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Abstract: Road authorities worldwide can leverage the advances in vehicle technology by continu-
ously monitoring their roads” conditions to minimize road maintenance costs. The existing methods
for carrying out road condition surveys involve manual observations using standard survey forms,
performed by qualified personnel. These methods are expensive, time-consuming, infrequent, and can
hardly provide real-time information. Some automated approaches also exist but are very expensive
since they require special vehicles equipped with computing devices and sensors for data collection
and processing. This research aims to leverage the advances in vehicle technology in providing
a cheap and real-time approach to carry out road condition monitoring (RCM). This study developed
a deep learning model using the You Only Look Once, Version 5 (YOLOV5) algorithm that was trained
to capture and categorize flexible pavement distresses (FPD) and reached 95% precision, 93.4% recall,
and 97.2% mean Average Precision. Using vehicle built-in cameras and GPS sensors, these distresses
were detected, images were captured, and locations were recorded. This was validated on campus
roads and parking lots using a car featured with a built-in camera and GPS. The vehicles’ built-in
technologies provided a more cost-effective and efficient road condition monitoring approach that
could also provide real-time road conditions.

Keywords: pavement distresses; road condition monitoring; deep learning in road damage detection;
built-in vehicle cameras; GPS sensors in road condition monitoring; pavement damage detection
using deep learning; machine learning in road damage detection

1. Introduction

Road agencies need to continuously monitor road conditions to minimize mainte-
nance costs by attending to the observed distresses on time. Delays in attending to road
damages/distress lead to a faster road deterioration rate, increased maintenance costs,
and reduced safety for road users [1]. Preventive maintenance is vital for the long-term
preservation of asphalt pavements [2]. Major factors attributed to the delays include a lack
of proper and up-to-date road condition information and insufficient funds [1], the latter
being common to many construction projects [3-5].

Existing road condition monitoring methods include manual methods involving
experienced experts walking and measuring on the field [6,7], or semi-automated methods
involving special vehicles equipped with sensors. Manual methods are expensive, labor-
intensive, and consume a lot of time, resulting in delayed road maintenance [8,9]. These
methods cause traffic interruptions, involving partial or full lane closures. They also impose
safety issues on surveyors since they sometimes must work while the roads are in operation.
Semi-automated methods are also costly for initial investment and maintenance/operation
costs, which are about USD 1,179,000 and USD 70,000, respectively [1]. It is also estimated
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that a semi-automated system costs about USD 541/mile to USD 933/mile in the U.S,,
depending on the service providers [10].

Although the manual and semi-automatic methods are suitable for road conditions,
the methods impose safety risks and are time-consuming and expensive. With the currently
available vehicle and equipment technologies, there are opportunities to fully automate the
monitoring of pavement road distress conditions. The prevalent benefits of fully automated
methods include improved personnel safety, reduced cost, and continuous monitoring [11].

The existing fully automated methods use customized vehicles fitted with sensing
equipment. The vehicles use sensors to collect road condition data as they travel along the
road. This system collects various data including longitudinal and transverse pavement
surface profiles, downward perspective images, forward perspective right-of-way images,
geo-reference data from global positioning systems (GPS), inertial referencing systems, and
distance measuring instruments [12].

In this paper, we present an automated system that is developed through Artificial
Intelligence (AI). Al provides real-time solutions that are cheaper than the existing au-
tomated systems [13-15]. Using models developed through Al, simple devices such as
dashcams and vehicle built-in cameras can be used; therefore, there will not be as much
cost for purchasing customized vehicles and sensors.

2. Literature Review

Recent advancement in Artificial Intelligence (AI) has attracted many studies in various
fields as effective, simple, cheap, and fast methods for carrying out our daily tasks. Through
Deep Learning (DL), computer vision and sensors have been employed in the preparation
of models in various fields. In the areas of pavement condition monitoring, various studies
have been carried out with different aims using DL models for both flexible and rigid
pavements [13,16].

Studies show how advances in sensors and data collection platforms are being applied
to improve road condition monitoring (RCM) data collection. Devices like smartphones,
drones, and vehicles integrated with non-intrusive sensors have been proven to be useful
in this field [17,18]. Studies on pavement roughness, for instance, have been driven by
crowdsourcing, and the effort to develop cheaper techniques [19] using smartphones has
been proven to be effective [15,20,21].

