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Abstract: Innovative solutions are now being researched to manage the ever-increasing amount
of data required to optimize the performance of internal combustion engines. Machine learning
approaches have shown to be a valuable tool for signal prediction due to their real-time and cost-
effective deployment. Among them, the architecture consisting of long short-term memory (LSTM)
and one-dimensional convolutional neural networks (1DCNNs) has emerged as a highly promising
and effective option to replace physical sensors. This architecture combines the capacity of LSTM
to detect patterns and relationships in smaller segments of a signal with the ability of 1DCNNs to
detect patterns and relationships in larger segments of a signal. The purpose of this work is to assess
the feasibility of substituting a physical device dedicated to calculating the torque supplied by a
spark-ignition engine. The suggested architecture was trained and tested using signals from the
field during a test campaign conducted under transient operating conditions. The results reveal
that LSTM + 1DCNN is particularly well suited for signal prediction with considerable variability. It
constantly outperforms other architectures used for comparison, with average error percentages of
less than 2%, proving the architecture’s ability to replace physical sensors.
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1. Introduction

More rigorous regulations regarding pollutant emissions from internal combustion en-
gines (ICEs), along with customer demands for increased performance, have made vehicle
control increasingly challenging [1–3]. The calibration and run-time operation of engines
are conducted in diverse areas, such as automotive or aerospace industries, for which huge
amounts of data are required [4–6]. To successfully handle and process the information
produced, significant computing efforts are necessary [7]. Many measurements obtained
by sensors and monitoring systems during engine calibration operations are critical for
fine tuning and maximizing performance while also assuring efficient and dependable
operation [8]. Furthermore, during run-time operations, the engines’ real-time outputs
are critical for monitoring engine health and detecting possible anomalies [9]. Advanced
approaches are being researched to improve engine performance while lowering consump-
tion, pollutant emissions, and operating longevity [10–12]. In the automobile industry,
machine learning (ML) techniques are rapidly being employed to enhance computing
performance and minimize costs [13]. Because of their small setup and low-cost hardware
implementation, as well as their capacity to forecast operational parameters, they can
reduce the number of operating points to be examined, resulting in significant memory and
computational speed advantages [14]. LSTM + 1DCNN appears to be a promising method
for performing signal analyses among ML approaches [15].

The LSTM (long short-term memory) approach is a sort of recurrent neural net-
work (RNN) that can reproduce the sequential nature of non-linear observations across
time [16,17].
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Shin et al. [18] utilized an LSTM approach to predict the soot emissions of a diesel
engine under transient conditions, i.e., worldwide harmonized light vehicle test procedure
(WLTP) cycles, and the corresponding performance was compared with that of a deep
neural network (DNN) structure. The LSTM model exhibited a higher accuracy, with an
R2 value of 0.9761, in contrast to the DNN model, which had an R2 value of 0.9215. The
LSTM model’s predictions had mean absolute errors (MAEs) ranging from 0.30% to 1.47%
when compared to the maximum measured values in the WLTP cycles. Notably, the LSTM
model excelled in capturing local data fluctuations and peak values.

Norouzi et al. [19] used a deep recurrent neural network with LSTM layers to create a
model for predicting the emissions and performance of an industrial 4.5 L four-cylinder
Cummins diesel engine. The model was subsequently utilized for the implementation of
a nonlinear model predictive controller (NMPC). The LSTM achieved higher R2 values
of 0.9761 compared to a DNN (R2 = 0.9215) used for comparative purposes and closely
matched the NMPC’s performance with NOx reductions up to 63.4% (1200 rpm). No-
tably, LSTM-based controllers significantly reduced the computational time compared to
traditional controllers while maintaining performance.

Concerning one-dimensional convolutional neural networks (1DCNNs), they are
commonly utilized because of their simplicity and compact design in comparison to other
neural network architectures, as well as their ability to quickly combine feature extraction
and classification into a single adaptive learning body [20]. Therefore, the LSTM + 1DCNN
hybrid architecture can offer the advantages of both LSTM and CNN models.

Ren at al. [21] proposed an Auto-CNNLSTM technique for predicting the remaining
useful life of a lithium ion battery. Their architecture surpasses two existing data-driven
models based on ADNN and SVM, reducing prediction errors by more than 50%.

