
Citation: Nam, S.M.; Park, J.; Sagong,

C.; Lee, Y.; Kim, H.-J. A Vehicle Crash

Simulator Using Digital Twin

Technology for Synthesizing

Simulation and Graphical Models.

Vehicles 2023, 5, 1046–1059. https://

doi.org/10.3390/vehicles5030057

Academic Editor: Hocine Imine

Received: 11 July 2023

Revised: 11 August 2023

Accepted: 25 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Vehicle Crash Simulator Using Digital Twin Technology for
Synthesizing Simulation and Graphical Models
Su Man Nam 1 , Jieun Park 2, Chaeyeon Sagong 2, Yujin Lee 2 and Hyung-Jong Kim 2,*

1 Timsolution, Ulsan 44538, Republic of Korea; sumannam@gmail.com
2 Department of Information Security, Seoul Women’s University, Seoul 01797, Republic of Korea;

jinwoo1265@swu.ac.kr (J.P.); ruby167@naver.com (C.S.); 2yujini1222@gmail.com (Y.L.)
* Correspondence: hkim@swu.ac.kr

Abstract: Computer vehicle simulators are used to model real-world situations to overcome time and
cost limitations. The vehicle simulators provide virtual scenarios for real-world driving. Although
the existing simulators precisely observe movement on the basis of good-quality graphics, they focus
on a few driving vehicles instead of accident simulation. In addition, it is difficult to represent vehicle
collisions. We propose a vehicle crash simulator with simulation and animation components. The
proposed simulator synthesizes and simulates models of vehicles and environments. The simulator
animates corresponding to the simulation through the execution results. The simulation results
validate that the proposed simulator provides collision and non-collision results according to the
speed of two vehicles at an intersection.

Keywords: vehicle crash simulator; digital twin; simulator model; graphical model

1. Introduction

In the automobile industry, software technology has led to the emergence of vehicle
simulators for fuel efficiency, vehicle collision, and vehicle control [1–3]. A computer simulation
is a technique for modeling and experimenting with real-world situations. Simulations can
overcome the limitations of time and cost in general and can analyze various situations. The
computer software for simulating vehicle crash mechanics provides comparisons of simulation
results with the expression result to indicate the degree of accuracy. Therefore, simulators must
possess basic vehicle crash simulation capabilities [1,4,5].

The crash simulation for reproducing a traffic accident is a mathematical formula
obtained through numerous actual vehicle-based experiment data and the collision and
kinematics of a vehicle. The existing simulators are based on repeated input of vehicle
motion conditions and user driving behavior before the crash based on accident data
such as vehicle specifications, damage status, final stop position, and road marks at the
accident site. After deriving the simulation results, an optimal collision situation and an
understanding of the activity following the collision are considered for analysis.

Although software-based simulation can represent vehicle crashes in a virtual envi-
ronment, most simulation results are output as text, making it difficult for non-developers
to understand verification and validation. To improve these problems, it is necessary to
visually express the simulation results [6–8]. Animation software is a dynamic visual form
of graphic object output of a target system to increase understanding [9–11]. Therefore, an
animation-based simulation makes it easier to verify the model by visually representing the
simulation process, improving understanding, and increasing clarity. Simulation visualiza-
tion as a form of output is widely used in various fields. Animation is also used to express
the results of a computer simulation. In addition, to accomplish a reliable simulation,
the simulation model and the moving graphic object must be connected and expressed
intuitively. Researchers have proposed several simulators to represent both simulation and
animation in vehicle driving or vehicle crashes [12–16].

Vehicles 2023, 5, 1046–1059. https://doi.org/10.3390/vehicles5030057 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles5030057
https://doi.org/10.3390/vehicles5030057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0002-8595-3307
https://orcid.org/0000-0002-0608-5397
https://doi.org/10.3390/vehicles5030057
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles5030057?type=check_update&version=1

Vehicles 2023, 5 1047

In this paper, we propose a simulator that mutually complements the simulation
and animation components to provide vehicle crash scenarios. Our proposed simulator
synthesizes and simulates models selected from our repository and animates the simulation
results. The model repository stores vehicle and road map models in two bases. The
proposed simulator synthesizes the vehicle model developed by Simpy [17] and the road
map model applying the Lambda function [18,19] to describe a vehicle crash. In the
proposed simulator, the simulation component performs the synthesized model through
the Simpy engine. Next, the animation component receives the simulation results and
reenacts the vehicle crash. Thus, our simulator combines the two components to effectively
illustrate vehicle crash scenarios.

The main contributions of this paper are as follows:

• Simpy-based simulation for vehicle collisions,
• Unity-based animation for visualization of the collision using the simulation results.

The remainder of this paper is organized as follows: Section 2 introduces vehicle
driving and simulators. The problem statements are discussed in Section 3. We offer a
detailed description of the proposed simulator in Section 4. In Section 5, we present a
performance evaluation of the proposed simulator. We draw conclusions at the end of
this paper.

2. Related Work

This section introduces vehicle driving simulators in Section 2.1 and crash simulators
in Section 2.2 for comparisons to our simulators.

2.1. Vehicle Driving Simulators

Various vehicle simulators are being developed for a wide range of purposes, such
as accident collision simulation, tests of self-driving vehicles, and environment collection.
The typical existing simulators include the LG Autonomous Driving (AD) Simulator [12],
NVIDIA Drive Sim [13], the Morai Simulator [14], Microsoft AirSim [15], and CarSim [16].
Table 1 shows a comparison of typical existing vehicle simulators.

Table 1. Comparison of typical existing vehicle simulators.

