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Abstract: Connected and automated vehicles (CAV) are increasingly recognized as a critical compo-
nent of intelligent transportation systems (ITS), contributing to advances in transportation safety 
and mobility. However, the implementation of CAV in a real-world environment comes with vari-
ous threats, and cybersecurity is among the most vulnerable. As the technology becomes more ad-
vanced and complex, it is essential to develop a comprehensive cybersecurity framework that can 
address these concerns. This research proposes a novel framework based on complexity theory and 
employs the fuzzy set qualitative comparative analysis (fsQCA) technique to identify combinations 
of security attacks that lead to achieving cybersecurity in CAV. Compared to structural equation 
modelling (SEM), the fsQCA method offers the advantage of demonstrating all possible ways to 
achieve the outcome. The study’s findings suggest that in-vehicle networks and data storage secu-
rity are the most crucial factors in ensuring the cybersecurity of CAV. The results can be useful for 
automotive designers in reducing the potential for attacks while developing secure networks. 
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1. Introduction 
The growing need for mobility in cities has led to increased vehicle ownership, re-

sulting in traffic congestion and accidents. To address this issue, intelligent transportation 
systems (ITS) have emerged as a viable solution [1]. Among the advancements in ITS, 
connected and automated vehicles (CAVs) have become a focal point due to their potential 
to enhance quality of life, reduce accidents, and improve transportation efficiency [2]. Ad-
ditionally, the increasing income levels of people have fueled their interest in quality-
based lifestyles, making them more receptive to technological advancements, including 
CAVs, which offer attractive benefits compared to fuel-based transportation [3]. However, 
the use of CAVs also involves certain risks, particularly in terms of cybersecurity. Security 
risks pose a significant challenge to the implementation of CAVs in real-world environ-
ments [4]. While other risks associated with ITS depend on a country’s environmental 
benefits, security risks are prevalent everywhere, particularly in advanced environments 
where they can have a greater impact. As CAVs handle more information and confidential 
data, sharing of information among vehicles increases the risk of security threats for users. 
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These threats can manifest in various forms, including vehicle-to-everything networks, in-
vehicle network attacks, data storage attacks, machine learning system attacks, slight at-
tacks, and password and key attacks [5]. 

Addressing and solving all attacks can be challenging for automotive designers, lead-
ing to difficulties in the design process. Therefore, this paper aims to explore the cyberse-
curity issues related to CAVs and identify the most vulnerable security attacks that pose 
obstacles to ensure their cybersecurity. This study will focus on the following research 
questions: 
• RQ1: What are the most vulnerable security attacks that threaten the cybersecurity of 

CAVs? 
• RQ2: What countermeasures and strategies have been employed to mitigate these 

attacks? 
• RQ3: Will removing these attacks ensure the cybersecurity of CAVs? 

Answering these questions is crucial to reducing the design difficulties faced by au-
tomotive engineers. To identify the various security attacks and countermeasures, a liter-
ature review was conducted. The study employed these countermeasures to measure the 
removability of security attacks. The fuzzy set qualitative comparative analysis (fsQCA) 
method was used to analyze the security attacks. This method is capable of producing 
multiple paths to achieve an outcome, and through its application, the study produced 
results of various combinations of constructs (security attack checks) necessary to ensure 
the cybersecurity of CAVs. 

Continuing this introduction section, the remainder of this paper is arranged as Sec-
tion 2—Literature review, Section 3—Research Methodology, Section 4—Results, Section 
5—Discussions, Section 6—Research implications, and Section 7—Conclusions. 

2. Literature Review 
The literature review is structured into two main sections, covering (i) connected and 

automated vehicles and (ii) security attacks that pose a threat to the cybersecurity of CAV. 

2.1. Connected and Automated Vehicles (CAV) 
The dynamic landscape of connected and automated vehicles (CAV) continues to 

captivate the realms of technology, transportation, and societal evolution. The symbiosis 
of autonomous vehicles (AV) and connected vehicles (CV) has catalyzed a paradigm shift, 
offering a spectrum of benefits that extends well beyond conventional modes of transport 
[6,7]. The taxonomy proposed by the Society of Automobile Engineers (SAE), classifying 
automation levels from 0 to 5, serves as a roadmap for understanding the trajectory of 
vehicle autonomy. Starting from Level 0 with no automation to the pinnacle of Level 5 
characterized by full automation, this classification system illuminates the evolutionary 
journey of on-road motor vehicles [8]. This framework not only provides clarity in under-
standing the capabilities of CAVs but also sets the stage for a nuanced exploration of the 
associated benefits. 

At the heart of the allure of CAVs lies their potential to enhance safety, reduce traffic 
congestion, and mitigate accidents. The promise of safe driving, facilitated by advanced 
automation features, has the potential to revolutionize the transportation landscape [9]. 
Real-time communication with road infrastructure and the internet forms the backbone 
of connected vehicles, ensuring an unprecedented flow of information that contributes to 
safer and more efficient journeys [10,11]. The societal implications of CAVs are profound. 
The prospect of reducing the number of cars per household, facilitated by the availability 
of driverless cars that can be shared among household members, hints at a transformative 
shift in how we perceive vehicle ownership [12,13]. This not only aligns with sustainability 
goals but also echoes the emerging trends of shared mobility, particularly relevant in 
densely populated urban areas. 
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In densely populated regions, the suitability of car-sharing models gains prominence. 
The ability of CAVs to adapt to shared usage patterns and cater to the transportation needs 
of diverse individuals underscores their versatility [14]. Beyond individual convenience, 
this shared mobility model contributes to the overarching goal of reducing the environ-
mental footprint associated with traditional vehicular ownership [15]. As we delve into 
the multifaceted advantages of CAVs, it becomes apparent that the narrative extends be-
yond technological sophistication. The very fabric of urban living stands to be rewoven 
by the threads of reduced congestion, improved safety, and shared mobility. The potential 
of CAVs to accommodate non-licensed individuals in the realm of autonomous transpor-
tation adds a layer of inclusivity, transforming the vision of modern mobility into a reality 
accessible to a broader spectrum of the population [16]. 

2.2. Security Attacks That Pose a Threat to the Cybersecurity of CAV 
The rise of connected and automated vehicles has brought forth a new set of cyber-

security concerns. As vehicles become more integrated with technology, they become 
more vulnerable to attacks that can compromise the safety and security of passengers, as 
well as the integrity of the vehicle itself [17]. In this section, we will discuss some of the 
major security attacks that pose a threat to the cybersecurity of connected and automated 
vehicles. One type of attack that has gained a lot of attention in recent years is the vehicle-
to-everything (V2X) attack. V2X refers to the communication between a vehicle and its 
surrounding environment, including other vehicles, infrastructure, and pedestrians [18]. 
V2X technology enables vehicles to share data with each other and with the surrounding 
infrastructure, which can help to improve safety, efficiency, and mobility. However, this 
technology also introduces new security risks. Attackers can exploit vulnerabilities in the 
V2X network to gain access to sensitive data or to take control of the vehicle [19]. For 
example, an attacker could send false messages to a vehicle’s onboard computer, causing 
it to make incorrect decisions or take unsafe actions [20]. Recent advancements in V2X 
security protocols have aimed to address vulnerabilities, introducing cryptographic 
measures and secure communication channels. The landscape of V2X attacks is dynamic, 
with attackers constantly adapting their strategies. As we explore the intricacies of V2X 
technology, it becomes apparent that ongoing research and proactive security measures 
are imperative to stay ahead of potential threats [21,22]. 