Quin et al. [22] assessed the performance of an LSTM-1DCNN for anti-noise diesel
engine misfire detection. Their design has an average accuracy of approximately 98%,
which is approximately 10% higher than other studied methods, such as CNNs, random
forests, and deep neural networks.

Based on high-speed flame image sequences, Lyu et al. [23] proposed an LSTM-
1DCNN model for detecting thermoacoustic instability. Their method achieves a high
accuracy (98.72%), sensitivity (99.99%), and specificity (97.50%), with a short processing
time of about 1.23 ms per frame on a commercial GPU adapter which can be considered for
real-time identification.

A recent work by the same research group [24] developed a combined LSTM + 1DCNN
structure to evaluate the possibility of replacing a real sensor with a virtual one. This
achievement would be crucial for cutting costs and, in particular, avoiding the destruction
of test bench components due to the resonance phenomena. The structure accurately
reproduced the recorded signal’s natural frequency, and the absolute difference between
the recorded and predicted values was always less than the fixed acceptable threshold
of 10%.

This work intends to evaluate the possibilities of an LSTM + 1DCNN structure in
forecasting the torque delivered by a three-cylinder spark-ignition engine. Under transient
running conditions, experimental data from physical sensors and an engine control unit
(ECU) were utilized. Preliminary evaluations were carried out with the goal of optimizing
the internal structure of the model and identifying the variables with the lowest impact on
torque prediction. The LSTM + 1DCNN was then tested, and its performance was compared
to that of other optimized systems. When compared to alternative neural architectures,
the results demonstrated the ability of the LSTM + 1DCNN structure to reproduce the
target trend with a reduced percentage error and a lower number of predictions below
crucial thresholds. The proposed model is able to reach average percentage errors below
2%, without ever exceeding a 10% error in a single prediction.
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2. Materials and Methods
2.1. Experimental Setup

Tests were performed on a 1L 3-cylinder turbocharged engine with a maximum power
of 84 CV at 5250 rpm and a maximum torque of 120 Nm at 3250 rpm. The internal cylinder
bore is 72 mm while the piston stroke is 81.8 mm. The compression ratio is equal to 10:1.
The engine operates with port fuel injection (PFI) with European market gasoline (E5, with
RON = 95 and MON = 85) injected at 4.2 bar of absolute pressure. A Borghi & Saveri eddy
current brake dynamometer of 600 CV ensures the engine speed is in firing condition
(Figure 1a). A Vascat electric motor of 66.2 kW allows us to control the engine speed
both in motored and firing conditions. All the engine parameters are controlled using
an EFI Technology EURO-4 engine control unit. The signals coming from thermocouples
TCK and pressure sensors PTX 1000 are acquired by National Instrument data acquisition
systems. The indicated analysis is performed through a Kistler Kibox combustion analysis
system (with a maximum temporal resolution of 0.1 CAD) which receives the pressure
signals coming from the piezoresistive sensors (Kistler 4624A) placed in the intake and
exhaust ports, the in-cylinder pressure of the piezoelectric sensor (Kistler 5018) placed
on a side of the combustion chamber beside the flywheel, the ignition signal from ECU,
and the absolute crank angular position measured by an optical encoder (AVL 365C). Due
to structural and mechanical constraints, only the combustion chamber adjacent to the
flywheel has been equipped with a piezoelectric sensor, which is used to determine the
indicated mean effective pressure (IMEP). The torque delivered by the engine is measured
using a torquemeter positioned near the engine crankshaft. All of the above quantities are
recorded by AdaMo Hyper software during engine operations, allowing us to simultane-
ously manage the engine’s speed, torque, and valve throttle position in both firing and
motored states. Figure 1b summarizes the experimental layout.
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2.2. Case Study

A transient cycle (Figure 2) was chosen to preliminarily evaluate the performance
of the LSTM + 1DCNN proposed algorithm in predicting the torque delivered by the
three-cylinder SI engine. A total of 12 variables acquired by AdaMo Hyper were initially
selected among the other characteristics as input parameters.
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Figure 2. Delivered torque trend during transient operation.

• Parameters coming from ECU: activation time of the injector (InjectionTime) and
ignition timing of the spark (SparkAdvance) at the first cylinder beside the flywheel.