Type LG AD
Simulator

NVIDIA Drive
Sim Morai Simulator Microsoft

AirSim Carsim

Feature Autonomous
driving

Multi-sensor based
self-driving

virtual testbed

Simulation of a
realistic vehicle

driving environment

Data generation
related to

autonomous vehicles

Accurate, detailed,
efficient methods for
simulating vehicles

Open Source Yes No No Yes No

3D Map Support Support Support Support Support

HIL Support Support Unidentified Support Unidentified

SIL Support Support Unidentified Support Unidentified

VIL Support Unidentified Support Unidentified Unidentified

Country Republic of Korea USA Republic of Korea USA USA

The LG AD Simulator is a simulation software that provides development and testing
for vehicle driving software systems. When the LG simulator is used in the test pipeline,
it is possible to reduce costs and assure a wide range of test coverage. This simulator is a
Unity high-definition render pipeline (HDRP)-based photorealistic simulation that creates
a real-world digital environment identical to the real environment. The simulator provides
autonomous driving test and verification (HIL; hardware-in-the-loop, VIL; vehicle-in-the-
loop), autonomous driving software development (SIL; software-in-the-loop), and data
generation. It can be used for running training, mobility services, sensor and vehicle setup,
system-on-chip (SoC) design and testing, and more.

Vehicles 2023, 5 1048

NVIDIA Drive Sim provides a safe, scalable, and cost-effective way to bring au-
tonomous vehicles onto the road using physically accurate simulation. The program lever-
ages NVIDIA core technologies to provide a powerful cloud-based computing platform
that enables the creation of a wide range of real-world scenarios for vehicle development
and validation. In addition, it provides virtual performance for generating datasets for
training a vehicle’s recognition system or for testing a vehicle’s decision-making process, as
well as to account for extreme cases. The simulation can be connected to vehicle stacks in
SIL or HIL configurations to test system integration. It evaluates how real humans interact
with the vehicle’s technology.

The Morai Simulator provides simulation environments, sensor models, and virtual
test environments for vehicles based on high fidelity. The simulator includes precision map-
based digital twin technology, test scenario generation, mixed-reality test methodology
(i.e., VIL), vehicle simulation technology, environmental data generation technology, and
distributed computation technology.

AirSim is a simulator for vehicles and drones based on the Unreal Engine [20] devel-
oped by Microsoft. This simulator is open-source and cross-platform-based, and it supports
flight controllers such as PX4 Autopilot [21] and HIL simulation through PX4 to represent
physically and visually realistic simulations. Moreover, it was developed as an Unreal Plu-
gin that can simply be used in any Unreal environment. The simulator can experiment with
autonomous driving using deep learning, computer vision, and reinforcement learning
algorithms for autonomous vehicles. It provides APIs to retrieve data and control vehicles
in a platform-independent manner.

CarSim is a software tool that simulates the dynamic behavior of passenger vehicles
and light trucks. The simulator uses a 3D multibody dynamics model to accurately repro-
duce the physics of a vehicle in response to the driver and automation including steering,
throttle, braking, and gear shifting. The simulator’s environmental conditions can include
3D ground and road surfaces, as well as aerodynamic and wind effects. This simulator is
the universally preferred tool for analyzing vehicle dynamics, developing active controllers,
calculating vehicle performance characteristics, and engineering next-generation active
safety systems.

As shown in Table 1, although these simulators provide reality-based simulation
and excellent 3D graphics, it is difficult to simulate a crash of two vehicles according to
various scenarios. In addition, the existing simulators rarely experiment by separating
the simulation and animation components to create various collision scenarios between
the vehicles.

2.2. Vehicle Crash Simulators

EDVAP (Engineering Dynamics Vehicle Analysis Package) and PC-CRASH are the
most widely used commercial programs worldwide for vehicle crash simulators. In EDVAP,
the collision model applies the EBS (equivalent barrier speed) to obtain the effective collision
speed from the deformed state of the vehicle. The model reconstructs motion situations
such as angles before and after collision and moving distance using the law of conservation
of momentum and energy.

PC-Crash is a commercialized traffic accident reproduction simulator that applies 2D
and 3D collision models based on Newton’s laws of motion. The simulator can reproduce
a full impact in which the two vehicles reach a common speed and a sliding impact in
which the two vehicles do not reach a common speed. In addition, the simulator uses
EES (equivalent energy speed) using the point of impact and the damage depth of the
vehicle relative to the location of impact and the energy loss of both vehicles due to the
damage. It is possible to simulate various collisions such as vehicle-to-vehicle accidents,
pedestrian accidents, overturning accidents, motorcycle accidents, trailer accidents, and
obstacle collision experiments.

The commercial simulators are less accessible because of payment of expenses as
compared to most open software projects.

Vehicles 2023, 5 1049

3. Problem Statement

In this section, three drawbacks of the existing simulators are described, and three
improvements to the proposed simulator are introduced.

Although these are efficient vehicle simulators based on their excellent graphics, they
have the following drawbacks:

• The existing vehicle simulators are aimed at safe driving, and it is difficult to simulate
collisions between vehicles. A collision between two vehicles is affected by various
environmental variables such as vehicle size, road condition, and accident scenario.
Involvement of these multiple variables complicates simulation of a crash accident
on the basis of a slight change in the value of one variable (e.g., an increase in vehicle
speed by 10 km).

• The existing simulators can only simulate driving in vehicles and environments speci-
fied by their developers. Although some simulators use open software policies, limited
situations can be simulated.

• Most simulators focus on 3D graphics for animation. However, simulators should also
be able to predict an accident on the basis of specific parameters and iterative analysis.
Thus, simulation and animation must complement each other, such as in digital twin
technology.

To solve these problems, three corresponding improvements are proposed:

• Our proposed simulator considers accident characteristics by applying models saved
in our model repository. Users can select pre-implemented models from the repository
and run a synthesized model to simulate various vehicle crash accidents. The result of
the executed simulation is displayed visually as an animation.

• The proposed simulator can be directly developed by the users with Simpy-based
vehicle models and Lambda-based road map models to simulate various crash acci-
dents. In addition, the models can be freely modified from each base in the repository
component.

• Our simulator synthesizes models including bases for vehicle crash accidents, simu-
lates them, and displays crash animations before and after the collision. The simulator
defines the state change of an event for animation and the information to transmit it to
the animation. In addition, the animation is configured in the same situation as the
model synthesized from the model base.

4. Proposed Simulator

In this section, the proposed simulator is detailed. Our proposal overview is presented
in Section 4.1, and the detailed procedures of the simulator are given in Section 4.2.

