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Abstract: This paper presents methods for vehicle state estimation and prediction for autonomous
driving. A round intersection is chosen for application of the methods and to illustrate the results
as autonomous vehicles have difficulty in handling round intersections. State estimation based on
the unscented Kalman filter (UKF) is presented in the paper and then applied to state estimation
of vehicles in a round intersection. The microscopic traffic simulator SUMO (Simulation of Urban
Mobility) is used to generate realistic traffic in the round intersection for the simulation experiments.
Change point detection-based driving behavior prediction using a multipolicy approach is then
introduced and evaluated for the round intersection. Finally, these methods are combined for
vehicle trajectory estimation based on UKF and policy prediction and demonstrated using the
round intersection.
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1. Introduction

Connected and autonomous driving [1] including self-driving robot-taxis are becom-
ing more widely available each year. A survey of autonomous driving common practices
has been provided in [2]. Motion planning and motion planning and control methods for
autonomous driving are reviewed in references [3–5], respectively. Reference [6] treats
maneuver-based trajectory planning for highly automated vehicles on real roads. A sur-
vey of deep learning application for autonomous driving are provided in reference [7].
Reference [8] considers automated driving in uncertain environments, while reference [9]
focuses on human-like empirical decision making for autonomous vehicles. Reference [10]
focuses on the real-time nature of their motion planning for autonomous driving in ur-
ban environments. The autonomous driving systems, their feedback control loops, and
decision-making systems in the above-cited references depend on the effectiveness of in-
formation collection and the knowledge of vehicle motions, including the ego vehicle and
other nearby vehicles. Knowing this information, autonomous vehicles can estimate the
behaviors and future positions of others so as to determine the correct way of behaving in
their current traffic scenario. Therefore, the knowledge of the ego and nearby vehicle states
at the current moment and being able to accurately predict their future motion and states is
very important for safe autonomous driving.

The sensor suite commonly used in on-road autonomous vehicles includes GPS (Global
Positioning System), IMU (Inertial Measurement Unit), lidar(s), camera(s), and radar(s).
With the information collected from GPS and IMU, the ego vehicle can measure its state,
including its global position, its heading angle for orientation, its linear velocity, its angular
velocity, and its acceleration. With the information collected from these on-board sensors,
current states and future state trajectories can be computed and estimated for the ego vehicle.
However, the case is a lot different for other vehicles as compared to the ego vehicle. The
task for estimating true object states and predicting future trajectories of other road users
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can become a difficult task due to the following reasons. First, perception sensors such
as lidar, camera, and radar can provide positioning information and velocity information,
but unlike the ego vehicle with onboard IMU, angular velocity and accelerations are hard
to derive simply based on observations from these sensors. Additionally, sensor-based
detections in autonomous vehicles are not exact. The data collection about other road
users and objects are noisy measurements, which leads to errors in sensor detection and
perception. Furthermore, not all the states of the other vehicles are observed or measured.
Hence, the knowledge of motion of other road users is uncertain, especially in the urban
traffic scenario. Unlike highway traffic, the acceleration, velocity, and heading angles can
change suddenly due to complex traffic situations in urban driving environments. Road
users need to be alerted promptly when an unexpected situation possibly takes place in the
urban scenario, and this is even more severe when the traffic density is high. Hence, for the
planning of autonomous driving, it is important to have good estimation and prediction of
other road users so that the planning and control of the ego vehicle can be more efficient
and robust towards the desired control objective.

Vehicle estimation and future state prediction have long been research problems of
focus and a variety of solutions have been proposed. Estimation can be used for different
types of nearby vehicle future behavior and information, especially for their states that are
not directly measured, such as angular velocity and lateral velocity. Here, we call them the
internal states. Several methods have been proposed for deriving the internal states from
the measured vehicle trajectory. In [11], by assuming the ideal condition where vehicle tires
have only pure rolling contact, the authors computed lateral velocity from longitudinal
velocity and steering angle based on the single-track model or the so-called bicycle model.
In [12], the authors compared different motion models for vehicle tracking and applied
Kalman filtering for generating an estimated trajectory to illustrate the accuracy of motion
models in describing vehicle motion while getting rid of sensor noise. Reference [12]
provides a good reference for selecting the right motion model to describe vehicle motions
under different road conditions. In [13], Real Time Kinematic (RTK)-based GPS correlation
is applied for vehicle position information collected for estimating vehicle internal states
which increase the precision of the collected information. More and more RTK-based GPS
units are used for vehicles to improve the accuracy of their positioning system, which also
benefits the vehicle state estimation.

With the fast development of artificial intelligence and neural network methods, image-
based trajectory prediction also draws a lot of attention. In [14], a graph Long Short-Term
Memory (graph-LSTM)-based trajectory prediction method is proposed by utilizing a series
of images and representing the proximity between road agents using a weighted dynamic
geometric graph. In [15], a spatio-temporal graph convolution neural network is proposed
for predicting human trajectory on the road for vulnerable road user safety. There are
also other neural network (NN)-based prediction methods utilizing LSTM or Recurrent
Neural Networks (RNN) for the purpose of processing time series and predicting future
such as [16].

In this paper, vehicle internal state estimation and vehicle policy prediction methods
are introduced for predicting the future state and trajectories for other vehicles in the urban
traffic scenarios, especially in the traffic scenario of round intersections. Kalman filter-based
state estimation and change point detection-based policy prediction are introduced. A
combined method for vehicle trajectory prediction is also proposed for better estimating the
vehicle trajectory in a future time period, which will assist the decision making of the ego
vehicle in the round intersection. Without loss of generality, we assume that the other road
users that the ego vehicle encounter are vehicles. Vulnerable road users such as bicyclists
and pedestrians are not considered in this paper.

The contributions of this paper are as follows. This paper presents a Bayesian change
point detection-based policy prediction method. An existing change point detection method
is modified here by introducing Kalman filter-based state estimation for generating a clean
vehicle trajectory history for assisting the behavior prediction. A new method for solving
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the computation of the likelihood value for different vehicle policies for round intersections
is introduced. This modified method also predicts the future dynamic behavior of the
observed vehicle using the vehicle hidden states estimated by the Kalman filter. Behavior
prediction is combined with the vehicle motion model for predicting vehicle behavior in
the near future so that the estimated trajectory derived from the prediction method can
assist in decision making.