• Parameters coming from pressure sensors and thermocouples: temperature of the air
before the filter (TC_Air_Intake), temperature and pressure of the air at the intake
pipe (TC_ETB_OUT and MAP), pressure and temperature of the exhaust gas before
(TC_Turbine IN, P_Turbine IN) and after the turbine (TC_Turbine OUT and P_Turbine
OUT), and temperature of the engine oil (TC_Engine Oil).

• Parameters related to the AdaMo actuation: throttle valve opening (Throttle Position)
and engine speed (Engine speed).

The cycle comprised an input matrix of [12 × 28,800] samples and an output matrix of
[1 × 28,800] samples. A total of 80% of the entire dataset was used for training sessions
and the remaining 20% for the test sessions, i.e., torque prediction (Figure 2).

It is feasible to efficiently reduce the dimensions of the model and improve its accuracy
by removing parameters with low correlation. As a result, a preliminary analysis using
the Shapley value [25] was conducted on the complete dataset. SHAP attempts to explain
an instance’s prediction by assessing the contribution of each attribute to the forecast. The
authors were able to quantify the impact of the single measured quantities on the objective
function using the average absolute Shapley values (ABSVs) [26]. The less influential
parameters, i.e., TC_Turbine OUT, SparkAdvance, and Throttle Position (Figure 3), are
excluded by the initial input dataset since they present the lowest percentage of impact. In
this way, the number of input parameters is reduced from 12 to 9.
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Previous work by the same research group [2,24] has shown that when the architec-
tures operate with the removal of the less relevant parameters, the performance improves.
Based on this, the current work solely illustrates the architecture’s predicting performance
with the previously established 9 input variables. After identifying the input parameters
using the prior analysis, the data are normalized to reduce excessive prediction mistakes
and to allow the architecture to converge faster. In this context, the normalization process
allows for the avoidance of problems caused by differences in input and output parameters.
The values supplied are mapped to the range of [0, 1]. Following the prediction procedure,
the predicted data are de-normalized to provide a direct comparison to the actual experi-
mentally acquired target. Figure 4 describes the entire dataset used in this activity and the
division between input and output parameters for each analyzed case.
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test session.

2.3. Designing of the Neural Architecture to Predict Engine Torque
2.3.1. Structure of the LSTM +1 DCNN Model

The predictive scheme of the LSTM + 1DCNN [27] structure used in this work for the
torque prediction is reported in Figure 5a and it follows the scheme reported in [24]:

• A SequenceInputLayer is used to pass the dataset to the network. Such a layer enters
the sequence data into the network by setting the size and building the related structures.

• A one-dimensional CNN layer applies a 1-D convolutional filter to each input frame.
To perform convolution operations on time series data, the 1D-CNN employs matrix
multiplication. It maps the data variables to a higher-dimensional space and finds
local features based on spatial and temporal correlations. The convolution kernel of
the 1D-CNN moves horizontally or vertically along the data in this process, depend-
ing on the nature of the data. The kernel for time series data moves along the time
axis, making it excellent for examining sensor data over time [23]. This approach
is especially beneficial for analyzing signal data in a short period of time. Because
torque data includes times series recorded by sensors, the CNN can efficiently ex-
tract characteristics from such variable data and improve the prediction accuracy of
the model.

• ReLu activation function was chosen to improve CNN fitting and sparsity because of
its ability to address difficulties such as delayed convergence and gradient disappear-
ance [28].

• The AveragePoolingLayer calculates the average value for feature map patches and
allows for map downsampling by utilizing the mean value in the 2 × 2 cell square.
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It uses downsampling to improve computation speed and the durability of derived
characteristics [29].
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LSTM is used to process the feature maps at this point. The internal architecture of
the LSTM network is made up of components known as gates (Figure 5b) [24]. The LSTM
network is a sort of recurrent neural network (RNN) that handles the issue of gradients
receding or exploding during long-term information propagation. The LSTM network,
unlike typical RNNs, has a more sophisticated neuron structure in the hidden layer. It
uses three control mechanisms: the input gate, the forgetting gate, and the output gate
to retain long-term knowledge [30]. LSTMs provide a distinct additive gradient structure
with direct access to forget gate activations, allowing the network to encourage desired
behavior from the error gradient by employing frequent port updates at each stage of
the learning process [24]. Following LSTM, the feature map is distributed in a temporal
vectorial sequence by TimeDistributedLayer, and the loss of mean square error for the
specified regression issue is computed by RegressionOutputLevel.