Another type of attack that poses a threat to the cybersecurity of connected and au-
tomated vehicles is the in-vehicle network attack [23]. In-vehicle networks are the com-
munication systems that connect different electronic components within the vehicle, such 
as the engine control unit, the entertainment system, and the navigation system [24]. These 
networks are vulnerable to attacks that can compromise the functioning of the vehicle. An 
attacker who gains access to an in-vehicle network can potentially control the vehicle’s 
systems, including the brakes, steering, and acceleration [25]. There is a need for advanced 
intrusion detection systems and secure network architectures to mitigate the risks associ-
ated with in-vehicle network attacks [26,27]. As vehicles evolve into sophisticated inter-
connected systems, the importance of robust cybersecurity measures at the network level 
becomes paramount. Machine learning system attacks are another type of cybersecurity 
threat to connected and automated vehicles [28]. Machine learning systems are increas-
ingly being used in vehicles to enable autonomous driving and other advanced features. 
However, these systems are vulnerable to attacks that can manipulate the algorithms and 
compromise the integrity of the system [1]. The significance of adversarial machine learn-
ing techniques employed by attackers is the ability to manipulate the decision-making 
processes of these systems. The evolving nature of machine learning attacks necessitates 
ongoing research and the development of resilient algorithms to safeguard CAVs against 
potential intrusions [29]. Attackers can feed false data to the machine learning system, 
causing it to make incorrect decisions or take unsafe actions. Alternatively, an attacker 
could modify the software or hardware of the machine learning system, causing it to be-
have in unexpected ways. 
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Data storage and analysis attacks are also a concern for the cybersecurity of connected 
and automated vehicles. As vehicles become more connected, they generate and store 
large amounts of data, including information about the vehicle’s location, speed, and driv-
ing patterns [30]. These data are valuable to attackers, who can use it to gain insights into 
the behaviour and habits of the vehicle’s owner. Additionally, attackers can exploit vul-
nerabilities in the data storage and analysis systems to gain access to sensitive data or to 
modify the data for malicious purposes. Recent advancements in secure data storage tech-
nologies and encryption methods have addressed some of these concerns, but continuous 
efforts are essential to stay abreast of emerging attack vectors [31]. Finally, infrastructure 
attacks are a concern for the cybersecurity of connected and automated vehicles. As vehi-
cles become more connected, they rely more heavily on the surrounding infrastructure, 
such as traffic lights, road signs, and GPS systems. An attacker who gains access to the 
infrastructure can potentially disrupt the functioning of the vehicle or cause it to behave 
in unexpected ways [32]. For example, an attacker could modify the data being sent to the 
vehicle’s navigation system, causing it to take a longer or more dangerous route. Recent 
incidents have highlighted the susceptibility of CAVs to disruptions caused by compro-
mising infrastructure components [33]. As the integration between vehicles and infra-
structure deepens, research focuses on developing resilient communication protocols and 
intrusion detection systems to fortify the cybersecurity posture of CAVs [34]. 

The six specific security attacks chosen for this study were selected based on their 
significance in recent research. Similarly, the countermeasures and strategies identified to 
address and mitigate security threats to ensure the cybersecurity of CAV were chosen 
based on the preference given in recent literature and by expert opinions. To collect the 
inputs and outputs of this study, various databases such as Google Scholar, Web of Sci-
ence, SCOPUS, and IEEE Xplore were searched using keywords such as connected and 
automated vehicles, security of connected and automated vehicles, cybersecurity of CAV, 
ITS, countermeasures for cybersecurity threats of CAV, most vulnerable cybersecurity at-
tacks of CAV, cyber risks of connected and automated vehicles, and strategies used to 
ensure the cybersecurity of CAV. A total of 26 items were collected, which were then cat-
egorized into seven major security attacks (constructs). Six of them were input variables, 
and one was an output variable that was tabulated in Table 1. These 26 variables were 
converted into a Likert scale questionnaire (Table A1 of Appendix A) to collect data from 
automobile engineers. The inclusion and exclusion criteria of the literature review are tab-
ulated in Table 2. This literature review involved a comprehensive examination of the 
evolving landscape of connected and automated vehicles (CAVs) and the associated cy-
bersecurity challenges. The exploration of CAVs spans from their foundational taxonomy, 
as proposed by the Society of Automobile Engineers (SAE), to the profound societal im-
plications of enhanced safety, reduced traffic congestion, and transformed mobility pat-
terns. On the cybersecurity front, the review delves into the multifaceted realm of security 
attacks targeting CAVs. From vehicle-to-everything (V2X) attacks leveraging communica-
tion vulnerabilities to in-vehicle network attacks compromising critical systems, each 
threat was dissected. Machine learning system attacks and Data storage and analysis 
threats underscore the evolving nature of cybersecurity challenges. The synthesis of coun-
termeasures and strategies unveiled a mosaic of responses to the identified security 
threats. From advanced encryption and authentication protocols to the integration of ma-
chine learning for privacy assurance, the proactive measures are as dynamic as the chal-
lenges they aim to mitigate. 
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Table 1. Security attacks on connected and automated vehicles. 

Area Attack No. Security Attacks Reference(s) 

CAV sensor 

P1 Using multiple GPS receivers avoids blocking satellite 
signals from GPS. [33] 

P2 
Usage of redundant sensors on camera verification to 

avoid illusion and binding [35] 

P3 Jamming avoidance by making protective glasses 
around a LiDAR which acts as light filters 

[36] 

Vehicle-to-everything 
network 

P4 
Usage of fog server with fog anonymizer to avoid 

eavesdropping in vehicular ad-hoc networks 
(VANETs) 

[20] 

P5 
Maintaining data integrity in dynamic route guidance 

by forged data filtering scheme [25] 

P6 Using swarm algorithms for routing attacks [37] 

P7 Detecting bandwidth and entropy to reduce denial of 
service attack 

[38] 

P8 
Implementing noisy control signals to avoid replay at-

tacks [39] 

P9 
Registering vehicles with TFD to avoid communica-

tion of attackers who are under victim identity [40] 

In-vehicle network 

P10 Encryption and cryptographic checksum to avoid 
proximity vulnerabilities 

[41] 

P11 Doing network segmentation to avoid CAN and SAE 
vulnerabilities [41] 

P12 
Encryption and authentication to avoid flashing at-

tacks [42] 