4.1. Overview

Our simulator mutually complements the simulation component and the animation
component to predict vehicle collision. The proposed simulator synthesizes and simulates
models selected from our repository component and then animates the results. The reposi-
tory component consists of two model bases: vehicle and road map. In the model bases, a
model is selected and synthesized to construct a target collision accident. Our simulation
component runs the synthesized model through the Simpy engine, and our animation
component uses the simulation results to recreate the vehicle accident.

Figure 1 shows an overview of our proposed simulator, which comprises a repository
component, simulation component, and animation component. The proposed simulator
executes three phases as follows:

• Model repository: In this repository, the two model bases are vehicles and road maps.
Simpy-based discrete-event models for vehicles consider behavioral and procedural
characteristics and are synthesized to generate a final simulation model.

• Simulation component: This component runs the synthesized model through the
Simpy engine and forwards the events generated to the model. The vehicle simulation

Vehicles 2023, 5 1050

model behavior is changed at regular intervals (e.g., simulation time). The execution
of the component is repeated according to the state variable of the model until the
distance between the two vehicles is 0. Simulation results are transmitted to the
animation elements using JSON templates.

• Animation component: This component parses the JSON files received from the
simulation component and creates and executes a 3D model according to the parsed
result.

Vehicles 2023, 5, FOR PEER REVIEW 5

• Model repository: In this repository, the two model bases are vehicles and road maps.
Simpy-based discrete-event models for vehicles consider behavioral and procedural
characteristics and are synthesized to generate a final simulation model.

• Simulation component: This component runs the synthesized model through the
Simpy engine and forwards the events generated to the model. The vehicle simula-
tion model behavior is changed at regular intervals (e.g., simulation time). The exe-
cution of the component is repeated according to the state variable of the model until
the distance between the two vehicles is 0. Simulation results are transmitted to the
animation elements using JSON templates.

• Animation component: This component parses the JSON files received from the sim-
ulation component and creates and executes a 3D model according to the parsed re-
sult.

Figure 1. Overview.

Therefore, the proposed simulator mutually complements the simulation and anima-
tion components to inform vehicle crash prevention after synthesizing the selected mod-
els.

4.2. Detailed Procedure
Our simulator includes three components: model repository, simulation, and anima-

tion. The simulator is as follows: 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = 𝑀𝑜𝑑𝑒𝑙 𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦, 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐴𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 .
In the model repository, our proposed simulator provides the set of vehicle models

and environment models for synthesizing a simulation model. In the simulation compo-
nent (Simulation), our simulator synthesizes the models selected from the model reposi-
tory and runs the synthesized model. The simulator extracts the simulation result. In the
animation component (Animation), it parses the received result and creates a 3D object
corresponding to each model. Each object is executed through the Unity engine.

4.2.1. Model Repository
This repository consists of two model bases: vehicles and environment. The vehicle

model is based on Simpy, a process-oriented discrete-event simulation written in Python.
The process-oriented simulation is lightweight, easy-to-use, and allows quick learning for
use.

Simpy’s engine is composed of three parts: process, environment, and resource. The
process creates a generator method that yields an event instance by modeling a generic
agent. The environment manages event scheduling, event processing, and time manage-
ment. The resource provides preemption of processes and shared resources (e.g., number

Figure 1. Overview.

Therefore, the proposed simulator mutually complements the simulation and anima-
tion components to inform vehicle crash prevention after synthesizing the selected models.

4.2. Detailed Procedure

Our simulator includes three components: model repository, simulation, and anima-
tion. The simulator is as follows:

Proposed Simulator = {Model Repository, Simulation, Animation}.

In the model repository, our proposed simulator provides the set of vehicle models and
environment models for synthesizing a simulation model. In the simulation component
(Simulation), our simulator synthesizes the models selected from the model repository and
runs the synthesized model. The simulator extracts the simulation result. In the animation
component (Animation), it parses the received result and creates a 3D object corresponding
to each model. Each object is executed through the Unity engine.

4.2.1. Model Repository

This repository consists of two model bases: vehicles and environment. The vehicle
model is based on Simpy, a process-oriented discrete-event simulation written in Python.
The process-oriented simulation is lightweight, easy-to-use, and allows quick learning
for use.

Simpy’s engine is composed of three parts: process, environment, and resource. The
process creates a generator method that yields an event instance by modeling a generic
agent. The environment manages event scheduling, event processing, and time manage-
ment. The resource provides preemption of processes and shared resources (e.g., number of
processes). The proposed simulator adopts Simpy-based simulation to design and execute
the models due to its systematic modularization and ease of use.

The vehicle model defines parameters related to driving and collision. The parameters
are empty weight, length, vehicle width, engine type, and tire size. For example, with a
Hyundai Genesis GV80 [22], an empty weight of 2100 kg, length of 4945 mm, width of
1975 mm, 2.5 gasoline turbo engine, and 22 inch tires are defined.

Vehicles 2023, 5 1051

Figure 2 shows the collision location of the two vehicles based on 12 vehicle points, as
proposed in [23]. Damage is predicted in at least at one point in the event of an accident
between two vehicles. For example, suppose that two vehicles are traveling on a straight
road. When the preceding vehicle stops suddenly and the following vehicle collides with it,
the preceding vehicle suffers damage at point 6, and the following vehicle suffers damage
at point 12.

Vehicles 2023, 5, FOR PEER REVIEW 6

of processes). The proposed simulator adopts Simpy-based simulation to design and exe-
cute the models due to its systematic modularization and ease of use.

The vehicle model defines parameters related to driving and collision. The parame-
ters are empty weight, length, vehicle width, engine type, and tire size. For example, with
a Hyundai Genesis GV80 [22], an empty weight of 2100 kg, length of 4945 mm, width of
1975 mm, 2.5 gasoline turbo engine, and 22 inch tires are defined.

Figure 2 shows the collision location of the two vehicles based on 12 vehicle points,
as proposed in [23]. Damage is predicted in at least at one point in the event of an accident
between two vehicles. For example, suppose that two vehicles are traveling on a straight
road. When the preceding vehicle stops suddenly and the following vehicle collides with
it, the preceding vehicle suffers damage at point 6, and the following vehicle suffers dam-
age at point 12.