2.3.2. Definition of the Procedures to Determine the Structural Parameters of the
Proposed Model

The definition of the optimal neural structures is determined through preliminary
analysis considering the training sessions’ performance. To evaluate the training perfor-
mance of model parameters, the loss function is created, and the mean square error (MSE)
is chosen as the loss function [31]:

MSE =
1
n

n

∑
i=o

(
Yi

target − Yi
predicted

)2
(1)

where n is the number of samples. Set the number of network epoch iterations to 100 to
calculate the final value of the loss function for each prediction model once the network
training reaches the maximum learning iteration.

For the hybrid LSTM + 1DCNN structure, the following structural parameters have
been investigated:

• The number of neurons in the 1DCNN layers Nc varies from 50 to 200.
• The number of neurons in LSTM hidden layers Nh varies from 50 to 200.
• The batch size Bs varies from 10 to 100.
• The model depth Md varies from 1 to 10.

The Adam optimizer is used to streamline the updating of the LSTM network model’s
weight matrix and bias, as well as to adjust the learning rate adaptively during the training
process. The performance of the proposed structure is compared with those deriving from
the utilization of other two different architectures, i.e., back propagation (BP) [32] and
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LSTM, whose optimizations were performed through extensive preliminary analysis as
was carried out for the LSTM + 1DCNN architecture. The optimal solutions with the lowest
loss function value were chosen to predict the torque signal in the test sessions.

3. Results and Discussion
3.1. Performance on Training

The first comparison between the proposed algorithms is performed via the train-
ing_loss function as described in the previous paragraph.

Starting from the LSTM + 1DCNN structure, Figure 6 shows the val_loss and train-
ing_loss of the structure that performed best, i.e., Nc = 100, Nh = 150, Bs = 70, and Md = 1.
The training results highlight how the model converges without overfitting. In the context
of debugging a 1DCNN structure, it is important to note that having a limited number of
neurons (Nc) can cause underfitting because it does not extract enough features. Conversely,
having too many Nc can lead to overfitting. Although adding pooling layers can counteract
overfitting, having an excessive number of them reduces the dimensions of the features
passed to the LSTM network. This reduction can harm the LSTM’s capability to effectively
extract time series features, ultimately reducing the network’s ability to fit the data well.
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training session.

To sum up, the LSTM + 1DCNN structure is composed of a one-dimensional convolu-
tional layer with 100 neurons, a kernel size equal to three, and the ReLu activation function;
a max pooling 1D layer which uses a pool size of two and a stride of two; an LSTM layer
composed of 150 neurons with a batch size equal to 70 and a model depth of one; and a time
distributed layer and a dense layer composed of one unit to perform the regression task.

Concerning the neural structures used for comparison purposes, the best architectures
found are structured as follows:

• The structure of a back propagation (BP) algorithm [32] is composed of one input layer
and three hidden layers, each of which comprises 55,180 and 110 neurons, respectively,
as well as one output layer.

• The LSTM network is composed of one input layer, one hidden layer with 150 neurons,
one output layer, and one fully connected layer.

Figure 7 compares the training_loss of the compared architectures. All the structures
show a decrease trend as the epochs increase, and they tend to stabilize around 50 epochs,
reaching a training_loss value lower than 0.001 around the 100th epoch. This certifies
that the models converge without overfitting. In particular, LSTM + 1DCNN shows the
fastest convergence speed since it has a training loss below 0.005 already at about 10 epochs.
Moreover, once stabilized, it presents very low oscillations, suggesting that this model
could be more robust than the others.
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3.2. Performance on Test

Figure 8 displays the prediction of the torque traces performed by each tested structure.
To make a comparison over the entire predicted range, for each forecast i, the deviation
of the prediction Yi

predicted from the target Yi
target throughout the range is computed as

follows (2):

Erri =

∣∣∣Yi
target − Yi

predicted

∣∣∣
Yi

target
× 100 (2)

where N is the number of samples considered for the test case and i is the ith sample.
The average percentage error, i.e., Erravg, is computed as well to draw attention to the
global prediction quality. For this kind of application, a maximum critical threshold of 10
is established for the abovementioned errors. Moreover, other two evaluation metrics are
used to compare the test performance of the architectures, i.e., the RMSE (Equation (3)) and
R2 (Equation (4)) [24].