P13 Content filtering for integrated business service at-
tacks 

[28] 

Infrastructure 

P14 Usage of certificateless aggregate signcryption (CL-A-
SC) scheme to monitor road surface conditions 

[43] 

P15 
Incorporating software-defined networking (SDN) in 

an IoT environment [44] 

P16 
Using a cloud-based detection system for cloud infra-

structure [32] 

Data storage and data 
analysis 

P17 Conserving data mining to protect privacy leakage of 
user information 

[45] 

P18 Using a telematics control unit (TCU) for remote con-
trol of vehicles [46] 

P19 
Adopting CVSS (common vulnerability scoring sys-
tem) to measure the severity of software vulnerabili-

ties 
[47] 

Machine learning system 

P20 Performing data sanitization and robust learning to 
defend against misleading in the learning process 

[48] 

P21 
Ensuring the privacy of data by privacy homomor-

phism [49] 

P22 Implementing neural networks for privacy assurance [50] 
P23 Assessing risks earlier using dynamic risk assessment [51] 

Cybersecurity of CAV 
P24 Providing better solutions for security issues in con-

nected and automated vehicles (CAV) 
Expert opinion 

P25 Strengthening the cybersecurity patterns Expert opinion 
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P26 Reduces attacker intentions in connected and auto-
mated vehicles 

Expert opinion 

Table 2. Inclusion and exclusion criteria of the literature review. 

Inclusion Criteria Exclusion Criteria 
Studies focusing on cybersecurity of connected and auto-

mated vehicles Research article not in English 

Studies analyzing the countermeasures for avoiding vari-
ous security attacks Proxy and repetitive work 

Security attacks of CAV Incomplete data 
Studies published between 2015 to 2022 Proceeding papers, editorial materials, thesis 

2.3. Research Gap and Contributions 
The research paper addresses the critical gap in the field of cybersecurity of con-

nected and automated vehicles (CAVs). Several studies have been conducted on the secu-
rity issues of CAVs; however, they lack a comprehensive framework to address the cyber-
security challenges effectively. This study proposes a novel framework based on complex-
ity theory and employs the fuzzy set qualitative comparative analysis (fsQCA) technique 
to identify combinations of security attacks that lead to achieving cybersecurity in CAV. 
This approach is unique compared to existing research that relies on structural equation 
modelling (SEM), which does not show all possible combinations of factors leading to an 
outcome. In contrast, fsQCA provides a comprehensive analysis of all possible combina-
tions, making it a suitable method to address complex issues such as CAV cybersecurity. 
Moreover, our study’s contribution lies in identifying in-vehicle networks and data stor-
age security as the most crucial factors in ensuring the cybersecurity of CAVs, which is 
different from the factors identified in previous studies. This insight can guide automotive 
designers in developing secure networks that reduce the potential for attacks, which is 
critical to ensure the safety and reliability of CAVs. 

3. Research Methodology 
3.1. Data Collection, Sampling, and Survey Instrument 

This empirical study involved the collection of data from automotive experts in 12 
selected industries. The 48 respondents who participated in the study held various posi-
tions, including chief technical officer, automobile designer, production engineer, auto-
motive developer, and instrumentation engineer. The respondents were selected using 
simple random sampling, and their demographic profiles are presented in Table 3 and 
illustrated in Figures 1 and 2. The study found that automotive developers and automo-
bile designers were the most common participants, with many respondents having over 
10 years of experience. The study used a 5-point Likert scale questionnaire consisting of 
26 items across seven constructs to collect primary data from the respondents. The Likert 
scale was deemed appropriate for measuring the latent constructs and was consistent with 
the nature of the questionnaire statements. The reliability of the scale was evaluated using 
the Cronbach alpha test, with constructs having a Cronbach alpha of greater than 0.7 being 
considered reliable for the study. Table A1 in the Appendix A presents the seven con-
structs and 26 items, with the scale ranging from strongly agree to strongly disagree. Table 
A2 in the Appendix A presents the Demographic information of experts The data were 
collected using Google Forms, with demographic information also included in the ques-
tionnaire. The internal consistency of each construct was evaluated, and all constructs 
were found to have good internal consistency, with reliability scores above the predeter-
mined threshold. No rewards were provided to the respondents for their participation. 
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Table 3. Demographic profile of the respondents. 

 Features Number of Articles Percentage (%) 

Respondents (n = 48) 

Experience 

<3 years 1 3 
3–5 years 1 3 

5–10 years 4 10 
>10 years 3 7 

Designation 

Chief technical officer 1 3 
Automobile engineer 3 7 
Production engineer 3 7 

Automotive developer 5 13 
Instrumentation engineer 2 5 

 

Figure 1. Designation of Respondents. 

 

Figure 2. Work experience of the respondents. 
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3.2. Reliability and Validity Analysis 
To ensure the reliability and validity of each construct, factor analysis was performed. 

This involved assessing the Cronbach alpha, average variance extracted, and composite 
reliability of each construct to identify the most influential combination of inputs and re-
duce measurement variables. The 26 measurements in the questionnaire were consoli-
dated into 7 measurements, with 6 as the input and 1 as the output. Factor analysis was 
only conducted for the 7 major constructs. The Cronbach alpha was used to evaluate the 
internal consistency reliability, with a threshold value of 0.7. Constructs with a Cronbach 
alpha value greater than 0.7 were deemed suitable for further study, while those with a 
lower value required the removal of the problematic measurement or item. The SPSS V26 
total statistics measurement was used to identify the problematic item. The average vari-
ance extracted was then tested to establish the convergent validity of the constructs, with 
a threshold value of 0.5. Composite reliability, which also had a threshold value of 0.7, 
was assessed to determine the reliability of the constructs. This factor analysis method 
helped to identify which measurement or item should be removed and which was unsuit-
able for the study. The factor analysis results and calculations for the 3 construct tests are 
presented as SPSS software results below and the summary given in Table 4. 
Calculations for CR, ICR, and AVE using SPSS. 

