets Ii = {Mi

ϕ, Mi+3
ϕ } (i ∈ {1, 2, 3})

each containing N − k = 2 elements. It is apparent that this Cayley graph satisfies the feasibility
constraints of Table 1. The number of maximal mutually unbiased bases, i.e., complete subgraphs K3,
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is (N − k)d+1 = 23 = 8. Since the basis group is cylic the defining representation of Gϕ splits into the
direct sum of 2 one dimensional representations [27].

3.2. A Non-Abelian Basis Group for d = 2 with an Octahedral Cayley Graph

In two dimensional Hilbert spaces a non-Abelian basis group G =< M1, M2 > is generated by
the following matrices

M1 =
1√
2

(
−1 i
−i 1

)
, M2 =

(
0 −eiπ/4

e3iπ/4 0

)
(17)

satisfying the defining relations M2
1 = M2

2 = (M1M2)
3 = E2. This representation of the symmetric

group S3 is irreducible. A generating set of S3 used to define the Cayley graph Γ(G, S) is

S = {M2M1M2, M1, M1M2, M2M1}. (18)

Once again this Cayley graph is K2,2,2 and it is the 1-skeleton of an octahedron thus satisfying the
feasibility parameters of Table 1. It is 4-regular and complete multipartite with N/(N− k) = 3 = d + 1
independent sets I1 = {M2, M2

2}, I2 = {M1M2, M2M1M2} and I3 = {M1, (M1M2)
2} each containing

N − k = 2 elements. Furthermore, the number of maximal mutually unbiased bases, i.e., of complete
subgraphs K3, is (N− k)d+1 = 23 = 8. Comparing this graph with the previous example demonstrates
that isomorphic Cayley graphs can be associated with different basis groups and generating sets, i.e.,
K2,2,2 ∼= Γ(Gϕ, Sϕ) ∼= Γ(G, S).

3.3. A Non-Abelian Basis Group for d = 3 with a Non Polytopal Cayley Graph

In three dimensional Hilbert spaces the following matrices R1 and R2, where ω := exp( 2iπ
3 ), i.e.,

R1 =
1
3

 ω−ω2 −2ω−ω2 −2ω−ω2

ω + 2ω2 −2ω−ω2 ω + 2ω2

ω + 2ω2 ω + 2ω2 −2ω−ω2

 , R2 =
1
3

 ω−ω2 ω−ω2 ω−ω2

ω−ω2 −2ω−ω2 ω + 2ω2

ω−ω2 ω + 2ω2 −2ω−ω2

 , (19)

satisfy the defining relations R4
1 = E3, R2

1 = R2
2; R−1

2 R1R2 = R−1
1 . Thus they generate the non-Abelian

basis group Q8 =< R1, R2 >, which is isomorphic to the quaternion group of order | Q8 |= N = 8.
The defining representation of Q8 is reducible and splits into irreducible representations as 1⊕ 2.
The entries of the matrices 3R1 and 3R2 are the Eisenstein integers. The associated Cayley graph is
defined by the following set S of generators of Q8

S = {R1, R2, R2R1, R†
1, R†

2, R†
1R†

2}. (20)

The resulting Cayley graph Γ(Q8, S) is k = 6-regular and complete multipartite. Each of its
N/(N − k) = 4 = d + 1 independent sets has size N − k = 2 (compare with Figure 2). In contrast to
the two previous examples Γ(Q8, S) is not a polytopal graph in Euclidean 3-space.
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Figure 2. The Cayley graph Γ(Q8, S) = K2,2,2,2 as defined by the set S of Equation (20): This complete
multipartite Cayley graph is k = 6-regular with 4 independent sets each containing 2 vertices. It is not
a polytopal graph in Euclidean 3-space as it does not fulfill the conditions of Table 1.

The number of maximal mutually unbiased bases, i.e., complete subgraphs K4 of Γ(Q8, S),
is (N − k)d+1 = 24 = 16. A sample of four representative mutually unbiased bases, corresponding
to the K4 subgraphs of Γ(Q8, S), is:

{
R2

1, R2R1, R3
2, R3

1
}

,
{

R2
1, R1, R2, R3

2R1
}

,
{

E3, R2R1, R3
2, R3

1
}

,{
E3, R1, R2, R3

2R1
}

. For the complete set of 16 mutually unbiased bases see [19]. In order to determine
the number of physically distinguishable mutually unbiased bases one has to take into account the
projective structure of quantum theory implying that a pure quantum state is represented by a ray
in Hilbert space. Therefore, orthonormal bases which differ by a global phase have to be identified
because they are indistinguishable physically. As the basis group Q8 has non trivial centers not all
24 cliques of the associated Cayley graph K2,2,2,2 yield physically distinguishable complete sets of
mutually unbiased bases.