Ansari and Sam [22] employed a Single Shot Multibox Detection (SSD) algorithm to de-
tect potholes on pavements. In developing their model, they used a set of images collected
from the internet. The developed model was able to identify potholes through cameras
installed on moving vehicles. Ahmed [23] compared the performances of two DL models
in detecting potholes. The models compared were You Only Look Once (YOLO) using
ResNet101 backbone and Faster Region-based Convolutional Neural Network (F-RCNN)
using ResNet50 (FPN), VGG16, MobileNetV2, InceptionV3, and MVGG16 backbones.
Both models were trained on the same dataset, composed of 940 images with a total of
2466 potholes. The images were collected from the internet, and some were taken from
street roads in Carbondale, Illinois, using a smartphone. Results show that F-RCNN using
ResNet50 (FPN) attained the maximum value of Precision of 91.9%, followed by YOLOv5
using YOLOvm with 86.96%, YOLOvI] with 86.43%, F-RCNN using MVGG16 with 81.4%,
YOLOVS5 using YOLOvs with 76.73%, F-RCNN using Inception V3 72.3%, F-RCNN using
VGG16 with 69.8, and the least (63.1%) was attained by F-RCNN using MobileNetV2.
Nevertheless, F-RCNN inception v2 was used to detect potholes in India [24].

In another study, Chen and Jahanshahi [25] deployed DL and Naive Bayes data fusion
schemes (NB-CNN) in detecting cracks in nuclear power plants. In this study, the authors
proposed a novel data fusion scheme that helped to enhance the overall performance of the
system. Furthermore, in another study, a single-stage CNN architecture was modified and
used to detect potholes, and was then incorporated to determine pothole depth using 3D
images and achieved a mean error of less than 5% [26].
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Automatic pavement crack detection approaches have been proposed and show
a promising future for crack detection. A mask R-CNN attained 83.3% precision, 82.2% F1-
score, and 70.1% mean intersection-over-union (mloU) at 4.2 frames per second (FPS) [27].
Multiscale feature fusion deep neural networks achieved 88.1% and 87.8% in F1-score and
mAP using YOLOv3 with four-scale detection layers (FDL) [14]. Zhang et al. [28] proposed
a crack-patch-only (CPO) supervised generative adversarial learning for an end-to-end
training approach to detect pavement cracks. The authors used a set of three datasets with
118, 400 and 68 images, respectively. The first set was collected using an iPhone from the
road surface, the second was collected using a line-scan industrial camera mounted on the
top of a vehicle running at 100 km/h, and the third was composed of industrial images.
This model attained 86.53% precision and 91.29% recall. In this study, the authors solved
the “All Black” issue observed in a previous study by Zhang et al. [29] which is reported
to be a serious issue in pavement crack detection. In Zhang et al. [30], the authors used
a deep learning approach to train a model. The dataset used was composed of 2200 3D
pavement images, and the developed model attained good results in precision (90.13%),
recall (87.63%), and F1-score (88.86%). Another study by Kanaeva and Ivanova [31] used
R-CNN-based and U-Net-based segmentation models to detect road pavement cracks using
synthetic images and attained an Intersection over Union (IoU) of 47% metrics on real
images with road surface cracks, which falls in the acceptable range.

Regarding the classes of distresses detected, some studies provided classifications of
distress into various groups and their basis for such categorizations. Mandal et al. [32]
carried out a study to detect and categorize distress into eight groups using a publicly
available dataset of 9053 images collected in Japan using smartphones mounted on vehicles’
dashboards. This study achieved a recall of 88.51% and a precision of 87.10% using the
YOLO v2 model. In another study, Du et al. [33] prepared and used a dataset composed
of 45,788 images captured with a high-resolution industrial camera installed on vehicles
in various weather and illuminance conditions. The YOLOv3 algorithm was used and
reached an accuracy of 73.64% in detecting stresses. Maeda et al. [34] used a dataset of
9053 custom smartphone images which they set to be available to the public. They trained
their model using SSD Inception V2 and SSD MobileNet frameworks and achieved recalls
and precision greater than 71% and 77% and overall accuracy of 87.75% and 87.25%, respec-
tively. The study categorized the distresses into eight distinct groups based on a Japanese
Road Maintenance and Repair Guidebook [35]. Faster R-CNN attains better detection
performance compared to YOLOv3 when trained to detect potholes in a limited number of
samples [36]. The improved version of YOLOv3 that was tested on the measurement of
pavement potholes showed an improvement in accuracy compared to the original version
of YOLOV3. The model reached 89.3% and 86.5% in mAP and F1-score, respectively [37].