Condition 1 

Reliability Statistics 

Cronbach’s Alpha 
Cronbach’s Alpha Based on 

Standardized Items N of Items 

0.847 0.853 3 
 

Item Statistics 
 Mean Std. Deviation N 

Multiple GPS sensor 3.8958 0.95069 48 
Redundant sensor 3.6667 0.75324 48 

LiDAR 3.3958 0.76463 48 
 

Item-Total Statistics 

 
Scale Mean If 
Item Deleted 

Scale Variance If 
Item Deleted 

Corrected Item-Total 
Correlation 

Squared Multiple 
Correlation 

Cronbach’s Alpha If 
Item Deleted 

Multiple GPS sensor 7.0625 1.890 0.738 0.566 0.781 
Redundant sensor 7.2917 2.551 0.666 0.450 0.833 

LiDAR 7.5625 2.336 0.770 0.597 0.741 
 

Scale Statistics 
Mean Variance Std. Deviation N of Items 

10.9583 4.722 2.17293 3 

Condition 2 

Reliability Statistics 

Cronbach’s Alpha 
Cronbach’s Alpha Based on 

Standardized Items N of Items 

0.909 0.911 6 
 

Item Statistics 
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 Mean Std. Deviation N 
Fog server 2.7292 0.86884 48 

Data filtering 2.7708 0.75059 48 
Swarm algorithm 2.7292 0.73628 48 

Bandwidth detection 2.5417 0.77070 48 
Noisy control signals 2.4375 0.98729 48 

TFD 2.3958 0.89299 48 
 

Item-Total Statistics 

 Scale Mean If 
Item Deleted 

Scale Variance 
If Item Deleted 

Corrected Item-
Total Correlation 

Squared Multiple 
Correlation 

Cronbach’s Alpha 
If Item Deleted 

Fog server 12.8750 12.197 0.739 0.562 0.894 
Data filtering 12.8333 12.780 0.763 0.607 0.892 

Swarm algorithm 12.8750 13.346 0.660 0.492 0.905 
Bandwidth detection 13.0625 12.570 0.782 0.652 0.889 
Noisy control signals 13.1667 10.993 0.835 0.718 0.880 

TFD 13.2083 12.083 0.734 0.617 0.895 
 

Scale Statistics 
Mean Variance Std. Deviation N of Items 

15.6042 17.436 4.17561 6 

Condition 3 

Reliability Statistics 

Cronbach’s Alpha Cronbach’s Alpha Based on 
Standardized Items 

N of Items 

0.893 0.893 4 
 

Item Statistics 
 Mean Std. Deviation N 

Encryption 2.5625 0.89695 48 
Network segmentation 2.5833 0.91868 48 

Aurhentication 2.5000 0.92253 48 
Content filtering 2.5208 0.89893 48 

 

Item-Total Statistics 

 
Scale Mean If 
Item Deleted 

Scale Variance 
If Item Deleted 

Corrected Item-
Total Correlation 

Squared Multiple 
Correlation 

Cronbach’s Alpha 
If Item Deleted 

Encryption 7.6042 5.861 0.771 0.599 0.859 
Network segmentation 7.5833 5.610 0.818 0.680 0.841 

Aurhentication 7.6667 6.014 0.696 0.487 0.887 
Content filtering 7.6458 5.851 0.772 0.619 0.859 

 

Scale Statistics 
Mean Variance Std. Deviation N of Items 

10.1667 10.014 3.16452 4 

Condition 4 
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Reliability Statistics 

Cronbach’s Alpha 
Cronbach’s Alpha Based on 

Standardized Items N of Items 

0.870 0.870 3 
 

Item Statistics 
 Mean Std. Deviation N 

CL-A-SC 2.9167 0.87113 48 
SDN 2.6458 0.86269 48 

Cloud-based detection 2.4792 0.87494 48 
 

Item-Total Statistics 

 
Scale Mean If 
Item Deleted 

Scale Variance If 
Item Deleted 

Corrected Item-
Total Correlation 

Squared Multiple 
Correlation 

Cronbach’s Alpha 
If Item Deleted 

CL-A-SC 5.1250 2.495 0.781 0.611 0.790 
SDN 5.3958 2.627 0.726 0.531 0.840 

Cloud-based detection 5.5625 2.549 0.747 0.566 0.821 
 

Scale Statistics 
Mean Variance Std. Deviation N of Items 
8.0417 5.402 2.32432 3 

Condition 5 

Reliability Statistics 

Cronbach’s Alpha 
Cronbach’s Alpha Based on 

Standardized Items N of Items 

0.872 0.873 3 
 

Item Statistics 
 Mean Std. Deviation N 

Data mining 3.2292 0.97281 48 
TCU 3.3333 0.99645 48 
CVSS 2.7292 1.02604 48 

 

Item-Total Statistics 

 Scale Mean If Item 
Deleted 

Scale Variance If 
Item Deleted 

Corrected Item-To-
tal Correlation 

Squared Multiple 
Correlation 

Cronbach’s Alpha 
If Item Deleted 

Data mining 6.0625 3.422 0.772 0.611 0.804 
TCU 5.9583 3.317 0.782 0.622 0.795 
CVSS 6.5625 3.400 0.712 0.507 0.859 

 

Scale Statistics 
Mean Variance Std. Deviation N of Items 
9.2917 7.147 2.67342 3 

Condition 6 

Reliability Statistics 
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Cronbach’s Alpha Cronbach’s Alpha Based on 
Standardized Items 

N of Items 

0.852 0.852 4 
 

Item Statistics 
 Mean Std. Deviation N 

Data sanitization 3.0417 0.87418 48 
Privacy homomorphism 3.3125 0.80309 48 

Neural networks 3.2708 0.73628 48 
Dynamic risk assessment 3.4167 0.79448 48 

 

Item-Total Statistics 

 
Scale Mean If 
Item Deleted 

Scale Variance 
If Item Deleted 

Corrected Item-
Total Correlation 

Squared Multiple 
Correlation 

Cronbach’s Alpha 
If Item Deleted 

Data sanitization 10.0000 3.872 0.730 0.559 0.796 
Privacy homomorphism 9.7292 4.202 0.699 0.512 0.808 

Neural networks 9.7708 4.521 0.666 0.489 0.823 
Dynamic risk assessment 9.6250 4.282 0.679 0.497 0.816 

 

Scale Statistics 
Mean Variance Std. Deviation N of Items 

13.0417 7.147 2.67342 4 

Condition 7 

Reliability Statistics 

Cronbach’s Alpha Cronbach’s Alpha Based on 
Standardized Items N of Items 

0.854 0.862 3 
 

Item Statistics 
 Mean Std. Deviation N 

ITS 3.3750 1.02366 48 
Cybersecurity 3.1458 0.79866 48 

Reduced attacker intention 3.1250 0.91384 48 
 

Item-Total Statistics 

 Scale Mean If 
Item Deleted 

Scale Variance 
If Item Deleted 

Corrected Item-
Total Correlation 

Squared Multiple 
Correlation 

Cronbach’s Alpha 
If Item Deleted 

ITS 6.2708 2.500 0.712 0.530 0.821 
Cybersecurity 6.5000 3.021 0.789 0.623 0.754 

Reduced attacker intention 6.5208 2.851 0.702 0.518 0.817 
 

Scale Statistics 
Mean Variance Std. Deviation N of Items 
9.6458 5.851 2.41881 3 

AVE and CR 
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Condition 1 

Λ λ2 1 − λ2 CR AVE 
0.878 0.770884 0.229116 0.966424 0.734851 
0.792 0.627264 0.372736   
0.898 0.806404 0.193596   

Condition 2 

Λ λ2 1 − λ2 CR AVE 
0.848 0.719104 0.280896 0.98801 0.645291 
0.801 0.641601 0.358399   
0.764 0.583696 0.416304   
0.833 0.693889 0.306111   
0.849 0.720801 0.279199   
0.716 0.512656 0.487344   