The rest of the paper is organized as follows. State estimation based on the unscented
Kalman filter is introduced with application to a round intersection in Section 2. The micro-
scopic traffic simulator SUMO is used to generate realistic traffic in the round intersection
for the simulation experiments of Section 2. Change point detection-based driving behavior
prediction using a multipolicy approach is introduced in Section 3 and evaluated for the
round intersection example. Section 4 combines the methods of Sections 2 and 3 for vehicle
trajectory estimation based on UKF and policy prediction. The paper ends with the usual
conclusions in the last section.

2. State Estimation Based on Kalman Filter

The future motion and states of the ego vehicle can be predicted with on-board sensors
such as GPS and IMU that provide information on position and motion, including velocity,
acceleration, and angular velocity. However, for the case where we do not have any
information or measurement on the vehicle motion, it is important to have a tool for
calculating and estimating the internal states, which our sensors do not have access to.
Kalman filter, the famous estimation algorithm, is a powerful and commonly used tool in
those cases. The core idea of the Kalman filter and its central operation is the propagation of
the Gaussian random variable through the system dynamic model [17]. An original Kalman
filter can be used for solving the problem where the system dynamic equations are linear.
However, the vehicle models are nonlinear, so the original Kalman filter is not applicable
to solve the trajectory tracking and motion estimation problem. For the nonlinear case,
several variations of the Kalman filter have been proposed. These include the extended
Kalman filter (EKF) [18] and the unscented Kalman filter (UKF) [19]. The EKF approximates
the states using Gaussian random variables by introducing the first-order linearization
of the system dynamic of the nonlinear system. The UKF deals with the nonlinearity by
representing the state distribution with sampling points, called sigma points, that capture
true mean and covariance of the Gaussian random variables that describe the states and
propagation through the nonlinear function without linearization. Both variations of the
Kalman filter work well for the nonlinear case. However, the EKF, as discussed in [19], has
some disadvantages. The first-order linearization of the system can introduce large errors
for the posterior mean and covariance when the Gaussian random variables are propagated
through the linearized state equation. Other than this error caused by linearization, the
estimation based on EKF may also have sub-optimal performance, and sometimes will
not converge. However, in the UKF, the propagation through dynamic equations of the
sample points will not involve additional errors. The posterior mean and covariance will
still be captured by the unscented transformation in the UKF. Hence, it outperforms the
EKF and is implemented in this paper for estimating the vehicle internal states based on
the observable measurements and collected data.

2.1. The Unscented Kalman Filter

The unscented Kalman filter is a variation of the Kalman filter based on the unscented
transform (UT) that operates on the sampled sigma points that are used for representing
the true mean and covariance of the state representation of Gaussian random variables.
Consider a discrete nonlinear dynamical system expressed as follows:

xk+1 = F(xk, vk) (1)
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yk = H(xk, nk) (2)

where xk represents the states of the system at current time instant k. This system could
be observable, partially observable, or hidden to the external observer and measurement.
vk is the process noise that drives the system or disturbs the state transition of the whole
system. yk is the current measurement that the external observer can access, and nk is
the measurement noise caused by the sensors. F is the system dynamic model that is a
nonlinear function, and the measurement function H can also be nonlinear or linear in
this case.

To realize the unscented Kalman filter for the nonlinear system, the unscented trans-
formation is introduced. Considering the nonlinear system y = g(x) with an n dimensional
state vector x = [x1, x2, . . . , xn]

T where the initial state of the system is known with its
mean and covariance being x, Px, respectively. A series of 2n + 1 sampling points, called
sigma points or sigma vector, and their corresponding weights are generated based on the
following formulae:

X0 = x (3a)

Xi = x + (
√
(n + λ)Px)i

i = 1, 2, . . . , n (3b)

Xi = x− (
√
(n + λ)Px)i−n

i = n + 1, . . . , 2n (3c)

w0
m = λ/(n + λ) (3d)

w0
c = λ/(n + λ) + (1− α2 + β) (3e)

wi
m = wi

c = 1/{2(n + λ)} i = 1, 2, . . . , 2n (3f)

The generated sigma vector can successfully capture the mean and covariance of
the original states. For the UT shown in Equations (3a–f), the scaling parameters κ, α are
introduced. α is the scaling parameter that determines how wide the sigma points are
spread from the original mean of the states. κ is normally set to be 0 or 3− n. β is related
to the prior probability distribution of the state variables. As the widely used Gaussian
distribution for representing the state variable and noise, β is set to be 2 which will provide
optimality. Here, λ = α2(n + κ)− n is used for scaling as well.

Unlike the original KF or EKF that pass through the state mean directly to the dynamic
equation, in UKF, the sigma points will pass through the dynamic equation so that 2n + 1
sigma points representing the prediction of the state are generated as follows:

Yi = g(Xi) i = 0, 1, 2, . . . , 2n (4)

The posterior means and covariances of the prediction sigma points are derived with
the prediction sigma points along with the weights generated from the UT as follows:

y ≈
2n
∑

i=0
wi

mYi

Py ≈
2n
∑

i=0
wi

c{Yi − y}{Yi − y}T
(5)
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As shown in the above equation, the superscript for weights wi is related to the mean
and covariance. With the unscented transformation, the posterior mean and covariance
of the states will not be as deviated from the true mean and covariance as they are in EKF
due to the error in the first-order linearization. Hence, it improves the accuracy of state
estimation when the dynamic system is nonlinear. The unscented Kalman filter based on
the unscented transformation algorithm is provided and introduced in Algorithm 1 [19].

Algorithm 1. Unscented Kalman filter

Input state dynamic equation xk+1 = F(xk, vk) and yk = H(xk, nk)
(1) Initialize the UKF with:
E(x0) = x0, P0 = E[(x0 − x0)(x0 − x0)]

T , vk ∼ N(0, Qk), nk ∼ N(0, R)
(2) For k = 1, . . .:

(2.1) Calculate the Sigma Points of the state:
Xk−1 = [x̂k−1, x̂k−1 ±

√
(n + λ)Pk−1]

(2.2) Prediction:
Xk|k−1 = F(Xk−1, vk−1)

xk|k−1 =
2n
∑

i=0
wi

mXi,k|k−1

Pk|k−1 =
2n
∑

i=0
wi

c{Xi,k|k−1 − xk|k−1}{Xi,k|k−1 − xk|k−1}
T

(2.3) Measurement update:
Yk|k−1 = H[Xk|k−1, nk−1]

yk|k−1 ≈
2n
∑

i=0
wi

mYi,k|k−1

Py,k|k−1 ≈
2n
∑

i=0
wi

c{Yi,k|k−1 − yk|k−1}{Yi,k|k−1 − yk|k−1}
T + Rk

Pxkyk ≈
2n
∑

i=0
wi

c{Xi,k|k−1 − xk|k−1}{Yi,k|k−1 − yk|k−1}
T

(2.4) Estimation:
K = Pxkyk inv(Py,k|k−1)

x̂k = xk|k−1 + K(yk − yk|k−1)