3.4. An Icosahedral Basis Group for d = 4 with a Non Polytopal Cayley Graph

In four dimensional Hilbert spaces the matrices T1 and T2, i.e.,

T1 =
1
2


1 i i −1
−i −1 1 −i
−i 1 −1 −i
−1 i i 1

 , T2 =


0 0 0 −i
0 1 0 0
i 0 0 0
0 0 1 0

 , (21)

satisfying the defining relations T2
1 = T3

2 = (T1T2)
5 = E4 generate the non-Abelian basis

group I60 =< T1, T2 >, which is isomorphic to the icosahedral group of order | I60 |= N = 60.
This 4-dimensional representation of I60 is irreducible. This basis group is a simple group, i.e., it has
no proper normal subgroups [27].

The adjacency matrix of the associated Cayley graph graph Γ(I60, S) is determined by this
representation of the group I60 and the defining relation of Equation (6) for mutually unbiased
bases. The generators S of the Cayley graph Γ(I60, S) are defined by this adjacency matrix. This Cayley
graph is 48-regular so that the set S contains 48 elements. Furthermore, it is complete multipartite with
N/(N − k) = 5 = d + 1 independent sets each containing N − k = 12 elements.

Although I60 is the group of proper three dimensional rotations of the icosahedron, the graph
Γ(I60, S) is not polytopal in Euclidean 3-space. But the basis group I60 is a subgroup of the
automorphism group of Γ(I60, S), as required by the general properties of basis groups and their
associated Cayley graphs. The number of maximal mutually unbiased bases, i.e., the number of
complete subgraphs K5 of Γ(I60, S), is (N − k)d+1 = 125 = 248, 832. As the basis group I60 is a simple
group all these 125 cliques yield physically distinguishable complete sets of mutually unbiased bases.

4. Conclusions

We have discussed and generalized a recently developed group and graph theoretial approach
aiming at the construction of large sets of mutually unbiased bases in finite dimensional Hilbert spaces.
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In this approach the construction of mutually unbiased bases in a Hilbert space of given dimension
is reformulated as a clique finding problem of a Cayley graph associated with a finite basis group.
This approach offers the possibility to enlarge and possibly also to complete already known systems of
mutually unbiased basis systems. As this approach is independent of prime number restrictions of
previous formulations, such as the ones in [9–16], it sheds new light onto the connections between the
structure of mutually unbiased bases of Hilbert spaces and other areas of mathematics.

In this manuscript we have explored a connection to geometry by classifying all the polytopal
graphs in Euclidean 3-space which are the possible Cayley graphs of basis groups supporting maximal
sets of mutually unbiased bases. It has been shown that apart from the degenerate case of a two
dimensional triangle such polyhedral constructions can only occur in Hilbert space dimensions d = 2
and d = 3 either by octahedra in the case d = 2 or by tetrahedra in the case d = 3. The Cayley graphs of
the two dimensional examples presented in Sections 3.1 and 3.2 are isomorphic octahedra exemplifying
these polytopal constructions in Euclidean 3-space. In particular, these examples demonstrate that
different basis groups may lead to isomorphic Cayley graphs. The Cayley graphs of the three and
four dimensional examples discussed in Sections 3.3 and 3.4, however, are of a more general nature.
They do not belong to the set of polytopal constructions in Euclidean 3-space and introduce new
complete sets of mutually unbiased bases. In particular, these two latter examples demonstrate the
general property discussed in Section 2.4 that a basis group, such as Q8 (I60), is always a subgroup of
the automorphism group of the associated Cayley graph, such as K2,2,2,2 (K12,12,12,12,12). This property
establishes an interesting general relation between the symmetry encoded in a basis group and the
symmetry encoded in its associated Cayley graph which is expected to be useful for the construction
of complete sets of mutually unbiased bases in higher dimensional Hilbert spaces.

Our investigations and the low dimensional examples presented here constitute the first steps
in a systematic exploration of this group and graph-theoretical approach. They hint at interesting
connections between structures of mutually unbiased bases of finite dimensional Hilbert spaces and
symmetries of Cayley graphs which will be explored in future work.
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