Condition 3 

Λ λ2 1 − λ2 CR AVE 
0.781 0.609961 0.390039 0.964828 0.670849 
0.897 0.804609 0.195391   
0.796 0.633616 0.366384   
0.797 0.635209 0.364791   

Condition 4 

Λ λ2 1 − λ2 CR AVE 
0.877 0.769129 0.230871 0.965346 0.715194 
0.817 0.667489 0.332511   
0.842 0.708964 0.291036   

Condition 5 

Λ λ2 1 − λ2   
0.887 0.786769 0.213231 0.969806 0.761937 
0.901 0.811801 0.188199   
0.829 0.687241 0.312759   

Condition 6 

Λ λ2 1 − λ2 CR AVE 
0.808 0.652864 0.347136 0.968294 0.663694 
0.854 0.729316 0.270684   
0.764 0.583696 0.416304   
0.83 0.6889 0.3111   

Condition 7 

Λ λ2 1 − λ2 CR AVE 
0.845 0.714025 0.285975 0.958219 0.728897 
0.871 0.758641 0.241359   
0.845 0.714025 0.285975   

Table 4. Factor analysis for reliability and validity tests. 

Condition and 
Outcome 

Abbreviation Item Combinations Description Factor Analysis 

Sensor assessment SEA P1 to P3 ICR = 0.847 
CR = 0.966424 
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Sensor security was as-
sured by SE1 to SE3 state-

ments 
AVE = 0.734851 

Vehicle-to-every-
thing network as-

sessment 
V2X P4 to P8 V2X security was assured 

by VE1 to VE6 statements 

ICR = 0.909 
CR = 0.98801 

AVE = 0.645291 

In-vehicle network 
assessment VNA P9 to P12 

In-vehicle network secu-
rity was assured by IV1 to 

IV4 statements 

ICR = 0.893 
CR = 0.964828 

AVE = 0.670849 

Infrastructure as-
sessment ISA P13 to P15 

Infrastructure security was 
assured by IS1 to IS3 state-

ments 

ICR = 0.870 
CR = 0.965346 

AVE = 0.715194 

Data Storage as-
sessment DSA P16 to P18 

Data storage and analysis 
security was assured by 
DS1 to DS3 statements 

ICR = 0.872 
CR = 0.969806 

AVE = 0.761937 

Machine learning 
Assessment MLA P19 to P22 

Machine learning system 
security was assured by 
ML1 to ML4 statements 

ICR = 0.852 
CR = 0.968294 

AVE = 0.663694 

Cybersecurity CSO P23 to P25 
Defining better assurance 
for cybersecurity of CAV 

ICR = 0.854 
CR = 0.958219 

AVE = 0.728897 

The reliability and validity analysis, conducted through factor analysis, aimed to en-
sure the robustness of the measurement instruments used in the study across seven major 
constructs. Each construct was assessed based on Cronbach’s alpha, average variance ex-
tracted (AVE), and composite reliability (CR). In Condition 1, the sensor assessment (SEA) 
construct exhibited high internal consistency reliability, as reflected by a Cronbach’s alpha 
of 0.847, a CR of 0.966424, and an AVE of 0.734851. Similar results were observed in Con-
dition 2 for the vehicle-to-everything network assessment (V2X) construct, with a 
Cronbach’s alpha of 0.909, CR of 0.98801, and AVE of 0.645291. Conditions 3 through 7, 
representing in-vehicle network assessment (VNA), infrastructure assessment (ISA), data 
storage assessment (DSA), machine learning assessment (MLA), and cybersecurity (CSO), 
respectively, all demonstrated strong internal consistency reliability and reliability of 
measurement, with Cronbach’s alpha values ranging from 0.852 to 0.909, CR values rang-
ing from 0.958219 to 0.98801, and AVE values ranging from 0.645291 to 0.761937. These 
findings collectively affirm the reliability and validity of the measurement instruments, 
providing a solid foundation for the subsequent analysis and interpretation of the study 
results. 

3.3. fsQCA—Fuzzy Set Qualitative Comparative Analysis 
In the intricate field of CAV cybersecurity, where causality is often intertwined and 

data exhibit inherent uncertainties, fsQCA emerges as a methodological cornerstone. This 
approach, grounded in fuzzy logic, proves particularly beneficial in navigating the com-
plex causal relationships among myriad variables influencing the security landscape of 
connected and automated vehicles [52]. Traditional statistical methods often falter in han-
dling the inherent ambiguity and imprecision present in real-world data, a challenge viv-
idly apparent in the realm of CAV cybersecurity. The utilization of fuzzy logic within the 
fsQCA methodology serves as a robust solution to this problem. Through a set of mem-
bership functions, fsQCA assigns degrees of membership to different categories or values, 
thereby providing a nuanced and context-aware interpretation of the data. fsQCA’s 
unique strength lies in its ability to unravel complex combinations of factors associated 
with a specific outcome or phenomenon. This is particularly pertinent in the domain of 
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CAVs, where a multitude of interconnected elements contribute to the overall cybersecu-
rity posture. Even in scenarios characterized by limited or uncertain data, fsQCA stands 
out by identifying multiple causal pathways or configurations leading to the same out-
come. Figure 3 [53] delineates the systematic steps involved in the fsQCA method, offering 
a visual guide to its application in the context of CAV cybersecurity. The process encom-
passes defining the scope and parameters of the study, identifying relevant variables, 
specifying membership functions to handle imprecise data, and systematically analyzing 
various causal configurations. This methodological transparency ensures the reproduci-
bility of results and enables researchers to delve into the intricacies of CAV cybersecurity 
with confidence. 

In comparing the fsQCA approach with traditional methods like structural equation 
Modeling (SEM), several advantages emerge. While SEM is widely used for assessing lin-
ear relationships among variables, fsQCA excels in analyzing complex, non-linear causal 
configurations within a limited sample size. SEM relies on assumptions of normality and 
linearity, which might not fully capture the intricate dynamics of cybersecurity factors in 
the context of CAVs. The fsQCA methodology, on the other hand, embraces fuzzy logic, 
accommodating imprecise and ambiguous data. This flexibility is particularly advanta-
geous when dealing with multifaceted phenomena, allowing for a more nuanced explo-
ration of causal pathways. Moreover, fsQCA is adept at identifying equifinality, acknowl-
edging that diverse combinations of factors can lead to the same outcome—a feature cru-
cial in understanding the multifaceted nature of cybersecurity challenges in CAVs. Over-
all, the application of fsQCA offers a more holistic and context-sensitive perspective, un-
covering intricate causal relationships that might be overlooked by more traditional linear 
methods like SEM. 

 
Figure 3. Flowchart of the fsQCA technique. 