Pk = Pk|k−1 − KPy,k|k−1KT

(3) Next
(4) End

In Algorithm 1, Xk−1 is the unscented transformed state vector at sample time k − 1.
Subscript k|k − 1 represents the derivation from state at step k − 1 to k. Xk|k−1 is the
prediction state vector from step k − 1 to k. Yk|k−1 is the measurement update from step
k − 1 to k. xk|k−1 is the true mean of the prediction state vector Xk|k−1, and yk|k−1 is the
corresponding true mean of Yk|k−1. K is the Kalman gain, and x̂ represents the posterior
estimation as the optimal estimated states using the unscented Kalman filter.

2.2. Motion Models

A good model describing the motion of vehicles is very important for estimating
the vehicle states and predicting the future potential trajectories. It is a vital problem of
planning and decision making of autonomous vehicles since it is related to the possibility
of collision between the ego vehicle and other vehicles. To increase the accuracy and
stability of estimation, a motion model is assumed to define and describe the evolution of
the vehicle states and dynamic behavior. For simplification, a single-track motion model
is commonly used when the kinematic behavior is more significant as compared to the
performance of the powertrain. A force analysis model is needed when the powertrain
behavior is studied as well as the forces applied on the tire by the ground interaction [11].
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Therefore, in different traffic scenarios, different motion models reveal different advantages
and disadvantages for tracking and estimating the vehicle parameters.

In this paper, the traffic scenario that draws the most attention is the intersections in an
urban environment. Several motion models have been proposed for describing the vehicle
dynamic behavior in vehicle turning, for example, as discussed in [12], the constant turn
rate and velocity model (CTRV), constant turn rate and acceleration model (CTRA), and
the constant curvature and acceleration (CCA) model outperform the constant acceleration
model (CA) for describing the vehicle in a curved road situation. Also, the complexity of
the model does not make the model a lot better than a relatively simple model. In this
paper, since the actual vehicle in urban traffic is not likely to change its speed all the time,
and to make sure that the model is simple enough for real-time decision-making use, the
constant turn rate and velocity (CTRV) model is employed and applied for estimating the
vehicle states and predicting future vehicle trajectories. For discrete time use, the CTRV
model is presented in Equations (6) and (7) below. The state space for the CTRV model is
characterized by the five-dimensional state tuple and is as follows:

st = [x, y, θ, v, w]T (6)

In the state vector, x, y represent the 2-D planar position information, and x stands for
longitudinal position and y for lateral position. θ is the heading angle of the vehicle. v, w
are the linear velocity and yaw angular velocity. Assuming the sampling time to be ∆t, the
system dynamic equation is as follows [12]:

st+1 =



xt+1

yt+1

θt+1

vt+1

wt+1


= F(st) =



vt
wt

sin(wt∆t + θt)− vt
wt

sin(θt) + xt

− vt
wt

cos(wt∆t + θt) +
vt
wt

cos(θt) + yt

wt∆t + θt

vt

wt


, w 6= 0 (7)

When the angular velocity of the vehicle becomes zero, the system dynamical equation
becomes as follows:

st+1 =



xt+1

yt+1

θt+1

vt+1

wt+1


= F(st) =



vt cos(θt)∆t + xt

vt sin(θt)∆t + yt

θt

vt

0


, w = 0 (8)

This model performs well for describing and tracking the vehicle kinematic motion.
The vehicle trajectory generated from this model uses the assumption that the vehicle is
moving on a circular trajectory. The drawback of this type of kinematic model is that the
critical dynamics of vehicles cannot be revealed while estimating and tracking the motion
of the vehicle. However, this is sufficient for estimating the hidden states that cannot be
observed for the round intersection application of this paper.

In Equations (6) through (8), no process noise is involved in the system dynamics.
When considering process noise that perturbs motion variables like velocity and angular
velocity, the system dynamic equation with perturbation and the covariance matrix used for
UKF-based state estimation are introduced. The noise is mainly noise in acceleration that



Vehicles 2023, 5 1334

affects the vehicle velocity and change rate of angular velocity and disturbs the rotational
motion of the vehicle. The noise is given as a vector of white noise:[

va
vw

]
t
∼ N(µ, cov(v)) (9)

where µ =

[
0
0

]
and cov(v) =

[
σva 0
0 σvw

]
, and it takes place in the process of state dynamics

of the motion model that leads to the following new state updated equation [12]:

st+1 = F(st, vt) =



vt
wt

sin(wt∆t + θt)− vt
wt

sin(θt) + xt +
1
2 ∆t2 cos(θt)va

− vt
wt

cos(wt∆t + θt) +
vt
wt

cos(θt) + yt +
1
2 ∆t2 sin(θt)va

wt∆t + θt +
1
2 ∆t2vw

vt + va∆t

wt + vw∆t


, w 6= 0 (10)

Let G in

G =



1
2 ∆t2 cos(θt) 0

1
2 ∆t2 sin(θt) 0

0 1
2 ∆t2

∆t 0

0 ∆t


(11)

be the noise process function. The covariance matrix of process noise in the UKF state
estimation is

Qk = Gcov(v)GT (12)

and will be used for the generation of covariance matrix for predicted state vectors. Using
the constant turn rate and velocity (CTRV) motion model with process noise, the UKF-
based vehicle state trajectory is implemented for estimating the hidden states of other
vehicles in the round intersection scenarios, mainly the yaw rate of other vehicles so that
the ego vehicle will learn about the change in direction of other vehicles. The same process
noise item is also applied when the angular velocity is zero. In the UKF-based trajectory
estimation, the measurement noise is revealed by directly adding the covariance matrix R
to the measurement covariance matrix Py,k|k−1. However, the process noise cannot be dealt
with by directly adding the covariance matrix of process noise to the covariance matrix of
the state prediction. Instead, as shown in [17], the state estimation method deals with the
process matrix by using the augmented state vector and directly applying the covariance
matrix of the noise into the state covariance matrix. In this way, the abovementioned
process noise can be taken care of.