RIGHT_FRONT = 1
TOP_RIGHT = 2
RIGHT = 3
BOTTOM_RIGHT = 4
RIGHT_BACK = 5
BACK = 6
LEFT_BACK = 7
BOTTOM_LEFT = 8
LEFT = 9
TOP_LEFT = 10
LEFT_FRONT = 11
FRONT = 12

Figure 2. Vehicle collision points.

The environment model uses lambda data for various vehicle crash environments.
After selecting a point (e.g., intersection, curved road) on the map, the points are con-
verted into lambda expressions. Figure 3 shows our map translator of the environment
model to convert to lambda data. In the lambda data, 0 represents roads, 1 represents
sidewalks, 2 represents crosswalks, 6 represents buildings, etc. The converted lambda ex-
pressions represent the vehicle movement during simulation execution, considering the
simulation time and speed.

Figure 3. Map translator.

In the model repository, the vehicle models exist in the form of Python classes, and
environment models exist as lambda files. The two files are merged by a user in the main
function of Python.

Figure 2. Vehicle collision points.

The environment model uses lambda data for various vehicle crash environments.
After selecting a point (e.g., intersection, curved road) on the map, the points are converted
into lambda expressions. Figure 3 shows our map translator of the environment model to
convert to lambda data. In the lambda data, 0 represents roads, 1 represents sidewalks,
2 represents crosswalks, 6 represents buildings, etc. The converted lambda expressions
represent the vehicle movement during simulation execution, considering the simulation
time and speed.

Vehicles 2023, 5, FOR PEER REVIEW 6

of processes). The proposed simulator adopts Simpy-based simulation to design and exe-
cute the models due to its systematic modularization and ease of use.

The vehicle model defines parameters related to driving and collision. The parame-
ters are empty weight, length, vehicle width, engine type, and tire size. For example, with
a Hyundai Genesis GV80 [22], an empty weight of 2100 kg, length of 4945 mm, width of
1975 mm, 2.5 gasoline turbo engine, and 22 inch tires are defined.

Figure 2 shows the collision location of the two vehicles based on 12 vehicle points,
as proposed in [23]. Damage is predicted in at least at one point in the event of an accident
between two vehicles. For example, suppose that two vehicles are traveling on a straight
road. When the preceding vehicle stops suddenly and the following vehicle collides with
it, the preceding vehicle suffers damage at point 6, and the following vehicle suffers dam-
age at point 12.

RIGHT_FRONT = 1
TOP_RIGHT = 2
RIGHT = 3
BOTTOM_RIGHT = 4
RIGHT_BACK = 5
BACK = 6
LEFT_BACK = 7
BOTTOM_LEFT = 8
LEFT = 9
TOP_LEFT = 10
LEFT_FRONT = 11
FRONT = 12

Figure 2. Vehicle collision points.

The environment model uses lambda data for various vehicle crash environments.
After selecting a point (e.g., intersection, curved road) on the map, the points are con-
verted into lambda expressions. Figure 3 shows our map translator of the environment
model to convert to lambda data. In the lambda data, 0 represents roads, 1 represents
sidewalks, 2 represents crosswalks, 6 represents buildings, etc. The converted lambda ex-
pressions represent the vehicle movement during simulation execution, considering the
simulation time and speed.

Figure 3. Map translator.

In the model repository, the vehicle models exist in the form of Python classes, and
environment models exist as lambda files. The two files are merged by a user in the main
function of Python.

Figure 3. Map translator.

In the model repository, the vehicle models exist in the form of Python classes, and
environment models exist as lambda files. The two files are merged by a user in the main
function of Python.

4.2.2. Simulation Component

Our simulation component creates a whole simulation model by synthesizing the
vehicle and environment models defined in the model repository. The whole model receives
discrete events from the Simpy engine, changes the state variables of the vehicle model,
and identifies accidental collisions on the road environment.

Vehicles 2023, 5 1052

Figure 4 shows our simulation execution flowchart. When the simulation starts
(Figure 4a), the Simpy engine generates an event and JSON data at each time interval and
for the state variables (e.g., X and Y axis, driving angle, speed) defined in the models of the
two vehicles (Figure 4b). Our simulator calculates the remaining distance between the two
vehicles for each state change of the model (Figure 4c). If the remaining distance is zero, the
two vehicles collide (Figure 4d) at a vehicle collision. Next, the simulation outputs JSON
data to be transmitted to the animation. When the distance between the two vehicles is
greater than zero, the simulation continues. Then, our simulator selects one of the 12 points.
The pseudo-code used in the check collision step (Figure 4c) of the simulation components
is shown in Table 2.

Vehicles 2023, 5, FOR PEER REVIEW 7

4.2.2. Simulation Component
Our simulation component creates a whole simulation model by synthesizing the ve-

hicle and environment models defined in the model repository. The whole model receives
discrete events from the Simpy engine, changes the state variables of the vehicle model,
and identifies accidental collisions on the road environment.

Figure 4 shows our simulation execution flowchart. When the simulation starts (Fig-
ure 4a), the Simpy engine generates an event and JSON data at each time interval and for
the state variables (e.g., X and Y axis, driving angle, speed) defined in the models of the
two vehicles (Figure 4b). Our simulator calculates the remaining distance between the two
vehicles for each state change of the model (Figure 4c). If the remaining distance is zero,
the two vehicles collide (Figure 4d) at a vehicle collision. Next, the simulation outputs
JSON data to be transmitted to the animation. When the distance between the two vehicles
is greater than zero, the simulation continues. Then, our simulator selects one of the 12
points. The pseudo-code used in the check collision step (Figure 4c) of the simulation com-
ponents is shown in Table 2.

Figure 4. Execution flowchart of the simulation component.

Table 2. CheckCollision function.

1: def checkCollision(pos_1st, pos_2nd)
2: rslt = FALSE
3: distance = calculateDistance(pos_1st, pos_2nd)
4:
5: if distance <= 1 then
6: rslt = TRUE
7: end if
8: result rslt

Table 3 shows the checkCollision function for two vehicles. Parameters of the func-
tion include pos_1st and pos_2nd for the positions of the two vehicles, which are ex-
pressed as position (X, Y). This function calculates a distance between the points (Line 3).