Questionnaire 
preparation us-
ing Literature 
review and ex-

pert opinion 

Data Collection 

Calibration of data 

Computation of Mean for data 

Truth Table construction 

Analysis of Complex, Parsimonious, and 
Intermediate solution 

Predictive validity testing 
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3.3.1. Calibration of Data 
To implement the fsQCA method, the first step is to calibrate the values of the raw 

data into fuzzy sets, which are then represented in binary values of 0s and 1s. This process 
involves setting threshold values that indicate full membership, cross-over membership, 
and non-full membership, which are determined based on the data being analyzed and 
are typically fixed using percentiles. In this study, we used threshold values of 4 for full 
membership, 3 for cross-over membership, and 2 for non-full membership. The calibration 
process can be performed in fsQCA by navigating to the “Analyze” menu, selecting “Com-
pute the variable”, giving a name to the target variable, and then calibrating the variable 
using the command “calibrate (x, n1, n2, n3)”, where n1, n2, and n3 represent the thresh-
old values. This step is crucial in ensuring that the data are transformed into a suitable 
format for analysis, allowing for accurate identification of causal pathways and relation-
ships between variables. 

3.3.2. Truth Table Construction 
To obtain fuzzy set values, a truth table was constructed shown in Figure 4 with bi-

nary values of 0 and 1, using the calibrated data. This step can be performed using the 
“Truth table algorithm” option under “Analyze”. The resulting truth table is represented 
in binary values of 0s and 1s. Once the truth table is obtained, the next step is to derive 
three types of solutions—complex, parsimonious, and intermediate. This is achieved 
through the “Analyze” option, followed by editing the code, and setting the code as 1 and 
0.8, which eliminates unneeded cases in the truth table. The specific standard analysis is 
then applied to obtain the three types of solutions. These steps are crucial in the fsQCA 
method as they help to identify the most influential combinations of inputs that lead to 
achieving the desired output. The gray cells in the figure signify instances where the spec-
ified conditions are replicated, indicating the presence of these conditions across multiple 
cases. 

 

Figure 4. Truth table. 

3.3.3. Analysis of Solutions 
Three solutions (complex, parsimonious, and intermediate) were obtained through 

specific standard analysis. These solutions were analyzed to identify different combina-
tions of conditions that lead to achieving an outcome. The intermediate and parsimonious 
solutions were used to derive different conditions. The constructs present in both parsi-
monious and intermediate solutions were considered core constructs and represented by 
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large circles. The constructs present only in the intermediate solution were considered 
peripheral constructs and represented by small circles. The findings were classified into 
necessary and sufficient conditions. The results of the three solutions were tabulated in 
Table 5, providing different combinations with the presence and absence of constructs to 
achieve the outcome. This process helps in identifying the most influential factors that 
lead to the desired outcome. 

Table 5. Analysis of necessary conditions. 

 Cybersecurity (CSO) ~Cybersecurity (~CSO) 
Conditions Tested Consistency Coverage Consistency Coverage 

SEA 0.858655 0.675531 0.853020 0.428687 
~SEA 0.273814 0.744661 0.354356 0.615599 
VXA 0.461250 0.805496 0.316943 0.397453 
~VXA 0.693069 0.613664 0.824639 0.522975 
VNA 0.376238 0.757388 0.429717 0.552577 

~VNA 0.777740 0.681017 0.811331 0.453812 
ISA 0.445886 0.759302 0.470337 0.511628 

~ISA 0.713213 0.678247 0.778728 0.473652 
DSA 0.669512 0.721487 0.665954 0.458425 

~DSA 0.497440 0.699808 0.595404 0.535063 
MLA 0.701263 0.678112 0.789418 0.487620 
~MLA 0.470127 0.777527 0.478888 0.505959 

4. Results from fsQCA 
Both the necessary and sufficient conditions were examined to ensure the cybersecu-

rity of CAV. The necessary conditions were analyzed and their results are presented in 
Table 5. None of the conditions were found to be sufficient to assure cybersecurity of CAV, 
as all of them had a consistency value lower than 0.9. Therefore, the sufficiency conditions 
were analyzed. The fuzzy set outcomes are presented in Table 6, which shows two signs. 
The black circle represents the presence of a condition, while the empty white circle rep-
resents the absence of a condition. Additionally, the black and white circles are divided 
into larger and smaller ones to indicate core and peripheral conditions, respectively. The 
core conditions are represented by large black and white circles, while the conditions pre-
sent in the intermediate solution but not in the parsimonious solution are represented by 
small black and white circles. Table 6 also includes the consistency and coverage values 
for each solution, the overall consistency, and the coverage extracted from the intermedi-
ate solution. Consistency was measured to understand the subset relations, while cover-
age was used to understand empirical relevance. The overall consistency of our solution 
was 0.810098, which was greater than the zero-threshold value of 0.75, and the overall 
coverage value of 0.734039 indicated that the outcome was covered by all ten identified 
solutions. 

Table 6. fsQCA findings. 

Combination of Constructs SEA VXA VNA ISA DSA MLS 
Raw Cov-

erage 
Unique 

Coverage Consistency

VXA*~VNA*~ISA*~DSA*~MLA       0.224309 0.017412 0.816149 
SEA*VXA*~VNA*~DSA*~MLA       0.180608 0.033117 0.904274 
SEA*VXA*~VNA*~ISA*MLA       0.237282 0.035165 0.929145 
SEA*~VXA*~ISA*DSA*MLA       0.361215 0.001707 0.796687 

SEA*VXA*VNA*ISA*DSA       0.21987 0.097302 0.975758 
~SEA*~VXA*VNA*~ISA*DSA*~MLA       0.088426 0 0.806854 
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~SEA*~VXA*VNA*~ISA*~DSA*MLA       0.121202 0.015705 0.851319 
SEA*~VXA*VNA*ISA*~DSA*MLA       0.148173 0.0191191 0.898551 

SEA*~VXA*~VNA*~ISA*~MLA       0.315466 0 0.829443 
SEA*~VXA*~VNA*~ISA*DSA       0.430864 0.00341403 0.833003 

Solution coverage: 0.734039 Solution consistency: 0.810098 
Note: The black circle represents the presence of a condition, while the empty white circle represents 
the absence of a condition. Additionally, the black and white circles are divided into larger and 
smaller ones to indicate core and peripheral conditions, respectively. The core conditions are repre-
sented by large black and white circles, while the conditions present in the intermediate solution 
but not in the parsimonious solution are represented by small black and white circles. 

To ensure higher cybersecurity of CAV, solutions 2, 3, and 5 were found to be the 
most effective. Solution 2 combined sensor assessment (SEA) and vehicle-to-everything 
network assessment (VXA) to achieve higher cybersecurity, while also excluding in-vehi-
cle network assessment (VNA), data storage assessment (DSA), and machine learning sys-
tem assessment (MLA). Solution 3 combined SEA, VXA, and MLA while excluding VNA 
and infrastructure assessment (ISA). A combination of all five constructs, SEA, VXA, VNA, 
ISA, and DSA, was found to provide the greatest security assurance for CAV vehicles. The 
other solutions represented varying combinations of these constructs, with solution 1 rep-
resenting the absence of all constructs except for VXA; solution 4 including SEA, DSA, 
and MLA; solution 6 including VNA and DSA; solution 7 including VNA and MLA, so-
lution 8 including SEA, VNA, and MLA; solution 9 including only SEA; and solution 10 
including both SEA and DSA. These findings suggest that more than one configuration is 
necessary to achieve the desired outcome of higher cybersecurity for CAV vehicles. 