Sensors have also been used to provide some modern and alternative approaches to
carrying out RCM. In her recent study, Pomoni [38] explored an approach that employs
smart tires to detect road friction which is an important aspect of road conditions. Smart
tires make use of sensors and can provide an effective means to detect the loss in pavement
friction. Also, an approach to predict pavement damage by combining both computer
vision and sensors has been proposed recently. The system can be used to complement the
performance of the two methods used in inclement weather conditions [39]. Acceleration
sensors, gyroscopes, and GPS have also been used in data collection for ML where high
accuracy results of up to 99.61% and 99.33% in F1-score and precision, respectively [40].

However, in these studies, some approaches were proposed to detect, or to both detect
and classify road damages into various groups, but none of them provides a framework
that proposes using vehicle built-in technologies to collect data for RCM purposes. This
provides a cheap alternative to data collection since it leverages some features already
installed in vehicles.

This research aims at providing three contributions in this area. First, this study aims
to introduce the idea of using built-in vehicle cameras and GPS sensors to capture these
distresses and their locations in real-time. An Auto Pacific study based on a survey of car
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owners found that around 70% want a built-in camera in their next vehicle [41]. Thus,
with a proper arrangement between the traveling public and transportation agencies, data
from vehicle built-in cameras can be available in abundance. Second, this research aims
to achieve the provision of a model that detects and classifies asphalt concrete pavement
distresses into nine distinct categories provided by the FHWA Distress Manual [6]. This
makes the prioritization made by local road authorities in attending to distresses possible,
hence enhancing the RCM process. The third contribution is to assess the performance of
the detection model at different driving speeds.

3. Methodology

We propose an approach presented in Figure 1. A deep learning model is pre-
pared, based on normal two-dimensional images, to detect and classify pavement dam-
ages/distresses into nine classes. The prepared model employs a vehicle-built-in camera to
collect data on a real-time basis, and in connection to the built-in GPS sensors, the distresses
are recorded with their corresponding geolocations. The recorded data are stored and
shared on a real-time basis.

Data
Acquisition
'
Pre;l));rtaation i Built-in Built-in
i | i'| Camera System GPS System Detected
o v Distresses +
Model Real-time [ Detect Pick Locations
Training Tracking "| Distresses
Model Storage and
Test.lng fmd Sharing of
Validation Date

Storage

Figure 1. Proposed research layout and illustration.

3.1. Model Selection

This study uses the You Only Look Once Version 5 (YOLOv5) model. This model was
selected based on its advantages over its predecessors such as ease of use, ease of exporting
to other file formats, small memory requirements of nearly 88% compared to YOLOv4
(27 MB vs. 244 MB), high speed (about 180% faster than YOLOv4, 140 FPS vs. 50 FPS), and
its high accuracy value [42].
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3.2. Model Structure

The architecture of the YOLOvVS network is presented in Figure 2. The network consists
of 24 convolutional layers that extract features from the input data and then use these
features to perform object detection using a set of head layers. The initial layers of this
model are designed to detect low-level image features such as edges and shapes, and the
filters become more complex and specialized as the layers progress to see more complex
features. The network is divided into three main parts: backbone, neck, and head.

Head
BackBone (CSP) Neck (PANet) (YOLO Layer)
BottleNeckCSP g& Concat BottleNeckCSP > Convlxl
UpSample Conv3x3 S2
Convixl Concat
BottleNeckCSP
v
0 : p BottleNeckCSP —» Convlxl
Conv3x3 S2
Convlxl —— Concat
v
| SPP | Bott p BottleNeckCSP » Convlxl
Cross Stage Partial Network Conv Convolutional Layer
. 2¥2 | Spatial Pyramid Pooling (oie13  Concatenate Function

Figure 2. YOLOVS5 structure.

The head layers are divided into the neck and the detection head. The neck contains
two convolutional layers that refine the features generated by the backbone layers. The
output of the neck is used by the head layers to carry out prediction. The final classification
head takes the detection head’s output and predicts the class. This output allows the
network to detect multiple objects in images and classify them into different classes. The
final predictions are stored in the output layer, including the bounding box coordinates,
abjectness scores, and class probabilities.