Figure 4. Execution flowchart of the simulation component.

Table 2. CheckCollision function.

1: def checkCollision(pos_1st, pos_2nd)
2: rslt = FALSE
3: distance = calculateDistance(pos_1st, pos_2nd)
4:
5: if distance <= 1 then
6: rslt = TRUE
7: end if
8: result rslt

Table 3 shows the checkCollision function for two vehicles. Parameters of the function
include pos_1st and pos_2nd for the positions of the two vehicles, which are expressed as
position (X, Y). This function calculates a distance between the points (Line 3). When the
distance is less than or equal to 1, the function returns a result of TRUE (Lines 5–8).

Table 4 explains the crashPoint function for extracting the collision point. This function
first computes the collision point: front, back, left side, or right side (Line 4–22). If the colli-
sion point of the vehicle (vehicle_1st) is on the right or left side, the correct side point is calcu-
lated (Line 24–33). The side is divided into three points: top right side (RIGHT_TOP_SIDE),
right side (RIGHT_SIDE), and bottom right side (RIGHT_BOTTOM_SIDE).

Vehicles 2023, 5 1053

Table 3. CrashPoint Function.

1: def crashPoint(vehicle_1st, vehicle_2nd, pos_1st, pos_2nd, angle_1st, angle_2nd)
2: collision_side = NULL
3:
4: if angle_1st = angle_2nd then
5: rslt = collison_BACK
6: else if abs(angle_1st - angle_2nd) = 180 then
7: rslt = collsion_FRONT
8: else if 0 < angle_1st < 180 then
9: if angle_1st - angle_2nd < −180 then
10: collision_side = RIGHT_SIDE
11: else if angle_1st - angle_2nd < 0 then
12: collision_side = LEFT_SIDE
13: else if angle_1st - angle_2nd < 180 then
14: collision_side = RIGHT_SIDE
15: else
16: if angle_1st - angle_2nd > 180 then
17: collision_side = LEFT_SIDE
18: else if angle_1st - angle_2nd > 0 then
19: collision_side = RIGHT_SIDE
20: else if angle_1st - angle_2nd > −180 then
21: collision_side = LEFT_SIDE
22: end if
23:
24: if collision_side = RIGHT_SIDE or LEFT_SIDE then
25: distance = calculateDistance(pos_1st, pos_2nd)
26: if distance < vehicle_1st.length/100/3 then
27: rslt = collision_RIGHT_TOP_SIDE
28: else if distance < vehicle1.length/100/3 * 2 then
29: rslt = collision_RIGHT_SIDE
30: else if distance < vehicle1.length/100 then
31: rslt = collision_RIGHT_BOTTOM_SIDE
32: end if
33: end if
34: return rslt

Table 4. Parameters of the Genesis GV80 and the KIA Morning.

Parameters Genesis GV80 KIA Morning

Empty Wight 2100 kg 910 kg

Length 4945 mm 3595 mm

Width 1975 mm 1595 mm

Engine 2.5 Gasoline Turbo 1.0 Gasoline

Tire 22 inches 14 inches

After running a simulation, the simulation component creates a JSON file with the
results using two-vehicle models. The JSON file definition is as follows:

JSON =
{

initial param, crash param1, crash param2, crash param3, · · ·
}

. (1)

In Equation (1), the JSON file contains the vehicle’s initial parameters and state vari-
ables according to time.

initial param = ID, mass, length, width, height. (2)

Vehicles 2023, 5 1054

In Equation (2), ID is a vehicle model, mass is weight, length is length, width is vehicle
width, and height is height. For example, for a Genesis GV80 vehicle, ID is Genesis GV80,
mass is 2100, length is 494, width is 197, and height is 171.

The simulation component produces state variables according to the time to reproduce
the accident crash in crash param, defined as follows:

crash paramN= ID, speed, steering, position (x, y). (3)

In Equation (3), ID is a vehicle model and speed is the speed of the vehicle. This
value calculates the amount of impact and the moving position of the vehicle. The steering
variable represents the vehicle direction (i.e., 0 is upward and rotates clockwise) and
computes the movement path of the vehicle and the collision location. The position variable
indicates the position (x-axis, y-axis) of the vehicle for calculating its future path. The
simulation component creates a JSON file and forwards it to the animation component.

Equation (4) shows the vehicle model function, where X is the input event set of
distance values between two vehicles, and Y is the output event set of output values such
as occurrence of collision and collision positions of vehicles. δext is the external transition
function implemented with the logic in Table 2, Q is the pair of vehicle state and elapsed
time since the last event, and λ is the output function to generate output values from Y. The
state transition function (δext) of the vehicle model represents the collision dynamics.

Vehicle =< X, Y, S, ta, δext, λ >
where, S = {Collision, Non−Collision}

δext : Q× X → S
where, Q = {(s, te)|s ∈ S, te ∈ (T ∩ [0, ta(s)])}

λ : S→ Y

(4)

4.2.3. Animation Component

The animation component is used to visualize the Simpy model state as an output
result that expresses movement [24]. This component helps to easily express processes and
results of vehicle changes using the Unity engine. In addition, the animation can easily
depict the validation of simulation models in model development [24,25].

When our simulator expresses the simulation model as an animation, information for
the event schedule and state transition of each event is exchanged as JSON data. Thus, the
simulator establishes a complementary relationship between the simulation and animation
components. In the simulation visualization, the general-purpose game engine Unity3D is
mainly used [26–28].

Our simulator uses the Unity3D engine for animation elements to effectively represent
the collision of two vehicles. The animation element parses the state information of its
vehicle models from JSON data and executes the Unity models.

Figure 5 demonstrates our animation component’s execution in an intersection. In the
proposed simulator, the animation component consists of three phases: (1) environment
creation, (2) vehicle operation, and (3) vehicle collision. In the (1) environment generation
phase (Figure 5a), this component creates graphic objects of the environment such as
vehicles and roads (e.g., intersection) received from the simulation’s JSON data. In the (2)
driving operation phase (Figure 5b), the target vehicles move according to the order of
JSON data in the generated environment. In the (3) vehicle collision phase (Figure 5c), the
component shows the collision of two moving vehicles through the data.