Practical Case Studies 
Practical case studies are included to illustrate its real-world application. These case 

studies provide tangible examples of how the proposed method can be implemented in 
diverse scenarios within the automotive industry. 
Case Study 1: Implementation in Automotive Manufacturing 

In this case study, we applied the methodology to a real-world scenario in an auto-
motive manufacturing setting. By involving key stakeholders such as production engi-
neers, automotive developers, and instrumentation engineers, we were able to assess the 
cybersecurity of connected and automated vehicles (CAVs) within the manufacturing pro-
cess. The results demonstrate the method’s practical utility in identifying and mitigating 
potential cybersecurity risks in an industry-specific context. 
Case Study 2: Cybersecurity Assessment in Vehicle-to-Everything (V2X) Communication 

The second case study focuses on the practical application of the methodology in 
assessing the cybersecurity of V2X communication in connected vehicles. By collaborating 
with experts in the field and utilizing the proposed method, we were able to identify the 
specific security measures needed to ensure the integrity and reliability of V2X communi-
cation, thereby enhancing the overall cybersecurity of CAVs. 
Case Study 3: Integrating Cybersecurity Measures in Automotive Design 

This case study delves into the incorporation of cybersecurity measures during the 
design phase of connected and automated vehicles. Through collaboration with automo-
bile designers and chief technical officers, we explored the implementation of the pro-
posed method to enhance the cybersecurity features embedded in the vehicle design pro-
cess. The results highlight the practical implications of our methodology in influencing 
the overall security posture of CAVs. 
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5. Discussions 
One of the main conclusions drawn from the study is the importance of addressing 

data storage and in-vehicle network attacks. These two constructs were present as core 
countermeasures in the majority of the solutions identified, indicating their crucial role in 
ensuring the cybersecurity of CAVs. In particular, the study highlights the need for secure 
data storage practices and secure communication protocols within the vehicle’s network 
to prevent attacks that may compromise the confidentiality and integrity of data. These 
findings are consistent with previous research on CAV cybersecurity, which has empha-
sized the importance of securing in-vehicle networks and preventing unauthorized access 
to vehicle data. Another interesting finding of this study is the importance of data storage 
assessment in ensuring the cybersecurity of CAVs. Solution 10 identifies the presence of 
data storage assessment alone as sufficient to provide adequate security, without the need 
for other constructs. This highlights the importance of regular security assessments and 
testing to identify and mitigate potential vulnerabilities in CAV systems. 

Additionally, the study identifies the vehicle-to-everything network (V2X) as another 
important construct in ensuring CAV cybersecurity. V2X enables vehicles to communicate 
with other vehicles and the surrounding infrastructure, which has the potential to im-
prove safety and efficiency on the road. However, it also introduces new security risks, 
which must be addressed through secure communication protocols and authentication 
mechanisms. The study’s findings highlight the need for continued research and develop-
ment of secure V2X communication technologies to support the widespread adoption of 
CAVs. Overall, the findings of this study provide a valuable framework for stakeholders 
in the automotive industry to evaluate and implement effective cybersecurity counter-
measures for CAVs. By addressing the most critical constructs identified in the study, in-
cluding data storage and in-vehicle network security, stakeholders can improve the over-
all security and safety of CAVs, ensuring their widespread adoption in the future. 

6. Research Implications 
6.1. Theoretical Implications 

This study makes a significant contribution to the literature on connected and auto-
mated vehicles (CAV) by presenting conditions and configurations that can achieve the 
desired outcome of cybersecurity. Previous studies on CAV security were mostly based 
on previous literature, with only a few empirical studies that collected real data from re-
spondents. The importance of V2X (vehicle-to-everything) network security for CAV cy-
bersecurity was identified in previous collective reviews of cybersecurity attacks [32]. Lon-
gitudinal safety of CAV was identified using the Rear End Collision Risk Index (RCRI) 
method, which resulted in several focal points [54]. Other studies focused on specific 
cyber-attacks, which had a limitation in analyzing their importance in relation to other 
attacks [55]. 

Most previous studies used structural equation modelling (SEM) to identify multiple 
paths to achieve the outcome, but this approach only focuses on the main effects of varia-
bles that lead to the outcome. To address this limitation, we used fuzzy set qualitative 
comparative analysis (fsQCA), which identifies multiple possible paths to achieve the de-
pendent outcome variable. This research focused on analyzing the countermeasures used 
to avoid cyber-attacks that could compromise the cybersecurity of CAVs. By leveraging 
the knowledge of automobile engineers involved in CAV-related activities, we identified 
the paths to achieve higher cybersecurity by answering the question of which attacks 
should be removed along with their countermeasures to ensure cybersecurity. The coun-
termeasures included under attack were highly preferred measures identified through re-
views and expert opinions. Adopting specific strategies to prevent cyber-attacks will en-
hance the importance of those attacks in achieving the cybersecurity of CAVs. This paper 
is one of the first to investigate security attacks by their countermeasures, and it provides 
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a better understanding of the conditions that must be followed to ensure CAV cybersecu-
rity. The results of this study provide a comprehensive framework that can be used to 
achieve the desired outcome of CAV cybersecurity. By identifying the most critical con-
structs that must be considered, such as the in-vehicle network and data storage, we pro-
vide practical guidance to stakeholders involved in ensuring CAV cybersecurity. We also 
identified constructs that are not necessary to consider, such as the infrastructure network. 
Overall, this study makes a significant contribution to the literature on CAV cybersecurity 
by presenting a comprehensive framework that can be used to achieve the desired out-
come of CAV cybersecurity. 

