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Abstract: As automated driving has not yet been established, on narrow roads where there is no
separation between pedestrians and vehicles, it is essential to switch to manual driving. However,
when the driver turns the steering wheel from one hand to another on narrow roads, it causes steering
burdens and operational errors if the steering feel or burden is not proper. Thus, this study aims
to construct an active steering wheel system that provides an appropriate steering feel or burden
by controlling the steering reaction torque, driving position and steering gear ratio for each driver.
In this paper, we focused on and examined the driving position among these. A two-dimensional
steering model that considers the size of the arms for each driver was established to evaluate steering
burden. In addition, a basic study was conducted on the appropriate driving position. Then, based on
the joint movements and angles calculation, the appropriate driving position that considers the size
of the arms was studied by evaluating the joint power. As a result, it was found that if the steering
wheel position is too close to the driver, the amount of joint movement increases, and if it is too far
away, the joint movement decreases. Therefore, it was found that the appropriate steering wheel
position for each driver’s arm length can be considered by using the joint power.

Keywords: active steering wheel system; ultra-compact electric mobility vehicle; steering muscle
burden; surface electromyogram; inverse kinematics; joint power

1. Introduction

Recently, small electric vehicles for one or two passengers, called “ultra-compact
electric mobility vehicles”, have attracted attention in Japan. These vehicles are used for
sharing and delivering services. Because they have a small turning circle, these vehicles are
mainly used on narrow roads, in which there is no separation between pedestrians and
vehicles. At low speeds on narrow roads, when the driver switches the steering wheel from
one hand to another, it causes extensive shoulder burden and a sense of loss of turning
direction, making it difficult for inexperienced drivers to control the vehicle [1]. Therefore,
a system that controls the steering gear ratio, which is the ratio of the steering wheel
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operating angle to the steering angle of the tires, is required. This system reduces the
steering gear ratio at low speeds, such as when turning at intersections and parking, to
eliminate the need to switch the steering wheel from one hand to another. In addition,
ultra compact electric mobility vehicles used for sharing are regardless of all ages and
genders. Women and the elderly, whose upper limb muscle mass is inferior, may cause an
accident [2,3]. Therefore, a steering system that does not impose a burden on any driver and
provides an appropriate steering feel even for enough muscle mass is considered necessary.

We are investigating an active steering wheel system that provides an appropriate
driving position and steering feel for each driver by controlling the steering gear ratio,
driving position and steering reaction torque [4,5]. This study focused on the driving
position in systems with low steering gear ratios and aimed to construct an active steering
wheel system that can provide an appropriate driving position for each driver. In this
paper, we focus on and examine the appropriate driving position evaluation method for
each driver. A variable steering gear ratio system based on a steer-by-wire system can
steer a vehicle with fewer movements and is expected to reduce the driver’s operational
burden. However, it is steering in a narrower range than the usual steering system, so it
is suggested that the resolution decrease and the steering stability decrease. Furthermore,
some studies have been conducted to improve the stability of steering by means of bar-type
steering wheels or variable gear ratio [6–11]. These are limited to subjective evaluations
of drivers; furthermore, quantitative studies using biological information have not been
conducted. In addition, while there have been many studies on the steering burden
caused by conventional steering systems [12–19], there have not been many studies on the
reduction in steering burden caused by steer-by-wire systems.

We consider that the size of arms, range of motion and muscle mass of the arm,
which differ depending on the person, affect the steering feel and burden and consider
the driving position that can appropriately control the vehicle [20,21]. Although there
have been studies on the effects of the driving position on the steering burden [22–28],
there have been no studies that take into account conditions with a steer-by-wire system
or low steering gear ratios. In addition, the steering wheel is not mechanically connected
to the front wheels in the steer-by-wire system, so there are no restrictions on the position
adjustment mechanism of the steering wheel. It can provide a completely comfortable
driving position for drivers of any physique. Although a driver’s physique can be largely
grouped according to arm length and weight, the length ratio and weight of the forearm
and upper arm are completely different from person to person, and the appropriate steering
wheel position is different. Since this research proposes an active steering wheel system
that provides an appropriate steering feel for each individual, we focused on the influence
of each driver’s physique. In this paper, a two-dimensional upper limb burden model was
created to calculate joint movements and joint angles for each physique, considering the
physique of each driver. Then, by evaluating joint power based on joint movements and
joint angles, we can evaluate the appropriate driving position based on the physique of
each driver.

2. Active Steering Wheel System by Steer-by-Wire System

A steer-by-wire system is a system that transmits steering motions by means of
electrical signals. As shown in Figure 1, a steering reaction torque motor directly connected
to the steering wheel detects the angle of the steering wheel and transmits the information
to the steering motor that steers the front wheels via a motor driver and controller. Our
research group has proposed an active steering wheel system that provides an appropriate
steering reaction torque and steering gear ratio for each driver through a steering reaction
torque motor by inputting surface electromyogram (EMG) and joint movements into
this controller.
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Figure 1. Schematic of active steering wheel system.