RMSE =

√
1
n∑n

i=o

(
Yi

target − Yi
predicted

)2
(3)

R2= 1 −
∑n

i=o

(
Yi

target − Yi
predicted

)2

∑n
i=o

(
Yi

target − Yi
avg

)2 (4)

where Yi
avg is the average value of the prediction.

All the tested structures (Figure 8) are able to reproduce the trend of the torque
over time.

The BP structure has an average error about 2.7% less than the critical threshold of 10.
The number of predictions exceeding such a threshold is 320 samples, corresponding to
about 5.55% of the total predictions. The structure is capable of following the low fluctu-
ations of the target signal, while when the torque becomes higher, in the range between
250 and 280 s, the model underestimates the maximum peaks even if the percentage errors
stay below the critical thresholds. In such a zone, the architecture predicts in advance
the target peaks showing underestimations of about 2 Nm, corresponding to Err values
higher than 6%. However, it is worth highlighting the structure’s capability to follow the
fluctuation of the signals in such a large range from 22 to 34 Nm.
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The LSTM model outperforms the BP performance as it presents an Erravg = 1.70%
with 67 samples exceeding an Err = 10%, corresponding to 1.16% of the total predictions.
With respect to BP model, the LSTM model never exceeds an Err of 20%. LSTM is capable
of following the low fluctuations of the target and, in the range of highest torque values,
i.e., between 250 and 280 s, it can reproduce the peaks well without any advances or delays.
At around 265 s (the second highest peak zone), the structure underestimates the target
value of about 1.5 Nm.
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According to the LSTM + 1DCNN structure, the architecture is capable of reproducing
the target trend well with average percentage errors below 1.5%, i.e., Erravg = 1.19%. The
prediction never exceeds an error of 10% throughout the entire torque signal and better
follows the rapid oscillations of the signals compared to the other architectures.

Figure 9 displays the regression accuracy of each model (Equation (3)) and shows
the corresponding RMSE. Compared to the other tested models, LSTM + 1DCNN exhibits
a higher accuracy and smaller prediction errors, as previously demonstrated. The BP
structure presents significant deviations in the lowest and highest range tested, i.e., it tends
to overestimate predictions when dealing with low values and underestimate them when
operating at high torque levels. LSTM improves the BP’s R2 (R2

BP = 0.908 ad R2
BP = 0.965)

by about 7% and reduces the RMSE (RMSEBP = 3.24 and RMSELSTM = 1.92) by 40%,
respectively, thereby mitigating the BP’s error in the lowest range but still maintaining a
lower accuracy in the highest range. The LSTM + 1DCNN model further enhances the
performance of the LSTM model by improving its predictions across the entire range. It
achieves an R2

BPLSTM+1DCNN = 0.99 and an RMSELSTM+1DCNN = 1.29, resulting in a 9%
increase in the R-squared value compared to that of the BP model and a 2.6% increase
compared to the LSTM model. It also reduces the RMSE by 60% compared to that of
the BP model and 32% compared to the LSTM model. In other words, the proposed
LSTM + 1DCNN model effectively reduces the dispersion degree by making the deviation
distribution of torque predictions more uniform. These results indicate that the architecture
is capable of addressing the prediction issues encountered by other models, highlighting
the LSTM + 1DCNN’s superior nonlinear fitting compared to other architectures. Therefore,
LSTM + 1DCNN can be subjected to testing and evaluation in diverse dynamic cycles
featuring a wide range of input and output engine characteristics to evaluate its potential
applicability under various operating conditions.
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3.3. Evaluating LSTM + 1DCNN Structure on Different Transient Cycles

After comparing the prediction performance and considering the results obtained,
we applied the proposed LSTM + 1DCNN structure to two additional transient cycles,
each exhibiting different trends compared to the scenario shown in Figure 2. Despite
the variations, both new cases maintained the same number of samples, as illustrated
in Figure 10. As observed, the structure consistently demonstrates its ability to replicate
the torque trends in these new scenarios, with average percentage errors consistently
below 1.7% and no predictions exceeding an error of 10% in either case. This suggests that
even when operating within different ranges, the model manages to maintain error levels
similar to those observed prior to its on-board implementation. Therefore, by training the
model on a more extensive dataset, we can expect similarly low errors even in broader
operational contexts.
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Figure 10. Comparison between the predictions performed by the LSTM + 1DCNN structure and the
target torque experimentally obtained by performing two different transient cycles compared to the
one used for the preliminary activity.