2.3. Simulation Experiment Setup and Results

This study was motivated by the presence of two round intersections in the Linden
LEAP autonomous shuttle deployment site of Columbus, Ohio, as part of the Smart
Columbus project (US DOT Smart City Challenge award) [20]. The Linden LEAP AV
shuttles operated in an urban city environment with no public transportation and picked up
and dropped off passengers at the four stops of the Linden Transit Center, Rosewind Estates
Community Center, Douglas Community Recreation Center, and St. Stephen’s Community
House. These locations provided residents with resources that include affordable housing,
healthy food, childcare, healthcare centers, recreation, and more. It also connected residents
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who live in the area to the Central Ohio Transit Authority’s (COTA) CMAX rapid transit
bus line to access jobs and services. The AV shuttle route had two round intersections. The
shuttles used were not able to autonomously handle the round intersections. Instead, the
shuttle operator monitored the traffic situation in the round intersection and pressed the
proceed button for the shuttle to automatically track its path within the round intersection.
The round intersection geometry and speeds used in the simulation experiments correspond
to this autonomous shuttle deployment. These AV shuttles had a maximum speed of about
3.6 m/s (8 mph).

The experiment of implementing UKF for vehicle trajectory tracking is tested based on
simulation trajectories generated in the SUMO microscopic traffic simulation environment.
The vehicle model for unscented Kalman filter-based vehicle trajectory tracking is the CTRV
model introduced in this section. Here, we use one of the experiments for demonstration
and show the test results based on SUMO simulation. A vehicle in SUMO travels around the
round intersection and generates the path shown in Figure 1. To simulate the noisy process
of the vehicle state transition and the noise generated in the process of measurement, we
manually add process noise and measurement noise to the clean trajectory. As was shown
in Equation (9), we add a white noise on the velocity and angular velocity as follows:[

va
vw

]
t
∼ N(µ, cov(v)) (13)

where µ =

[
0
0

]
and cov(v) =

[
σva 0
0 σvw

]
with σva = σvw = 0.01. Each vehicle passes the

roundabout intersection, and the clean trajectory is shown in Figure 2.
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Figure 2. Clean trajectory of vehicle passing the round intersection.

We also add white noise to the measurement. In the experiment, the measurement is
[x, y, θ], that is, vehicle position and its heading angle. The measurement noise is set as nx

ny
ntheta


t

∼ N(µn, cov(n)) (14)

where µn =

0
0
0

 and cov(n) =

σnx 0 0
0 σny 0
0 0 σnθ

, σnx = σny = σnθ
= (0.5)2. The result

of the testing is shown in Figure 3. The clean trajectory is recorded from vehicles in
SUMO simulation environment is shown as a green line, and the processed noisy trajectory
is shown as a blue line, while the red line shows the filtered trajectory process by the
unscented Kalman filter. In this trajectory filtering, it is easily seen that the measured
trajectory is noisy for the lateral and longitudinal positions, and the filtered trajectory can
remove noise to some extent and converge to the clean trajectory. The filtered trajectory
fluctuates the most at the part of the path where the vehicle is turning, and it takes longer
for the filtered trajectory to converge at the cornering point. It is seen that the error can
reach up to 0.5 m. at such points, which is significant. The results of the estimation of
hidden states of vehicles, such as velocity and angular velocity, are shown in Figure 4.
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Figure 4. The estimation of velocity and angular velocity using Kalman filter. 

Table 1. The result of tests on three vehicles in the simulation. 
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Max 
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V1 0.27 0.97 0.27 1.41 0.43 1.43 
V2 0.22 1.24 0.21 0.68 0.35 1.25 
V3 0.26 0.94 0.29 1.55 0.43 1.63 
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In this section, a policy prediction method leveraging Bayesian change point detec-

tion technique is introduced. This method was first introduced in [21] for determining the 
current behavior of the observed vehicles and to detect anomaly behavior performed by 
them during highway driving. This method is modified here by introducing the Kalman 
filter-based state estimation for generating a clean vehicle trajectory history for assisting 

Figure 3. The result of vehicle trajectory tracking based on unscented Kalman filter.

In the SUMO environment, the vehicle’s speed is accessible. Hence, we use it for
comparison to illustrate the performance of the UKF-based vehicle trajectory estimation.
The initial condition set for estimation is the normal driving speed of the vehicle. Hence,
it starts with large errors. However, it converges to the true velocity soon and tracks the
true velocity, which is like the Linden LEAP AV shuttle speed with a factor of safety of two.
The allowed speed limit at an intersection is usually 15 to 25 mph, which corresponds to
11 m/s as an upper speed limit. If the upper speed limit is increased further and considered
as 30 mph using a factor of safety of two over the 15 mph limit, the corresponding speed
in m/s will be 13.4 m/s, which is considerably higher than the maximum speed seen in
the simulation results here. The methods presented here can be applied to such higher
speeds after re-defining the round intersection geometry such that these larger speeds can
be accommodated with reasonable levels of lateral acceleration. The computations would
need to run faster for real-time implementation due to the larger speeds involved. The
estimation of the angular velocity is also presented in Figure 4. We do not have access to
the angular velocities of other vehicles. Hence, the UKF-based state estimation provides a
tool for estimating the hidden states such as angular velocity. This test has been conducted
for three vehicles’ trajectories in the simulation and the test results are listed in Table 1. A
large initial estimate error is used in the simulation experiments on purpose to show that
the UKF converges fast to the actual state. Larger process and measurement noise will
degrade the results of the UKF and other similar filters and can be used to investigate the
sensor characteristics for desired performance.
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3. Change Point Detection-Based Behavior Prediction

In this section, a policy prediction method leveraging Bayesian change point detection
technique is introduced. This method was first introduced in [21] for determining the
current behavior of the observed vehicles and to detect anomaly behavior performed by
them during highway driving. This method is modified here by introducing the Kalman
filter-based state estimation for generating a clean vehicle trajectory history for assisting
the behavior prediction and a new method for solving the computation of likelihood value
for different vehicle policies under the scenario of the round intersection. Our modified
method also predicts the future dynamic behavior of the observed vehicle using the vehicle
hidden states estimated by the Kalman filter with the CTRV model. In the previous work
of [21], which is used in the derivations here, the authors presented an integral method
for decision making with behavior detection. In this paper, we just utilize the method
for behavior prediction and combine it with vehicle motion model for predicting vehicle
behavior in the near future so that the estimated trajectory derived from the prediction
method can assist a decision-making algorithm.