Vehicles 2023, 5 1055

Vehicles 2023, 5, FOR PEER REVIEW 10

When our simulator expresses the simulation model as an animation, information for
the event schedule and state transition of each event is exchanged as JSON data. Thus, the
simulator establishes a complementary relationship between the simulation and anima-
tion components. In the simulation visualization, the general-purpose game engine
Unity3D is mainly used [26–28].

Our simulator uses the Unity3D engine for animation elements to effectively repre-
sent the collision of two vehicles. The animation element parses the state information of
its vehicle models from JSON data and executes the Unity models.

Figure 5 demonstrates our animation component’s execution in an intersection. In
the proposed simulator, the animation component consists of three phases: (1) environ-
ment creation, (2) vehicle operation, and (3) vehicle collision. In the (1) environment gen-
eration phase (Figure 5a), this component creates graphic objects of the environment such
as vehicles and roads (e.g., intersection) received from the simulation’s JSON data. In the
(2) driving operation phase (Figure 5b), the target vehicles move according to the order of
JSON data in the generated environment. In the (3) vehicle collision phase (Figure 5c), the
component shows the collision of two moving vehicles through the data.

(a) Environment generation phase

(b) Vehicle driving phase

(c) Vehicle collision phase

Figure 5. Animation component’s procedures. Figure 5. Animation component’s procedures.

5. Simulation Results

We performed a simulation experiment to evaluate the proposed simulator for two
vehicles at an intersection. At the intersection, when the traffic light changes from a red
light to a green light, a high-speed vehicle (Genesis GV 80) and a slow-moving vehicle
(KIA Morning) collide with each other. We use two laws (i.e., acceleration and impulse) of
physics for collision in our experiments. The parameters of the two vehicles are shown in
Table 4.

Figure 6 illustrates an intersection environment to simulate the collision of two vehicles.
A GV80 moves from west to east, and the Morning drives from south to north. The gap
distance between the two vehicles is calculated as the sum of the distances from each other
around the intersection. Our proposed simulator simulates the collision or non-collision
between the GV80 and the Morning according to the change in speed or acceleration in the
Morning. We configure two simulation environments.

Vehicles 2023, 5 1056

Vehicles 2023, 5, FOR PEER REVIEW 11

5. Simulation Results
We performed a simulation experiment to evaluate the proposed simulator for two

vehicles at an intersection. At the intersection, when the traffic light changes from a red
light to a green light, a high-speed vehicle (Genesis GV 80) and a slow-moving vehicle
(KIA Morning) collide with each other. We use two laws (i.e., acceleration and impulse)
of physics for collision in our experiments. The parameters of the two vehicles are shown
in Table 4.

Figure 6 illustrates an intersection environment to simulate the collision of two vehi-
cles. A GV80 moves from west to east, and the Morning drives from south to north. The
gap distance between the two vehicles is calculated as the sum of the distances from each
other around the intersection. Our proposed simulator simulates the collision or non-col-
lision between the GV80 and the Morning according to the change in speed or acceleration
in the Morning. We configure two simulation environments.

Figure 6. Experiment environment of an intersection.

• Simulation Environment 1: Both vehicles have the same speed, but they change in ac-
celeration.
In order to express the collision or non-collision of vehicles in the intersection envi-

ronment of Figure 6, we set the same speed while changing the acceleration. Their speed
was 60 km/h (0.16 m/s), the GV80′s acceleration was 0.002 m/s, and the Morning’s acceler-
ation was 0.16 m/s.

Figure 7 shows the collision and non-collision results by changing the acceleration
according to the same speed of the two vehicles. When two vehicles collide (Figure 7a),
the distance between the two vehicles gradually decreases and reaches 0 m (Figure 7c), as
shown in Table 5. On the other hand, when the vehicles do not collide (Figure 7b), the
distance gradually decreases and then increases again. That is, the collision and non-col-
lision of the vehicles at the intersection is affected by their speed according to their dis-
tance. Thus, our simulator can predict an accident in advance by measuring the speed
between the vehicles according to the remaining distance of entering the intersection.

Figure 6. Experiment environment of an intersection.

• Simulation Environment 1: Both vehicles have the same speed, but they change in
acceleration.

In order to express the collision or non-collision of vehicles in the intersection environ-
ment of Figure 6, we set the same speed while changing the acceleration. Their speed was
60 km/h (0.16 m/s), the GV80’s acceleration was 0.002 m/s, and the Morning’s acceleration
was 0.16 m/s.

Figure 7 shows the collision and non-collision results by changing the acceleration
according to the same speed of the two vehicles. When two vehicles collide (Figure 7a),
the distance between the two vehicles gradually decreases and reaches 0 m (Figure 7c),
as shown in Table 5. On the other hand, when the vehicles do not collide (Figure 7b),
the distance gradually decreases and then increases again. That is, the collision and non-
collision of the vehicles at the intersection is affected by their speed according to their
distance. Thus, our simulator can predict an accident in advance by measuring the speed
between the vehicles according to the remaining distance of entering the intersection.

Vehicles 2023, 5, FOR PEER REVIEW 12

(a) Collision between GV80 and Morning (b) Non-collision between GV80 and Morning

(c) Gap distance versus GV80 speed (d) Gap distance versus GV80 speed

Figure 7. Simulation results of Environment 1.

Table 5. Collision between GV80 and Morning.

Vehicle
Type
(m/s)

Result Order
1 2 3 4 5

GV80
Speed 0.16 0.16 0.16 0.16 0.16

Acceleration 0 0.01 0.001 0.002 0

Morning
Speed 0.16 0.16 0.16 0.16 0.16

Acceleration 0 0 0 0 0.01
Collision status False False False True False

• Simulation Environment 2: The GV80 starts slowly after stopping, and the Morning
runs at a constant speed.
To express the collision or non-collision of vehicles in the intersection environment,

the GV80 started after stopping, and the acceleration was 0.015. In the Morning, the speed
in the event of a collision was 105 km/h, and the speed in the case of a non-collision was
80 km/h.