6.2. Managerial Implications 
The findings of this study can be utilized by CAV designers as well as researchers 

who seek to reduce cybersecurity attacks. The increased adoption of CAVs can contribute 
to achieving SDG 9 and 11. The responsibility of establishing the necessary infrastructure 
for secure and seamless movement of CAVs lies with the government in order to meet 
SDG 9. Boosting infrastructure can also increase the rate of industrialization. Cybersecu-
rity attacks are a major security threat for designers involved in intelligent transportation 
systems (ITS) that make CAVs. This study identifies possible conditions to avoid security 
threats and presents countermeasures to mitigate them. The importance of employing 
particular strategies to avoid security attacks and ensuring the cybersecurity of CAVs is 
highlighted. The results revealed that the security checks on in-vehicle networks and data 
storage are crucial to achieving cybersecurity. CAV designers can focus on these two at-
tacks to resolve security issues. Additionally, the study offers several combinations of the 
presence and absence of attacks that lead to achieving the desired outcome, providing 
multiple paths for security checks. Furthermore, the increased adoption of connected and 
autonomous vehicles (CAVs) can contribute to achieving SDG 9 (Industry, Innovation, and 
Infrastructure) and SDG 11 (Sustainable Cities and Communities). By identifying the nec-
essary infrastructure for secure and seamless movement of CAVs, this study highlights 
the responsibility of governments in meeting SDG 9. Governments play a vital role in es-
tablishing the infrastructure needed for CAVs, which can enhance transportation effi-
ciency, reduce congestion, and promote sustainable urbanization. In addition to the ben-
efits related to SDG 9, the transition towards CAVs can have a positive impact on SDG 11. 
CAVs can help countries reduce transportation pollution, lower greenhouse gas emis-
sions, and promote sustainable mobility solutions. By integrating CAVs into urban trans-
portation systems, cities can improve air quality, enhance accessibility, and create more 
livable and sustainable communities. The adoption of CAVs aligns with the broader 
agenda of sustainable living practices and offers numerous benefits for individuals and 
countries globally. Moreover, CAVs can facilitate equitable access to transportation, en-
hance road safety, and improve the overall quality of life for people in both urban and 
rural areas. 

6.3. Long-Term Impacts and Future Research Directions 
Due to the necessity to examine the long-term impacts of implementing the proposed 

framework on CAV cybersecurity and sustainability goals, future research should focus 
on this direction. Recognizing the dynamic nature of both technological advancements 
and emerging cybersecurity threats, future research endeavors will include the sustained 
effects and implications of the proposed framework over an extended timeframe. This 
extended analysis will involve continuous monitoring and evaluation of the cybersecurity 
measures implemented in CAVs, considering evolving threats and technological advance-
ments. We aim to explore the enduring effectiveness of the proposed countermeasures 
and their contribution to the long-term resilience of CAVs against emerging cybersecurity 
threats. Additionally, we will assess the framework’s impact on broader sustainability 
goals, particularly its influence on reducing transportation-related pollution, lowering 
greenhouse gas emissions, and promoting sustainable mobility solutions. 
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7. Conclusions 
The development of connected and automated vehicles (CAV) has opened up a new 

era in transportation. However, with this technological advancement comes the risk of 
cyber-attacks, which can pose a threat to the safety and security of passengers and vehicles 
alike. This study aimed to identify the possible paths for achieving cybersecurity in CAV 
by analyzing six major security constructs and their countermeasures using the fuzzy set 
qualitative comparative analysis (fsQCA) technique. The results of this study showed that 
in-vehicle network security and data storage security checks are the most important 
measures to consider in ensuring the cybersecurity of CAV. The findings of this study are 
significant for automobile engineers, policymakers, and researchers who are involved in 
the development of CAV. By identifying the conditions and configurations required for 
achieving cybersecurity in CAV, designers can implement measures to prevent potential 
security threats. Policymakers can also take steps to establish the necessary infrastructure 
and regulations to ensure the smooth and secure movement of CAV, thus meeting sus-
tainable development goals (SDGs) 9 and 11. However, the study does have some limita-
tions, such as the exclusion of certain countermeasures for eliminating security attacks. 
Future research can focus on collecting and analyzing additional countermeasures and 
strategies to address these limitations. While findings may not be broadly generalizable 
across all industries, they provide valuable insights within the specific context of con-
nected and automated vehicles. Future research with larger sample sizes could further 
validate and extend our findings to a broader audience. 
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Appendix A 

Table A1. 5-Point Likert scale questionnaire of construct measurements. 

Construct Attack No. Statements 
Strongly 
Disagree Disagree Neutral Agree 

Strongly 
Agree 

Input 

Sensor attack as-
sessment (SEA) 

P1 
Using multiple GPS receiv-
ers avoids blocking of satel-

lite signals from GPS. 
     

P2 
Usage of redundant sensors 

on camera verification to 
avoid illusion and binding 

     

P3 

Jamming avoidance by mak-
ing protective glasses 

around a LiDAR which acts 
as light filters 
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Vehicle-to-every-
thing network 

assessment 
(VXA) 

P4 

Usage of fog server with fog 
anonymizer to avoid eaves-
dropping in vehicular ad-
hoc networks (VANETs) 

     

P5 

Maintaining data integrity 
in dynamic route guidance 

by forged data filtering 
scheme 

     

P6 Using swarm algorithms for 
routing attacks 

     

P7 
Detecting bandwidth and 

entropy to reduce denial of 
service attack 

     

P8 
Implementing noisy control 
signals to avoid replay at-

tacks 
     

P9 

Registering vehicles with 
TFD to avoid communica-

tion of attackers who are un-
der victim identity 

     

In-Vehicle net-
work assessment 

(VNA) 

P10 

Encryption and crypto-
graphic checksum to avoid 
close proximity vulnerabili-

ties 

     

P11 
Doing network segmenta-

tion to avoid CAN and SAE 
vulnerabilities 

     

P12 
Encryption and authentica-

tion to avoid flashing attacks      

P13 
Content filtering for inte-

grated business service at-
tacks 

     

Infrastructure 
network assess-

ment (ISA) 

P14 

Usage of certificateless ag-
gregate signcryption (CL-A-
SC) scheme to monitor road 

surface conditions 

     

P15 
Incorporating software de-
fined networking (SDN) in 

IoT environment 
     

P16 
Using cloud-based detection 
system for cloud infrastruc-

ture 
     

Data storage as-
sessment (DSA) 

P17 
Conserving data mining to 
protect privacy leakage of 

user information 
     

P18 
Using telematics control unit 
(TCU) for remote control of 

vehicles 
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P19 

Adopting CVSS (common 
vulnerability scoring sys-

tem) to measure severity of 
software vulnerabilities 

     

Machine learning 
system assess-
ment (MLA) 

P20 

Performing data sanitization 
and robust learning to de-
fend against misleading in 

learning process 

     

P21 Ensuring privacy of data by 
privacy homomorphism 

     

P22 Implementing neural net-
works for privacy assurance      

P23 
Assessing risks earlier using 

dynamic risk assessment      

Output 

Cybersecurity of 
CAV (CSO) 

P24 

Providing better solutions 
for security issues in con-

nected and automated vehi-
cles (CAV) 

     

 P25 
Strengthening the cyberse-

curity patterns      

 P26 
Reduces attacker intentions 
in connected and automated 

vehicles 
     

Table A2. Demographic Information of experts. 

Demographic Information 
Company Name  

Designation of Respond-
ent in The Company  

Chief Technical Of-
ficer 

Automobile 
Designer Production Engineer Automotive 

Developer 
Instrumentation 

Engineer 
E-mail of the respondent  
Work experience of re-

spondent  
Below 3 years 3 to 5 years 5 to 10 years More than 10 

years 
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