3.1. Problem Formulation for Vehicle Behavior Prediction

In the urban traffic scenario, vehicles around the ego vehicle will behave differently
to respond to the current traffic situation, which makes it a complex task for the ego
autonomous vehicle decision making for efficient and safe driving. Hence, it is very helpful



Vehicles 2023, 5 1339

to have good prediction of other vehicles’ trajectories and behaviors within the observation
range of the ego vehicle. Let V denote the set of vehicles near the autonomous ego vehicle
within its range of on-board sensors. Also include the ego vehicle in the set by letting ve
represent the ego vehicle and vi, i ∈ {1, . . . , n} represent the n surrounding vehicles such
that all the vehicles considered are in the set V, and the set is V is as follows:

V = {ve, v1, v2, . . . , vn} (15)

Each vi ∈ V is described by a five-tuple of state vectors si = (x, y, θ, v, w)i that
represents planar position of the vehicle on the road, heading of the vehicle, and also
motion variables linear velocity v and angular velocity w. At each time t, vehicle vi will
select an action at

vi ∈ A from an action set to drive the vehicle and update its state vector
from si

t → si
t+1. Both of the states are included in the set of states S.

The vehicle motion model is represented by a conditional probability function T and
is as follows:

T(st, at, st+1) = p(st+1|st, at) (16)

Note that st ∈ S includes all the state of the vehicles in the vehicle set V, and similarly,
at ∈ A denotes all the actions that vehicles might take at time t. Observations with
uncertainty on the vehicles in V are also modeled as follows:

Z(st, ot) = P(ot|st) (17)

where ot is the observation and is also the set of observations that the ego vehicle can
acquire through the on-board sensors. Each of the observations made over the individual
vehicles vi is oi

t. Due to the diversity of sensor systems, the observations of other vehicles
are also various and need to be processed. In this section, measurements and observations
are not the critical part. Hence, the observation and the processing of the observation will
not be covered here. As was presented in the previous section, the observation used for this
part is just partial vehicle state information and hidden variables such as angular velocity
of other vehicles that are not accessible from the ego vehicle. Drivers of the vehicles tend
to drive in the manner that maximizes some driving demands that can lead to the goal
destination or speed in the shortest time. There are also uncertainties contained in the
driving behaviors. The driving model is represented as follows:

D(st, oi
t, ai

t) = p(ai
t|st, oi

t) (18)

The model in (18) shows that the driver’s behavior is based on current states of all
the vehicles and the observations made. Considering the uncertainties of the vehicle
states, the vehicle state at time t is modeled and represented by probability distribution
P(si

t), for i = 1, . . . , n. The overall states for all the vehicles in V are shown as P(st). While
vehicles are driving on the road, the states keep transforming based on the transition
function T, the observation function Z, and the driver model D as follows:

P(st+1) =
∫
X

∫
O

∫
A

P(st+1|st, at)P(at|st, ot)P(ot|st)P(st)datdotdst (19)

The set S refers to all the states of the vehicles in the vehicle set. O represents the set of
observations, and A contains all the possible actions that the vehicle can take under traffic
scenarios. With the assumption that each of the vehicles in the set are independent from
others, (19) can be transformed as follows:

P(st+1) = ∏
vi∈V

pi(si
t+1, si

t, ai
t, oi

t)dai
tdoi

tdsi
t (20)
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pi(si
t+1, si

t, ai
t, oi

t) = P(si
t+1|si

t, ai
t)P(ai

t|si
t, oi

t)P(oi
t|si

t)P(si
t) (21)

to predict the future state distribution P(st+1), and the prediction of driver model
D(xt, oi

t, ai
t) = p(ai

t|xt, oi
t) is the main task to solve in this section.

3.2. The Multipolicy Approach for Driver Model Prediction

As discussed in [21], traffic participants will commonly behave in a regular and
predictable manner and do not seem to change in a quick, sudden manner such that other
vehicles cannot respond. The vehicle motions cannot be changed without any preceding
stages either. It would be a good idea to leverage the vehicle state trajectory in a period
of timestamps and persuade the possible vehicle behavior out of the observed vehicle
trajectory. Then, one should find the maximum a posteriori (MAP)-estimated policy based
on likelihood estimation.

The prediction is based on latent vehicle policies that the vehicle on the road can
possibly take for driving. A vehicle tries to achieve the goal of driving. This goal can be
quantified as the real-time reward function:

r : S× A→ R (22)

The reward function depends on the demand of the vehicle. Based on vehicle drivers’
demand on the road, it may be related to safety issues, velocity, comfort, and time to
destination or other concerns that vehicles and their drivers have on the road. A policy is a
mapping of the current state of the vehicle, the current observation of the available action
set is as follows:

π : S× Z → A (23)

An optimal policy is the policy that maximizes the expected sum of real-time reward
over some time horizon, H, as given by the following equation:

π∗ = argmax
π

E[
H

∑
t=t0

R(st0 , π(st, ot)] (24)

For the decision-making problem, the goal of finding the optimal policy is to make
sure that the vehicle can drive safely and efficiently. In this section, the goal, instead, is to
estimate the most likely policy that the observed vehicle is taking.

To make this estimation problem tractable, as discussed in the previous part, a set
of latent discrete policy will be introduced first. The policy set contains the policy that
covers hand-engineered policies specifically designed for the target traffic scenario. Here,
the policies in the set are high-level vehicle control policies that provide instructions to
the vehicle on what kind of behavior they should perform. An explicit low-level control
should be applied for policy execution. This allows a broad range of control algorithms to
be implemented and is not in the scope of this paper.