Figure 8 demonstrates the collision and non-collision results according to different
speed changes of the two vehicles. When the vehicles collide (Figure 8a), the speed of the
GV80 reaches 100 km/h (Figure 8c), as shown in Table 6. When the vehicles do not collide
(Figure 8b), the speed of the GV80 reaches up to 120 km/h, while the distance narrows and
then increases. Therefore, our proposed simulator simulates collision and non-collision
events according to the change of distance and speed between two vehicles at the inter-
section.

Table 6. Collision between GV80 and Morning.

Vehicle Type
(m/s)

Result Order
1 2 3 4 5

GV80
Speed 0.16 0.22 0.16 0.22 0.16

Acceleration 0 0 0 0 0

Morning
Speed 0.16 0.16 0.11 0.11 0

Acceleration 0.001 0.001 0.001 0.001 0.008
Collision status False False False False True

Figure 7. Simulation results of Environment 1.

Vehicles 2023, 5 1057

Table 5. Collision between GV80 and Morning.

Vehicle
Type
(m/s)

Result Order

1 2 3 4 5

GV80
Speed 0.16 0.16 0.16 0.16 0.16

Acceleration 0 0.01 0.001 0.002 0

Morning
Speed 0.16 0.16 0.16 0.16 0.16

Acceleration 0 0 0 0 0.01

Collision status False False False True False

• Simulation Environment 2: The GV80 starts slowly after stopping, and the Morning
runs at a constant speed.

To express the collision or non-collision of vehicles in the intersection environment, the
GV80 started after stopping, and the acceleration was 0.015. In the Morning, the speed in the
event of a collision was 105 km/h, and the speed in the case of a non-collision was 80 km/h.

Figure 8 demonstrates the collision and non-collision results according to different
speed changes of the two vehicles. When the vehicles collide (Figure 8a), the speed of
the GV80 reaches 100 km/h (Figure 8c), as shown in Table 6. When the vehicles do not
collide (Figure 8b), the speed of the GV80 reaches up to 120 km/h, while the distance
narrows and then increases. Therefore, our proposed simulator simulates collision and
non-collision events according to the change of distance and speed between two vehicles at
the intersection.

Vehicles 2023, 5, FOR PEER REVIEW 13

(a) Collision between GV80 and Morning (b) Non-collision of GV80 and Morning

(c) Gap distance versus GV80 speed (d) Gap distance versus GV80 speed

Figure 8. Simulation results of Environment 2.

6. Conclusions
A computer simulation is software that overcomes the limitations of time and cost

and can operate under various situational conditions. Various vehicle simulators are being
developed for a wide range of purposes, such as accident collision, tests of self-driving
vehicles, and environment collection. Although the existing vehicle simulators (e.g., LG
AD Simulator, NVIDIA Drive Sim) are able to precisely observe movement on the basis
of 3D graphics, they only focus on one vehicle for driving tests. Thus, it is difficult to rep-
resent collision between vehicles in various environments. Our proposed simulator mu-
tually complements the simulation and animation components to represent a vehicle
crash. The proposed simulator synthesizes the vehicle model and road map model saved
in the model repository and simulates the synthesized model using the Simpy engine in
the simulation component.

Our proposed simulator has the two following contributions:
• Simpy-based simulation for simulating the collision,
• Unity-based animation for representing the collision using the results.

Therefore, our proposed simulator mutually complements the two components for
effectively providing vehicle crash data. In future work, we will study simulators by ap-
plying vehicles and experimental parameters. We will also research the automatic gener-
ation of environments for 3D animation.

Author Contributions: Software, J.P.; Validation, H.-J.K.; Data curation, Y.L.; Writing—original
draft, S.M.N.; Writing—review & editing, C.S.; Project administration, H.-J.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-
2021R1F1A1055522).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. Overview on digital twin for autonomous electrical vehicles propulsion

drive system. Sustainability 2022, 14, 601.
2. Yu, Z.; Khan, S.A.R.; Umar, M. Circular economy practices and industry 4.0 technologies: A strategic move of automobile in-

dustry. Bus. Strategy Environ. 2022, 31, 796–809.

Figure 8. Simulation results of Environment 2.

Vehicles 2023, 5 1058

Table 6. Collision between GV80 and Morning.

Vehicle
Type
(m/s)

Result Order

1 2 3 4 5

GV80
Speed 0.16 0.22 0.16 0.22 0.16

Acceleration 0 0 0 0 0

Morning
Speed 0.16 0.16 0.11 0.11 0

Acceleration 0.001 0.001 0.001 0.001 0.008

Collision status False False False False True

6. Conclusions

A computer simulation is software that overcomes the limitations of time and cost
and can operate under various situational conditions. Various vehicle simulators are being
developed for a wide range of purposes, such as accident collision, tests of self-driving
vehicles, and environment collection. Although the existing vehicle simulators (e.g., LG AD
Simulator, NVIDIA Drive Sim) are able to precisely observe movement on the basis of 3D
graphics, they only focus on one vehicle for driving tests. Thus, it is difficult to represent
collision between vehicles in various environments. Our proposed simulator mutually
complements the simulation and animation components to represent a vehicle crash. The
proposed simulator synthesizes the vehicle model and road map model saved in the model
repository and simulates the synthesized model using the Simpy engine in the simulation
component.

Our proposed simulator has the two following contributions:

• Simpy-based simulation for simulating the collision,
• Unity-based animation for representing the collision using the results.

Therefore, our proposed simulator mutually complements the two components for
effectively providing vehicle crash data. In future work, we will study simulators by
applying vehicles and experimental parameters. We will also research the automatic
generation of environments for 3D animation.

Author Contributions: Software, J.P.; Validation, H.-J.K.; Data curation, Y.L.; Writing—original draft,
S.M.N.; Writing—review & editing, C.S.; Project administration, H.-J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-
2021R1F1A1055522).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. Overview on digital twin for autonomous electrical vehicles propulsion

drive system. Sustainability 2022, 14, 601. [CrossRef]
2. Yu, Z.; Khan, S.A.R.; Umar, M. Circular economy practices and industry 4.0 technologies: A strategic move of automobile industry.