3.3. Data Collection

This study used publicly available and onsite collected images and video datasets in
model preparation, testing, and validation. The image datasets include the CRACK500
dataset collected at Temple University in Philadelphia using mobile phones [43]. RDD2020,
an image dataset for smartphone-based road damage detection and classification, contains
26,336 smartphone images collected using smartphones mounted on car dashboards in
India, Japan, and the Czech Republic ((accessible through the link: http://dx.doi.org/
10.17632/5ty2wb6gvg), accessed on 20 May 2022)and another of pavement distresses
v12-v4 from Roboflow which contains 665 images ((accessible through the link: https:
/ /public.roboflow.com/object-detection/pothole), accessed on 22 May 2022)). The video
dataset was collected from American Honda Motor Co., Inc. (Torrance, CA, USA) [44] and
it is made available upon request and upon signing of an agreement on the terms of use.
In conducting model validation, some data were collected directly from the site within
the campus.


http://dx.doi.org/10.17632/5ty2wb6gvg
http://dx.doi.org/10.17632/5ty2wb6gvg
https://public.roboflow.com/object-detection/pothole
https://public.roboflow.com/object-detection/pothole

Vehicles 2023, 5

936

The image dataset comprised normal two-dimensional (2D), colored images (RGB)
with varying dimensions and shapes. The images were in a joint photographic experts
group (JPG or JPEG) format, which is accepted by the selected model for training, validation,
and testing purposes. The video dataset from Honda comprises about 84 h of real human
driving scenarios collected from various roads in the state of California, U.S. All videos,
including those recorded from campus, are in MP4 format.

3.4. Dataset Selection

A random sample of images was selected from the image datasets with a focus to
represent all distress categories for training the model. This was accomplished by assigning
names to all the images in the above-mentioned datasets using an Excel spreadsheet.
Then randomization was performed by assigning random numbers generated in an Excel
spreadsheet and a set of 8470 was selected for annotations.

The video dataset was analyzed, and some videos were selected in a focus to represent
all ranges of driving speeds from 0 mph to 120 mph. The selection also took into considera-
tion the different types of roads to be sure all types were represented. The types include
arterial roads, collector roads, and local roads (access roads).

3.5. Dataset Preparation (Annotations)

Images for model preparation were annotated in YOLO format. The annotation
process was performed using the makesense.ai [45] tool, which is freely available online. In
this research, nine labels presented in Table 1 were assigned to the distresses at this point.
Figure 3 below shows how the labels are assigned to the images.

Table 1. Flexible distress classification as per U.S.DOT FHWA.

S/N Class Symbol Used
1 Fatigue/ Alligator Cracks CLO1
2 Block Cracks CL02
3 Transverse Cracks CL03
4 Longitudinal—Wheel Path Cracks Cl_04
5 Longitudinal—Non-Wheel Path Cracks CLO05
6 Edge, Joint, Reflective Cracks Cl_06
7 Patches Cl07
8 Potholes CL08
9 Raveling, Shoving, Rutting C1_09

@ Actions @ Community Project Name: my-project-name

Figure 3. An illustration of image annotations in the makesense.ai tool.
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In this paper, a total of nine labels were assigned to images to represent the nine groups/
categories of distresses and were exported in YOLO format. The assigned labels are included
in text file formats, where a single file is formed for every image. Figure 4 illustrates some
distress types, and the corresponding symbols used in representing them during labeling
are shown in Table 1.

1) (19

Figure 4. Pavement distress types (a) Alligator Cracks, (b) Block Cracks, (c) Transverse Cracks,
(d) Longitudinal Wheel Path Cracks, (e) Longitudinal Non-Wheel Path Cracks, (f) Rutting, (g) Patch,
(h) Pothole, (i) Shoving, (j) Edge Crack, (k) Joint Reflective Crack, and (1) Pothole and Raveling.
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To reduce model overfitting and underfitting, it is necessary to provide more robust
datasets so that the model becomes less reliant on similar pieces of data in the network [46].
Since some of the pavement distresses have a small number of instances, we decided to
group them into the same classes; thus class 06 includes edge, joint, and reflective cracks,
and class 09 includes raveling, shoving, and rutting.