Let us assume that each vehicle vi ∈ V, at any time of driving under the current traffic
scenario, is executing some policy from the pre-defined policy set, expressed as follows:

πi ∈∏ for i = 1, 2, . . . , n (25)

where πi is the policy that vehicle vi is currently executing, and n is the number of vehicles
that are not the ego vehicle in the set. In general, the policy itself can be parametrized
as a function with respect to current states of the whole set of vehicles st, including the
observed states and hidden states within the state vectors, as well as the parameter vector
θi. This parameter vector can be used for capturing the features of driving, for example,
the aggressiveness of the driver. The dynamic limit of the current observed vehicle may
lead to different types of vehicle state trajectories under the same policy from the set. Since
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the action the driver selects is generated from the policy, the driver model of vehicle vi in
Equation (18) is now expressed as follows:

D(st, oi
t, ai

t, πi
t) = P(ai

t|st, oi
t, πi

t)P(πi
t|st, o1:t) for i = 1, 2, . . . , n (26)

The first part shows that the action the driver might take depends on the current
state of all the vehicles, considering both other vehicles and the ego vehicle, as well as
the observations and policy. The policy is determined by the current state with the series
of observation o1:t. The derivation of the conditional probability P(πi

t|st, o1:t) is the core
problem to be solved in this section, and its solution will be presented later in this section.
Updating the driver model based on policy, the state probability distribution evolution
equation shown in Equation (21) can now be approximated as follows:

pi(si
t+1, si

t, ai
t, oi

t, πi
t) = P(si

t)P(oi
t|si

t)P(si
t+1|si

t, ai
t)

P(ai
t|si

t, oi
t, πi

t)P(πi
t|st, o1:t)

(27)

The overall state probability distribution is then a joint-probability distribution be-
tween the state distribution of the ego vehicle and other vehicles in the set, and is
as follows:

P(st+1) = P(se
t+1, svi

t+1), i = 1, 2, . . . , n and vi 6= e (28)

P(st+1) =
∫
Se

∫
Oe

Pe(se
t+1, se

t , ae
t , oe

t , πe
t )dse

t doe
t

∏
vi∈V,vi 6=e

[
∑
∏

∫
Sv

∫
Ov

Pvi (svi
t+1, svi

t , avi
t , ovi

t , π
vi
t )dsvi

t dovi
t

]
(29)

The ego vehicle is assumed to be in full control. Therefore, the state distribution update
can be derived based on the policies determined with the decision-making algorithm
implemented for the ego vehicle.

The future states of other vehicles depend on their own policies that we do not know.
Thus, the policy shall be predicted for the conditional probability as follows:

P(πi
t|xt, o1:t) (30)

Then, a forward simulation with corresponding low-level controller and appropriate
motion model shall be carried out to obtain the future trajectories based on the current
estimated policy. The trajectory prediction method here utilizes a Bayesian change point
detection method, leveraging the measured trajectories of the target vehicle. To segment
a tracked vehicles state trajectory over a past period of time, the change point detection
method proposed in [22], Change Point Detection using Approximate Model Parameters
(CHAMP) algorithm, is adopted since it takes advantage of the feature of change point
detection and applies it to segment data that are not only generated from random processes,
but data obtained by observing different types of vehicle motion. Since the vehicle motion
is continuous, without sudden jump, if the vehicle is executing some policy in a segment of
the trajectory, the change in policies can be detected given a set of available policies ∏ and
a series of observed data of given vehicle, denoted as o1:n = {o1, o2, . . . , on}.

The CHAMP algorithm infers the maximum a posteriori (MAP) set of times, τ1, τ2, . . . , τm,
at which change points between policies have occurred, and this will segment the time
series into m + 1 data segments corresponding to policies executed on those data segments.
The ith observation segment oτi+1 : oτi+1 is detected associated with a certain policy from
the pre-defined policy set. In the following part, the CHAMP algorithm is introduced
and illustrated as to how it works for detecting the change point between different data
associated with corresponding policies.
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The change point positions are also described by probability distribution and can be
viewed as a Markov chain where the transition probabilities between neighboring change
points are a function of time as follows:

P(τi+1 = t|τi = s) = g(t− s) (31)

The probability distribution function (pdf) g(·) is a function over the length of the
data segment, and we denote the cumulative probability distribution (cdf) of the function
g(·) as G(·). In the algorithm of CHAMP, the truncated Gaussian function over the length
of data segment is used as follows:

g(t) =
1
σ φ( t−µ

σ )

1−Φ( α−µ
σ )

(32)

G(t) = Φ(
t− µ

σ
)−Φ(

α− µ

σ
) (33)

where φ is the standard normal distribution pdf, Φ is its cdf, and α is a parameter that should
be defined based on different cases for using this change point detection algorithm [22].

Another important factor for segmenting data based on different policies is the confi-
dence that the series of data is generating under the policy π, defined as policy evidence,
and is as follows:

L(s, t, π) = P(os+1:t|π) =
∫

P(os+1:t|π, θ)p(θ)dθ (34)

In the above equation, the confidence of policy π over the data segment starting
from time s to time t is shown. For the purpose of efficient computation and avoiding
marginalizing over the parameters in the conditional probability of policy, CHAMP makes
an approximation by using logarithm of the policy evidence via the Bayesian Information
Criterion (BIC) and is as follows:

log L(s, t, π) ≈ log P(os+1:t|π, θ̂)− 1
2

kπ log(t− s) (35)

where kπ is the number of parameters for the policy π depending on the type of pdf
describing the policy function. θ̂ are the estimated parameters for policy π. This BIC
approximation for policy evidence does not require marginalizing of the probability over
the parameter and it penalizes the complexity of the model with the part − 1

2 kπ log(t− s),
with respect to the parameters of the model. Another advantage of using this BIC for
computing the policy confidence is making full use of the series nature of data since the
BIC equation of (35) is only applicable when the size of data is way larger than the number
of parameters. The computation of BIC only requires fitting different policies into the
observed data segments and obtaining the maximum likelihood estimation (MLE).

According to [23], the distribution Ct over the most recent change point before time t
can be estimated by regaining the Viterbi path by applying an online Viterbi path algorithm
and Bayesian filtering recursively. A Viterbi path is the path of the maximum posteriori
probability estimate of the most likely sequence of hidden states [24]. In our case, the hidden
state is the change point detected. The terms and definitions used for finding the MAP of
the most recent change point before time t are provided next. The probability distribution

Pt(j, π) = P(Ct = j, π, ε j, o1:t) (36)

is the probability of the last change point that occurs at time j before t, associated with
policy π given by

PMAP
t = P(CP at t, εt, o1:t) (37)
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which shows the maximum a posteriori choice of a change point occurring at time t.
Equations (36) and (37) result in the following:

Pt(j, π) = (1− G(t− j− 1))L(j, t, π)P(π)PMAP
j , (38)

PMAP
t = max

j,π

[
g(t− j)

1− G(t− j− 1)
Pt(j, π)

]
. (39)

ε j in the above equations represents an event where the change point based on MAP
choice occurs prior to time j provided the condition that the change point is at time j. At
any time t in the time series, the Viterbi path can be recovered by maximizing the MAP
choice PMAP

t with respect to the pair (j, π) as j is the one step previous change point for
the data. The whole process will keep repeating until the first data point of the whole data
series is reached. The Viterbi path consists of all the change points that are derived from
the optimization process. The change point will be used as the index for segmenting the
data into segments.