Bus. Strategy Environ. 2022, 31, 796–809. [CrossRef]
3. Zhou, S.; Wang, J.; Xu, B. Innovative coupling and coordination: Automobile and digital industries. Technol. Forecast. Soc. Change

2022, 176, 121497. [CrossRef]
4. Knight, M.R.; Bernard, J. Simulation of Vehicle Collisions in Real Time; Citeseer: University Park, PA, USA, 2002.
5. Kutela, B.; Das, S.; Dadashova, B. Mining patterns of autonomous vehicle crashes involving vulnerable road users to understand

the associated factors. Accid. Anal. Prev. 2022, 165, 106473. [CrossRef] [PubMed]
6. Sokhan-Sanj, S.; Mackulak, G.T. The value of simulation animation: Discussion of instances where statistical output is insufficient

for analysis of system performance. In Proceedings of the 2nd Annual International Conference on Industrial Engineering
Applications and Practice, San Diego, CA, USA, 12–15 November 1997; pp. 989–993.

7. Nevins, M.R.; Macal, C.M.; Love, R.J.; Bragen, M.J. Simulation, animation and visualization of seaport operations. Simulation
1998, 71, 96–106. [CrossRef]

https://doi.org/10.3390/su14020601
https://doi.org/10.1002/bse.2918
https://doi.org/10.1016/j.techfore.2022.121497
https://doi.org/10.1016/j.aap.2021.106473
https://www.ncbi.nlm.nih.gov/pubmed/34774280
https://doi.org/10.1177/003754979807100204

Vehicles 2023, 5 1059

8. Korkut, E.H.; Surer, E. Visualization in virtual reality: A systematic review. Virtual Real. 2023, 27, 1447–1480. [CrossRef]
9. Lasseter, J. Principles of traditional animation applied to 3D computer animation. In Proceedings of the 14th Annual Conference

on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 35–44.
10. Kerlow, I.V. The Art of 3D Computer Animation and Effects; John Wiley & Sons: Hoboken, NJ, USA, 2009.
11. Parent, R. Computer Animation: Algorithms and Techniques; Newnes: Oxford, UK, 2012.
12. LG_Business_Solutions. Autonomous Driving Simulator. Available online: https://www.svlsimulator.com/ (accessed on 1

June 2023).
13. NVIDIA_DRIVE_Sim. NVIDIA DRIVE Constellation. Available online: https://developer.nvidia.com/drive/drive-constellation

(accessed on 1 June 2023).
14. Morai. Autonomous Vehicle Driving Simulator. Available online: https://ko.morai.ai/ (accessed on 1 June 2023).
15. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field

and Service Robotics: Results of the 11th International Conference; Springer: Berlin/Heidelberg, Germany, 2018; pp. 621–635.
16. Benekohal, R.F.; Treiterer, J. CARSIM: Car-following model for simulation of traffic in normal and stop-and-go conditions. Transp.

Res. Rec. 1988, 1194, 99–111.
17. Matloff, N. Introduction to Discrete-Event Simulation and the Simpy Language; Department of Computer Science, University of

California at Davis: Davis, CA, USA, 2008; pp. 1–33.
18. Almeida, B.; Mordido, A.; Thiemann, P.; Vasconcelos, V.T. Polymorphic lambda calculus with context-free session types. Inf.

Comput. 2022, 289, 104948. [CrossRef]
19. Bierman, G.M. Operational properties of Lily, a polymorphic linear lambda calculus with recursion. Electron. Notes Theor. Comput.

Sci. 2000, 41, 9. [CrossRef]
20. Games, E. Unreal Engine. Available online: https://www.unrealengine.com/ (accessed on 1 June 2023).
21. PX4. PX4 Autopilot. Available online: https://px4.io/ (accessed on 1 June 2023).
22. AMERICA, H.M. 2021 GENESIS GV80. Available online: https://www.genesis.com/us/en/2021/genesis-gv80.html (accessed

on 1 June 2023).
23. Research and Business Development Foundation. Development of Experimental Platform for Safe and Fast Verification to Avoid

Secondary Collisions Vehicle Safety in Multiple Vehicle; Construction & Transportation Technology Advancement R&D Report,
2018-09-03; Ministry of Land, Infrastructure and Transport: Washington, DC, USA, 2018.

24. Hill, D.R. Object-Oriented Analysis and Simulation; Addison-Wesley: Boston, TX, USA, 1996.
25. Baltes, S.; Ralph, P. Sampling in software engineering research: A critical review and guidelines. Empir. Softw. Eng. 2022, 27, 94.

[CrossRef]
26. Gajananan, K.; Nantes, A.; Miska, M.; Nakasone, A.; Prendinger, H. An experimental space for conducting controlled driving

behavior studies based on a multiuser networked 3D virtual environment and the scenario markup language. IEEE Trans. Hum.
Mach. Syst. 2013, 43, 345–358. [CrossRef]

27. Turner, C.J.; Hutabarat, W.; Oyekan, J.; Tiwari, A. Discrete event simulation and virtual reality use in industry: New opportunities
and future trends. IEEE Trans. Hum. Mach. Syst. 2016, 46, 882–894. [CrossRef]

28. Prendinger, H.; Jain, R.; Imbert, T.; Oliveira, J.; Li, R.; Madruga, M. Evaluation of 2D and 3D interest management techniques in
the distributed virtual environment DiVE. Virtual Real. 2018, 22, 263–280. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10055-023-00753-8
https://www.svlsimulator.com/
https://developer.nvidia.com/drive/drive-constellation
https://ko.morai.ai/
https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.1016/S1571-0661(04)80874-0
https://www.unrealengine.com/
https://px4.io/
https://www.genesis.com/us/en/2021/genesis-gv80.html
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1109/TSMC.2013.2265876
https://doi.org/10.1109/THMS.2016.2596099
https://doi.org/10.1007/s10055-017-0322-3

	Introduction
	Related Work
	Vehicle Driving Simulators
	Vehicle Crash Simulators

	Problem Statement
	Proposed Simulator
	Overview
	Detailed Procedure
	Model Repository
	Simulation Component
	Animation Component

	Simulation Results
	Conclusions
	References