Figure 5 shows the number of instances (total number of repetitions/occurrences for
each distress group). The C1_03 class (transverse cracks) is the most represented class, with
more than 2300 occurrences and the C1_02 (block cracks) is the least represented class with
less than 250 occurrences. The distribution trend depends on real-life scenarios where the
most represented distress classes are much more common compared to those which are
least represented. This is in line with a statistical study conducted in China to examine the
relationship among asphalt concrete distresses, where findings show that some distresses
which occur are independent distress types (IDDTs), dependent distress types (DDTs),
and rutting secondary distress types (RSDTs). Results showed that RSDT (which was
composed of bump, bleeding, roughness, and poor skid resistance) had the least occurrence
probabilities, followed by DDTs (composed of longitudinal cracking, pumping, depression,
and raveling). The IDDTs class (composed of transverse cracking, map cracking, potholes,
and rutting) showed the highest occurrence probabilities [47].

2000 -
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Figure 5. Number of instances for each pavement distress class.
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3.6. Data Augmentation

An augmentation process is a procedure of changing the existing data to generate more
data for the model to train on. It is performed only on the training dataset. Augmentation
helps to avoid overfitting by increasing the available dataset through the application
of various techniques [48] since detection models need a large amount of data to be
efficient [49]. The techniques used in this study are rescaling, color adjustments, rotation,
and mosaic augmentation.

3.6.1. Rescaling

Rescaling involves increasing and decreasing an image size randomly by applying
some random scaling factors. In this method, new images are generated without altering
the objects, thereby increasing the size of the dataset. Figure 6 below shows an example of
images formed from a single image by applying a rescaling factor of 75/255.
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0 0 0

200 200 200

400 400 400
0 250 0 250 0 250

Figure 6. Images formed by applying a rescaling factor of 75/255.

3.6.2. Color Adjustments

This involves changing the colors of the images. It can be accomplished by changing
four aspects of the image color, namely, brightness, contrast, saturation, and hue. By
assigning different values for these aspects, more images are generated; hence, the size of
the dataset is increased. In Figure 7 below, brightness was randomly varied to obtain three
different images.

0 0 0

200 200 200

400 400 400
0 250 0 250 0 250

Figure 7. Images formed by changing the brightness of an original image.

3.6.3. Rotation

Through rotations of an original image, other images are generated without affecting
the identity of the objects of interest. The application of different rotation angles produces
different images which are used to increase the size of the training dataset. Figure 8 shows
an example of a rotation technique used in this paper.

0 250 0 250

Figure 8. Images formed by rotation of an image.

3.6.4. Mosaic Augmentation

The mosaic data augmentation technique joins four training images into one in given
ratios. This allows for the trained model to learn how to identify various objects at a smaller
scale than normal, thereby increasing its performance. An example of mosaic augmentation
is shown in Figure 9, which was formed during the model training process.



Vehicles 2023, 5 940

Figure 9. An illustration of mosaic augmentation.

3.7. Model Training

In this study, the model was trained on Google Colaboratory (Google Colab). Before train-
ing, the dataset was split into two sets, one consisting of 80% of all images and another with
the remaining 20%. The two sets were used for model training and validation, respectively.

An additional set of 200 images without distresses or labels were used as background
images to reduce the effect of False Positives (FPs) and False Negative (FNs) and hence
increase our model’s accuracy. This set was included in the training set only.

3.8. Training Parameters

To attain desirable results, the model was trained at different parameter settings.
Starting with a default image size of 416 pixels, different values of batch sizes and numbers
of epochs were fed. Table 2 shows the final values of parameters used in training the model.
The training was completed in 3.216 h.

Table 2. Training parameters.

S/N Parameter Value
1. Batch Size 40
2. Epochs 150
3. Learning Rate 0.01
4. Optimizer SGD =0.01
5. Anchor Sizes Dynamic

3.9. Model Analysis and Evaluation

The analysis and the evaluation of Deep Learning models are achieved through the
assessment of performance metrics. These values are obtained at the end of the validation
or testing that is performed when training is completed. The performance metrics used
are precision, recall, and mean average precision (mAP). Precision measures the model’s
accuracy in correctly predicting the distress, whereas recall measures the model’s perfor-
mance in finding all distresses in the images (it is a function of how the model misses the
distresses). Precision and recall are functions of False Positives (FPs) and False Negative
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(FNs), which are also regarded as type I and type II errors, respectively. The FPs are the

measures that show how the model incorrectly predicts pavement distresses, whereas the

FNs show how the model misses them. Precision and recall values are calculated as the

ratios of TPs to the sum of TPs, FPs, and FNs as shown in Equations (1) and (2), respectively.
True Positives

Precision = 1
True Positives + False Positives ™

Recall — True Positives @)
~ True Positives + False Negatives

The mAP is the mean (average) of average precisions of all individual classes in the
model. It is calculated as the sum of the average precisions of all individual classes divided
by the total number of classes as shown in Equation (3) below.