3.3. Behavior Prediction for Round Intersection

In this part, the task of predicting vehicle policy in the round intersection is presented,
and the solution for estimation is shown for a round intersection. Similar to the method
proposed in [21], the way of fitting policy to a specific data segment is based on the
likelihood value of different policies. The policy evidence or the policy confidence, as is
introduced in previous context, is the core item for determining the associated policy of
a given data segment. Note that a series of vehicle state data observed from a vehicle v
described the partial state trajectory as o1:t = {o1, o2, . . . , ot}. Given that the trajectory has
been detected and m change points have been detected, the last data segment in the data
series is om+1:t. Based on Equations (34) and (35), the policy likelihood for the given data
segment can be computed as follows:

L(π) = max
π∈∏,θ̂

P(om+1:t|π, θ̂) (40)

log L(π) = max
π∈∏,θ̂

log P(om+1:t|π, θ̂) (41)

The posterior probability of the maximum likelihood estimation is derived with the
observed data series and the forward simulation of vehicle trajectory under certain policies.

The forward simulation of a vehicle generates a future potential trajectory provided
π ∈ ∏, and it takes advantages of the typical geometry structure of a round intersection. A
round intersection can be decomposed into three main parts, the straight lanes connecting
to the roundabout, the part of road where the straight lanes are connecting to the round
intersection, and the round intersection, and vehicles will behave differently during the
drive on those three types of road segments. To be clear, the vehicle policies during in-lane
driving or highway-like driving are not considered in this paper, and vehicle behaviors
such as lane changing are not the goal for prediction. Mainly, two kinds of policies are
to be predicted. When the vehicle is driving in-lane, no matter on a straight road or in a
round intersection, the vehicle behavior is defined to be under the policy of lane keeping.
When the vehicle is trying to enter a round intersection or trying to leave from the round
intersection into a straight connected road, the policy is defined to be merge, which means
the vehicle is getting in contact with the connection point between the round intersection
and the straight road and approaching a different type of road. Hence, the whole policy set
with the driving style as the parameter is given by the following:

{lane keep ∪ merge} (42)
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Different policies in the policy set are shown below in Figure 5. In Figure 5, a vehicle
is passing a round intersection starting from the bottom of the figure and moving to the
top of the figure along the round intersection. The vehicle first drives in the straight road
segment, then merges into the round intersection. After entering the round intersection, it
follows the single lane in it until it reaches the target exiting area to exit it and merges back
to the straight road segment. The whole process can be divided into five sub-segments as
shown in Figure 5, and can be described by the policies in (42) as the following sequence:

{lane keep} → {merge} → {lane keep}
→ {merge} → {lanekeep} (43)

To be easily noted, the segments with policy lane keep are colored green and those
with policy merge are colored red in Figure 5.
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The likelihood computation, as shown in Equations (40) and (41), is approximated by
finding the likelihood value based on normal distribution with the observed trajectories as
parameters in the following equation:

P(om+1:t|π, θ) = N(om+1:t; Tπ,θ , σI) (44)

Yet, the observed trajectory is a series of state vectors. Each state vector, based on the
observation model, should contain vehicle pose information. In this paper, the observation
of other vehicles is Ov

t = (xv, yv, θv), in which longitudinal position is xv, lateral position is
yv, and heading angles of the vehicle are θv. Hence, fitting the whole series of observed
state trajectory into the normal distribution will lead to a matrix Gaussian distribution and
requires computation for high dimensional data. To make the computation more efficient,
we made an approximation such that the correlation between the three state variables are
ignored, and the whole state trajectory is split into three trajectories containing xv, yv, and
θv, denoted as Tπ,θ

xv , Tπ,θ
xy , Tπ,θ

θv
. Therefore, Equation (41) is represented as follows:
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log L(π) = max
π∈∏,θ̂

log P(om+1:t|π, θ̂)

≈ max
π∈∏,θ̂

{
log P(xv,m+1:t |π, θ̂) + log P(yv,m+1:t|π, θ̂) + log P(θv,m+1:t|π, θ̂)

} (45)

π̂v
∗ = argmax

π∈∏
log L(π) (46)

By computing the log likelihood value as the BIC, the segments will be determined
with the policy most likely π̂v

∗ from the policy set.

3.4. Simulation and Test Results of Policy Prediction

In the simulation test, the policy prediction method is used to determine the vehicle’s
policy in different trajectory segments given a series of vehicle trajectory data. In this
work, the tests have been conducted on clean trajectory directly collected from SUMO
environment and the noisy trajectory obtained by adding measurement noise to the clean
trajectory. The results are shown in Figures 6 and 7 and are discussed below. First, the
results on policy prediction based on change point detection are presented. Same as the
previous section, the tests are on recorded clean vehicle trajectory passing a roundabout
intersection. The vehicles, based on the trajectory data, are determined for executing
a policy from the policy set. For the test, the set of parameters for the change point
detection-based policy prediction is also required. For the segment length distribution in
Equations (32) and (33), the mean length of the segment is set to be 50, and the minimum
segment length is set to be 25. The result of the prediction is shown in Figures 6 and 7. The
vehicle travels following the direction of arrows. At the cornering part where vehicle is
entering or exiting the round intersection area, the policy prediction algorithm correctly
determines the policy to be merge. In the other parts of the trajectory, the vehicle policy is
correctly determined to be lane keep.
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Figure 6 with Figure 8. Hence, we introduce the Kalman filter for filtering out the noise 
along the trajectory and make sure the prediction method can work well when there is 
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Figure 7. The policy prediction results on another vehicle trajectory, blue arrows show direction
of travel.

After adding the measurement noise to the trajectory data, the policy prediction is
influenced by the oscillation of the vehicle trajectory as shown in Figure 8. Due to the noise
in the trajectory, policy prediction cannot work properly and will cause some error and
may miss the policy change between different trajectory segments as seen by comparing
Figure 6 with Figure 8. Hence, we introduce the Kalman filter for filtering out the noise
along the trajectory and make sure the prediction method can work well when there is
noise in the measurement in Figure 9. With the UKF, the prediction method can work better
with noisy measurement of other vehicles’ trajectories as shown in Figure 9.

Vehicles 2023, 5 1347 
 

 

 
Figure 8. Policy prediction for noisy vehicle trajectory. 