4. Conclusions

The present work evaluates the possibility of replacing a physical sensor dedicated
to computing the torque delivered by an internal combustion engine under transient
conditions by using an LSTM + 1DCNN approach. The optimized structure combines the
capability of an LSTM to capture long-term dependencies and temporal patterns with the
ability of 1DCNNs to detect patterns within smaller-signal segments. The performance of
the proposed architecture was compared with those of other optimized artificial neural
structures, i.e., back propagation and LSTM, for comparative purposes. All the structures
proved to be able to reproduce the experimental trend of the engine’s delivered torque.
Specifically, the BP model achieved an average error of about 3% with 6% of its predictions
exceeding the critical threshold set at 10%. It accurately reproduced low fluctuations
of the signals but underestimated the maximum peaks of the torque. The LSTM model
outperformed the BP model, showing an average error of 1.7% with about 1.6% of its
predictions exceeding the critical threshold. In this case, underestimations of the local
maximum peaks were also shown. With average errors of less than 1.5% (Erravg = 1.19%),
the LSTM + 1DCNN structure outperforms the other architectures. It follows torque trends
properly, never going over a 10% inaccuracy, and captures fast-signal oscillations better.
The structure’s performance was confirmed further when testing in two additional transient
cycles, with average errors maintained at 1.7% and no forecasts with an inaccuracy greater
than 10%. Overall, the study shows that LSTM + 1DCNN can replace physical sensors in
torque computation for spark-ignition engines. To summarize:

Summary of Key Findings
It was found that the LSTM + 1DCNN architecture demonstrated convergence during

training without overfitting, a crucial aspect of model performance. This implies that it can
effectively learn from data and make accurate predictions.
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Moreover, the comparative analysis with other architectures, including back propaga-
tion and LSTM, revealed that the LSTM + 1DCNN model consistently outperformed them
in terms of accuracy and robustness. This superior performance positions LSTM + 1DCNN
as a promising candidate for torque prediction in spark-ignition engines.

Implications of the Findings
These findings hold significant implications for the field of spark-ignition engine

research and artificial intelligence. By developing an architecture capable of accurate torque
prediction, the authors pave the way for potential cost savings and improved accuracy in
engine performance monitoring. This innovation can lead to more efficient and reliable
engine management systems.

Additionally, the robustness and accuracy demonstrated by the LSTM + 1DCNN
architecture highlight its usability across a wide range of real-world engine operating
conditions. This adaptability could prove invaluable for diverse engine applications,
further advancing the field.

Future Research and Testing
While this study represents a substantial step forward, there is a need for future

research and testing to validate and extend the applicability of the LSTM + 1DCNN
architecture. Additional on-board implementation and testing under various operational
contexts are essential to fully exploring its potential benefits. This includes testing the
architecture in more extensive datasets and diverse dynamic cycles.

In conclusion, the work shows a promising solution for replacing physical torque
sensors and contributes to the broader field of artificial intelligence in engine research. The
LSTM + 1DCNN architecture’s robustness and accuracy make it a compelling choice for
enhancing engine performance monitoring, opening doors to further advancements in
the field.
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Nomenclature

Err Percentage Errors.
Erravg Average Percentage Errors.
ABSV Absolute Shapley Values.
CNN Convolutional Neural Network.
ECU Engine Control Unit.
ICE Internal Combustion Engine.
ML Machine Learning
LSTM Long Short-Term Memory
MSE Mean Square Error
MON Motor Octane Number.
PFI Port Fuel Injection.
R2 Coefficient of Determination
RMSE Root Mean Square Error
RON Research Octane Number.
SI Spark Ignition.
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