1 k=n
mean Aaverage Precision(mAP) = p Z APy 3)
k=1

where AP stands for the average precision of class k, and n stands for the total number
of classes.

These performance metrics are directly affected by the Intersection over Union (IoU),
which is the measure of the areas formed on the images between the ground truth bounding
boxes (actual bounding boxes) and the predicted bounding boxes. Intersection refers to the
area covered by both bounding boxes, whereas union refers to the total area covered by the
two bounding boxes. Figure 10 shows an illustration of the IoU given by Equation (4).

_ Area| AN B|

i e 4
Area| A U B| @)

Figure 10. Relationship between the ground truth bounding box (A) and the predicted bounding box (B).

The value of IoU obtained using the above relationship determines whether the output
is TP or FP. The output becomes TP if the value is greater than or equal to the threshold
value (which was set to 0.45 in our model), and it becomes FP if the value is less than the
threshold value [50].

Figure 11 shows a confusion matrix indicating the resulting relationship between the
True Positives, True Negatives, False Positives, and False Negatives. Having values that
are close to or equal to 1 along the diagonal indicates that the model has high values of
precision and recall.
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Figure 11. Confusion matrix.

3.10. Model Testing
3.10.1. Model Testing on Still Images

The model attained 95%, 93.4%, and 97.2% overall average values in precision, recall,
and mean Average Precision at 50% (mAP@.5), respectively. The ability of the model to
predict pavement distresses was also assessed on both still images and videos. Testing
of the model on videos aimed at mimicking its performance on the videos from vehicles’
built-in cameras. Figure 12 shows the sample prediction results with distress symbols and
their respective prediction confidences obtained for various pavement distress classes, and
Table 3 shows the summary of results on still images.

cl_os8 0.88 “-08 C

A

Cl_08 0.7

CI_U8 0.66

Figure 12. Sample prediction results.
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Table 3. Summary of the model test results on still images.

S/N Class Precision (%) Recall (%) mAP@.5
1 Cl.01 94.9 93.7 97.6
2 Cl_02 97.9 100.0 99.5
3 C1_03 94.1 83.5 93.9
4 Cl_04 91.6 93.7 95.6
5 CLO05 93.1 94.3 97.4
6 CL_06 97.4 92.3 96.2
7 Cl.07 95.6 98.3 99.3
8 CL08 93.0 91.6 96.3
9 C1_09 97.2 93.3 98.7

3.10.2. Model Testing on Videos at Different Driving Speeds

To assess the performance of the model at different driving speeds, a total of eighty-
one video clips were assessed. The clips were grouped into six-speed groups, namely,
0-20 mph, 20-40 mph, 40-60 mph, 60-80 mph, 80-100 mph, and 100-120 mph. For each
speed group, the clips were passed through the model for detection of distresses and
then used to generate frames from which the detections were assessed. Table 4 shows the
summary of precision and recall values obtained for each speed group.

Table 4. The summary of video analysis results.

S/N Speed (Mph) Precision (%) Recall (%)
1. 0-20 67 90
2. 2040 57 86
3. 40-60 59 62
4. 60-80 54 88
5. 80-100 65 76
6. 100-120 66 87

To improve these results, the model was re-trained. This time, the albumentation
library was installed and augmentation parameters were fine-tuned to improve the dataset
before training. The parameters adopted include Blur (blur_limit = 50, p = 0.05), Median
blur (blur_limit = 50, p = 0.02), ToGray (p = 0.3), CLAHE (p = 0.02), Random Brightness
Contrast (p = 0.2), RandomGamma (p = 0.2), and ImageCompression (quality_lower = 75,
p = 0.2). In these parameters, p stands for probability. Fine-tuning these parameters
improved the model results on the videos for all speed ranges. Table 5 shows the summary
of video analysis results after fine-tuning.

Table 5. Summary of video analysis results after fine-tuning the augmentation parameters.