 
Figure 9. Policy prediction for noisy vehicle trajectory with UKF. 

4. Vehicle Trajectory Estimation Based on UKF and Policy Prediction Method 
4.1. Vehicle Trajectory Estimation 

In Sections 2 and 3, the state estimation based on the unscented Kalman filter for 
unobserved internal state variables with noisy measurements and the policy prediction of 
the vehicle based on change point detection method were presented, respectively. In this 
section, we introduce the method for vehicle trajectory prediction over a future period of 
time for a target vehicle. The whole workflow is shown in Figure 10. 

Figure 8. Policy prediction for noisy vehicle trajectory.



Vehicles 2023, 5 1347

Vehicles 2023, 5 1347 
 

 

 
Figure 8. Policy prediction for noisy vehicle trajectory. 

 
Figure 9. Policy prediction for noisy vehicle trajectory with UKF. 

4. Vehicle Trajectory Estimation Based on UKF and Policy Prediction Method 
4.1. Vehicle Trajectory Estimation 

In Sections 2 and 3, the state estimation based on the unscented Kalman filter for 
unobserved internal state variables with noisy measurements and the policy prediction of 
the vehicle based on change point detection method were presented, respectively. In this 
section, we introduce the method for vehicle trajectory prediction over a future period of 
time for a target vehicle. The whole workflow is shown in Figure 10. 

Figure 9. Policy prediction for noisy vehicle trajectory with UKF.

4. Vehicle Trajectory Estimation Based on UKF and Policy Prediction Method
4.1. Vehicle Trajectory Estimation

In Sections 2 and 3, the state estimation based on the unscented Kalman filter for
unobserved internal state variables with noisy measurements and the policy prediction of
the vehicle based on change point detection method were presented, respectively. In this
section, we introduce the method for vehicle trajectory prediction over a future period of
time for a target vehicle. The whole workflow is shown in Figure 10.
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Figure 10. Flowchart of the trajectory estimation system.
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The existence of the UKF estimation allows the trajectory prediction system to pre-
dict a reasonable future trajectory. Even when there are some anomalous policies, the
corresponding trajectory can be retrieved. The forward simulation for determining the
prediction utilizes the known geometry feature of a round intersection. Given the CTRV
model, the angular velocity is different at different parts of the round intersection including
the entering and exiting areas. The angular velocity will change during the policy execution
for the policy merge. In contrast, the vehicles’ angular velocity will remain the same for the
whole stage of the policy lane keep. This provided us the key point of generating different
simulation trajectories based on different policies.

4.2. Test Results on the Vehicle Trajectory Estimation Method

In this section, several test results for vehicle trajectory prediction are presented.
In Figure 11, a vehicle trajectory estimation result is shown. The vehicle is moving from
bottom to upper right of the figure and with the last state estimated with UKF and the policy
prediction result of the policy is {lane keep}, the predicted trajectory (shown in green) is
generated. With the observed trajectory, the agent vehicle does not have the information
about angular velocity; hence, the UKF estimates this hidden state and provides a direction
of vehicle moving forward. In Figure 12, the vehicle trajectory prediction is for the vehicle
within the traffic circle, with the estimated vehicle states, and the trajectory prediction
method is able to forward simulate the potential vehicle path in the round intersection.
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The proposed change point detection with Kalman filter approach can be compared
to the Kalman filter (UKF) approach alone in the paper by comparing the results in
Sections 3 and 4 where the Kalman filter results are representative of other published
approaches in the literature. The comparison shows the improvement offered by the
proposed method.

5. Conclusions and Recommendations

This paper presented estimation methods for vehicle internal states, obtaining clean
vehicle trajectory under noisy measurement and vehicle policy prediction for other nearby
vehicles, and proposed and demonstrated a method for estimating another vehicle’s future
trajectory. The unscented Kalman filter as well as the constant turn rate and velocity vehicle
motion model provided powerful tools for estimating the vehicle trajectory, given the noisy
measurement, and also for estimating the internal states of vehicles that cannot be directly
captured by the sensors on the ego autonomous vehicle.

The policy prediction based on change point detection method was seen to be a useful
tool for predicting nearby surrounding vehicle behavior. To solve the difficult problem of
estimation other vehicles’ behavior, a set of latent policy were pre-defined so that the poten-
tial policy of other vehicles could be determined by computing the Bayesian Information
Criteria (BIC) on how confident it is of the vehicle executing such a policy. A good forward
simulation was also necessary under different policies so that the likelihood value could
be easily computed and captured for comparison. Also, computing likelihood value of
Gaussian distribution of high dimensional variables was computationally heavy. An inde-
pendent assumption on the trajectory component as well as the logarithm transformation
made it easier for the method presented here to compute the likelihood value.

Nearby surrounding vehicle trajectory estimation is an important part of vehicle
decision making and planning for autonomous vehicles. Implementing the algorithms
in this paper, including Kalman filter-based vehicle tracking and change point detection-
based policy prediction, makes use of series of observation data and makes sure that the
estimation does not require too much computational resources. This method of estimation
can easily be adjusted for different traffic scenarios if the user can generate an appropriate
policy set that describes the vehicle behavior. For example, the method can be applied to
other scenarios like driving through regular, perpendicular intersections or the following
of curved roads.
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Regarding the future work, platooning or convoying of vehicles in the form of adap-
tive and cooperative adaptive cruise control [25–34] on highways is a topic of high research
attention. Reference [25] has used a learning approach, while reference [26] has used an
algorithm based on the Frenet frame. Reference [27] has used lookahead anticipation in
highway driving. Reference [28] uses a bargaining game approach, while reference [29]
focuses on driverless buses. A robust parameter space design is used in reference [30].
Nonideal communication effects are treated in reference [31]. String stability is the main
focus of reference [32]. Urban cooperative driving is considered in reference [33], and refer-
ence [34] focuses on ecological cooperative driving. More recent work focuses on similar
cooperative driving in urban roads including cooperative handling of an intersection by a
convoy of cooperating vehicles [28,29]. While there are results for signalized intersections,
corresponding results for round intersections are missing. The approach in this paper can
be useful for cooperative handling of round intersections by a convoy of connected and
autonomous vehicles. Active safety control systems like yaw stability controllers [35–40]
can also benefit from the vehicle state and driving intent prediction. The driving intent
prediction will allow the prediction of future yaw and steering values that can be used to
improve the performance of these controllers.
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