Figure 2 illustrates the experimental vehicle equipped with an active steering wheel
system. COMS (ZAD-TAK30-BS, Toyota Auto Body Co., Ltd., Aichi, Japan), which is
an ultra-compact electric vehicle manufactured by Toyota Auto Body, was selected as
the experimental vehicle. A stepping motor (ARM98SAK-PS10, Oriental Motor Co., Ltd.,
Tokyo, Japan) was connected to the rack-and-pinion gear that is connected to the front
wheels, and a brushless motor with a rotary encoder (BXM6200-GFS motor, Oriental Motor
Co., Ltd., Tokyo, Japan) was connected to the steering wheel. These motors are controlled
by their respective motor drivers and controllers, that is, the DSP (Digital Signal Processor).
The DSP (DSP7101A, iBIS, MIS Co, Ltd., Tokyo, Japan) control system can be modified
using a PC, and a Bio Amp (ML132 preamplifier AD Instruments, Sydney, Australia) can
be installed to acquire the driver’s surface EMG in real time and incorporate it into the
control system. When this system is implemented, it is not realistic to attach electrodes and
cables to the driver’s skin to measure the surface EMG. However, in order to determine
what kind of biological information should be fed back, it is necessary to clarify the burden
of the driver through the EMG and analysis model.
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3. Examination of the Effect of Changes in the Slide Adjustment on Steering Burden
3.1. Methods and Conditions for Evaluation of Steering Burden Using Surface EMG

In an active steering wheel system, it is necessary to clarify the effect of changes in the
driving position caused by changes in the amount of slide adjustment by the driver on the
steering burden. We measured the surface EMG in the anterior deltoid to investigate the
trend of the steering burden when the driving position is changed by the slide adjustment.
Surface EMG is measured by electrodes attached to the skin just above the target muscle.
The anterior deltoid is a muscle of the shoulder joint that is most active during steering
operation, and it is known that the amount of activity tends to coincide with the feel of
burden during steering operations [5]. The position of the electrode is shown in the Figure 3.
The surface EMG was amplified using a Bio Amp (ML132 preamplifier, AD Instruments,
Sydney, Australia), (high pass, 350 Hz; lowpass, 10 Hz), and then passed through an A/D
converter (PowerLab ML825 2125, AD Instruments, Sydney, Australia). These experimental
devices are connected to electrodes. In addition, the Root Mean Square (RMS) waveform
was calculated by the original waveform of the EMG measured at 4 kHz. Because of the
original waveform with the amplitude shown in Figure 4a, it is difficult to evaluate the
amount of muscle activity. Therefore, the RMS was calculated using Equations (1) and (2).

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (1)

=

√
x2

1 + x2
2 + . . . + x2

N
N

. (2)
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Figure 4b shows the waveform processed by the RMS. In this experiment, the RMS
was calculated every 0.1 s in the 0.1 s interval. Since the EMG was measured at 4 kHz, the
value of N was 400 in Figure 4b. The processed RMS is used to evaluate the amount of
muscle activity by calculating %MVC. Equation (3) shows the formula for deriving %MVC.

%MVC =
V

MVC
× 100, (3)

V is the RMS during steering operations, and MVC is the Maximum Voluntary Con-
traction, which indicates the RMS when the target muscle is exerting its maximum muscle
force. The method of measuring the MVC is shown in Figure 5. The participant held
his/her fist up vertically with maximum force and asked another person to restrain his/her
fist. The MVC was measured for 5 s, and the maximum value at this time was taken as
the MVC.
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The condition of the driving position during steering operations is shown in Figure 6.
The slide adjustment was changed in three patterns, and the participant was instructed
to operate the steering wheel from 0◦ to 135◦ at each slide adjustment. The %MVC was
calculated from the peak RMS at the time. The steering reaction torque was 2.7 Nm, which
was measured in the experimental vehicle.
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3.2. EMG Measurement Results

The peak %MVC during steering operations is shown in Figure 7 for each slide
adjustment. The %MVC was reduced the most when the slide adjustment was 0.550 m.
For the other two slide adjustments, the %MVC was about 7%, a difference of 3% from the
most reduced value. Therefore, it was found that the steering burden increased when the
slide adjustment was too small or too large.
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4. Consideration of Steering Burden Using a Two-Dimensional Steering Analysis
Model
4.1. Steering Analysis Model Conditions

A steering analysis model of the driver was created to reproduce the driving position
of the experimental vehicle shown in Figure 8, considering the range of motion of the
steering wheel (Figure 9). The origin was set at the shoulder joint O, center of gravity of the
upper arm at R, elbow joint at Q, center of gravity of the forearm at S and gripping position
of the steering wheel at P. The length of the upper arm is L1, the length of the forearm is
L2, the mass of the upper arm is m1, the mass of the forearm is m2 and the gravitational
acceleration is g. Equations (4)–(7) were used to calculate each x-coordinate as follows. Px,
Qx, Rx and Sx are the x-coordinates of the gripping position P, the elbow joint Q, the center
of gravity of the upper arm R and the center of gravity of the forearm S, respectively.