SIN (51\1/’[;‘]’:} Precision (%) ~ °lmprovementin . go gy (y) % Improvementin
1. 0-20 78 11 95 5
2. 20-40 81 24 94 8
3. 40-60 76 17 92 30
4. 60-80 85 31 93 5
5. 80-100 79 14 86 10
6. 100-120 82 16 91 4
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4. Discussion of Testing Results

Table 3 summarizes the results of the testing of the trained model on still images.
These results show that the model attained a precision of more than 93.0% for all classes,
a recall of more than 91.6%, and a mAP@50% of more than 93.9%. These values mean
that the model achieved satisfactory results in predictions and had small numbers of
False Positives and False Negatives. These results are comparable to the state-of-the-art
of currently published studies such as the research by Maeda et al. (2018) who worked to
classify pavement distresses using SSD Inception V2 and SSD MobileNet frameworks and
achieved recalls and precision greater than 71% and 77% and overall accuracy of 87.75%
and 87.25%, respectively.

Table 4 shows the video analysis results. These results are attributed to some common
errors in the detection, such as the inclusion of cracks on barrier walls (Figure 13) and skid
marks (Figure 14), among others. Due to this, we found it necessary to re-train the model
to improve its accuracy.

Figure 14. Skid marks detected as distress.

Table 5 summarizes the final testing results on videos at different driving speeds.
Tuning the parameters helped the model skip the distresses on barrier walls, and skid
marks were not confused with the distresses. This resulted in increased values in both
precision and recall at all speed ranges, since a smaller number of errors were encountered.

The results show that the model performance is not much influenced by the driving
speed since high accuracy values are obtained at all speed ranges. Therefore, the model can
be used to detect distresses at any driving speed with high accuracy. This indicates that the
model can be used to detect pavement distresses using vehicle built-in cameras, which is
the primary objective of this study.

4.1. Detection, Taking Photos, and Geolocations

When a vehicle camera is used, pavement distresses on road surfaces will be detected
and rectangular bounding boxes will be drawn around them, with colors and symbols
to represent the classes of detected distresses. These bounding boxes are increased by
20 pixels on all sides to provide a buffer and avoid overtight, and corresponding detections
are saved as independent images (see Figure 15). While in motion, the vehicles record
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Global Positioning System (GPS) tracks (using built-in GPS sensors) in parallel with the
distress detections by the built-in camera. At the end of the trip, the recorded GPS track can
be used to obtain the coordinates of locations where distresses were detected and recorded.

Figure 15. Capturing and processing of detections.

4.2. Model Validation

The model was validated within South Carolina State University campus using a car.
The car is equipped with a built-in camera and GPS sensors, the features of interest for our
study. The vehicle was driven on about 1.5 miles of roadway and parking lots, and we
collected 53 images with various distress types, some of which are presented in Figure 16.

I

Transverse Crack O.

Alligator Cracks 0.49. .
- Transverse Crack 0.63

‘Trqnsverse Crack 0.68

Figure 16. Images with the detected distresses from the campus.

5. Conclusions

This paper used YOLOVS5 to train the model to detect and classify pavement distress
conditions. The image data used were collected from different countries, with different
devices, and have different properties as various methodologies have been employed
in pavement construction and rehabilitation. All the images were raw and therefore
manual labeling was performed using the makesense.ai tool. To increase the dataset
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size, image augmentation was performed before training, and background images were
included in the training dataset to reduce the FPs. The trained model attained 95%, 93.4%,
84.6%, and 97.2% values in precision, recall, F1-score, and mean average precision at 50%
(mAP@.5), respectively.

The model was also tested on videos taken at different driving speeds from 0 mph
to 120 mph. The results obtained show high accuracy values at all speed levels (up to
85% precision and 95% recall). With these results, the model was able to detect and classify
the distresses into their respective classes. Once recorded, the distresses can be analyzed
parallel to the GPS file; therefore, the type and location of the distress can be obtained for
further actions. The performance of the proposed model was verified on campus roads and
proved to be effective.

6. Limitations and Future Recommendations

This study proposes using vehicle cameras to collect road damage data, a process
whose effectiveness is greatly affected by light illumination intensity. If this approach is
employed during night-times/poor illumination conditions, we recommend the use of
proper headlights or appropriate light technologies to improve performance. Also, this
study is limited to the detection and classification of pavement damage. Future studies may
improve the study by incorporating severity classification, where the detected distresses
may be further classified based on the extent of deterioration.
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