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Today’s vehicle powertrains, especially in cars and vans, have to meet increasingly
stringent type approval standards. Global measures presented as GHGs [1] or CARB-
CAR [2] ultimately aim to reduce CO2 emissions despite the differing opinions in this
regard [3]. Recent legislation adopted by the European Commission aims to limit CO2
emissions to 0 g/km in a driving test by 2035 [4]. In contrast, the ‘Fit for 55’ plan requires a
55% reduction in CO2 emissions by 2030 for newly manufactured passenger cars [5]. These
measures force manufacturers to supplement classic powertrains with an additional (green)
source of propulsion or to use only non-emitting sources of propulsion. The NEDC type
approval test [6] approached emission testing in a laboratory/simplified manner. The type
approval transition to WLTC [7] and RDE [8] tests brought the test conditions more in
line with normal operating conditions. In the case of passenger cars, for which emission
requirements are the most stringent, a supplementation of at least 50% of the ICE with an
additional propulsion source is required today. Another obstacle to the exclusive use of
ICE in vehicle propulsion is the Euro 7 legislation that is scheduled to be introduced in
Europe in the near future [9].

When looking at the global development and contemporary requirements for the
propulsion sources of various vehicles, the following trends are evident: a change in the
organisation of the combustion process to systems such as ATAC [10], CAI/HCCI [11,12],
HPDI or RCCI [13]; the use of dual fuel [14,15]; the use of exhaust gas cleaning components,
such as EC, DOC, FAP, DPF, GPF and SCR [16–19]; the use of lower carbon fuels [20]; the
use of alternative fuels, such as LPG [21–24], CNG [25–27], LNG [21,28,29], HVO [30,31],
PVO [32] and FAME [33]; the use of refuse-derived fuels, such as biogas [34], syngas [35], a
biomass gasifier [36], POMDME [37], TPO [38] and NH3 [39]; the use of carbon-free fuels,
such as H2 [35,40,41]; and eco-driving [42].

Currently, hybrid powertrains are being built with ICE configurations in MHEV, PHEV,
FCV or BEV [43–45]. A number of research studies indicate that using an electric motor as a
supplementary propulsion source in addition to the ICE is the most optimal solution before
switching to battery-only propulsion [46]. However, as shown in [47], long-range BEVs
and fuel cell plug-in hybrid electric vehicles (FCPHEVs) have similar life cycle emissions as
PHEV-CNG. Charging and energy storage systems are important [48]. The target fuel of
future vehicles is hydrogen, which would either be used as the sole fuel [49,50] or as an
additive to other fuels [51,52]. Energy management now plays an important role in hybrid
or battery systems in the same way as with ICE [53–55]. Determining the characteristic
ratios of different propulsion sources and whether their shape/path matches with the
approximating functions is important for computing and modelling the performance of
different vehicle powertrains [56,57].
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Besides cars, hybrid and battery drives are being tested in aviation [58–60] or marine
ships [61]. Decarbonisation in densely populated areas like cities, where fuel cell buses
with a supercapacitor are being used successfully [62], is very important. There is some
hope behind the use of air motors as propulsion sources or as supplements in hybrid
systems [63–65]. The important features of modern propulsion systems are that they
are safe during operation and meet the demands of road infrastructure or road rescue
equipment [66,67]. The market analyses presented in [68] show that in the future, younger
potential buyers will prefer hydrogen and electric vehicles, which is currently taking place
with the support of policy and strategic instruments and is extending to other age groups.
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