Px = l, (4)

Qx = L1sin θ1, (5)

Rx = 0.47·Qx, (6)

Sx = Qx·0.43·L1sin(θ2 − θ1), (7)
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Table 1. Physique of the participant. 

Properties Values 
Weight of the upper arm m1 [kgf] 1.80 
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4.2. Muscle Burden Evaluation Using Joint Movements 
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Here, 0.47 and 0.43 in Equations (6) and (7) are values indicating the position of the
center of gravity of the arm [27,28].

In this study, the burden on the shoulder joint was evaluated based on the changes
in the driving position caused by changing the distance l from the shoulder joint to the
steering wheel (slide adjustment) from 0.305 m to 0.605 m in the driving position, as shown
in Figure 10. The steering reaction torque T was set to 2.7 N·m, which is the maximum
torque generated by the COMS. The steering motion was reproduced by steering the
steering wheel from 0◦ to 90◦. The arm measurements of a 21-year-old male used in the
analysis are listed in Table 1.
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Table 1. Physique of the participant.

Properties Values

Weight of the upper arm m1 [kgf] 1.80
Weight of the forearm m2 [kgf] 1.80
Length of the upper arm L1 [m] 0.30

Length of the forearm L2 [m] 0.26

4.2. Muscle Burden Evaluation Using Joint Movements

Joint movements are commonly used as an index for evaluating muscle burden, and
steering burden can be calculated by evaluating the muscle burden in the bending direction
of the shoulder joint on the opposite side of the steering direction (push side) [13,29]. First,
we calculated the joint movement Ms around the shoulder joint using Equation (8) to
evaluate the steering burden.

MS = F·Px + m1gRx + m2gSx, (8)

It has been revealed that an evaluation of the steering burden is possible through
the muscle activity of the anterior deltoid [5,13,29]. Furthermore, since the shoulder
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joint movement Ms aligns with the tendency of the anterior deltoid muscle activity, the
evaluation of the steering burden can be conducted using Ms [20].

Here, F denotes the steering reaction force of the steering wheel in Equation (9).
Additionally, T is the steering reaction torque and r is the steering wheel radius.

F =
T
r

, (9)

Then, T is 2.7 N·m and r is 0.1725 m. These values were measured on the experimen-
tal vehicle.

The joint movements calculated for each distance (slide adjustment) l, from the shoul-
der joint to the steering wheel, are illustrated in Figure 11. In this analysis, the joint
movement generated at the shoulder joint O decreased with an increase in the steering
wheel angle. This is because the force F, due to the steering reaction torque in the vertical
direction of the steering wheel, decreases with an increase in the steering wheel angle,
owing to the two-dimensional nature of the analysis. The force F was at the maximum
value at a steering wheel angle of 0◦, so the joint movement was at the maximum value.
At any steering wheel angle, as the distance from the slide adjustment increases, the arm
movement from the shoulder joint O to the center of gravity increases, thereby increasing
the shoulder joint movement and the steering burden.
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Figure 11. Shoulder joint movement for different slide adjustments.

4.3. Effect of Joint Angle on the Shoulder Joint

The position with the lowest shoulder joint movement is at 0.305 m, where the slide
adjustment l is at the minimum value. However, this position is assumed to be cramped,
and it is difficult to operate the steering wheel in an actual driving position. Therefore, the
amount of change in the joint angle was calculated to determine how the shoulder joint
moved during the steering operations.

Figure 12 shows the shoulder joint angle ∆α, which changes per degree of steering
wheel angle. The joint angle also decreases with an increase in the amount of steering,
owing to the two-dimensional nature of the joint angle. In addition, ∆α is 0 at 90◦ for all l
because the maximum steering motion was limited to 90◦. ∆α reached its maximum value
at 0.305 m, the smallest slide adjustment, and decreased as the slide adjustment increased.
In addition, ∆α decreased sharply at 0.605 m, though ∆α was almost identical to 0.555 m
from a steering angle of 55◦. ∆α reached its peak at a steering wheel angle of 25◦ from
0.350 m to 0.505 m. However, from 0.555 m to 0.605 m, the steering wheel angle at the peak
value increased. From these results, it is assumed that the shoulder joint angle variation ∆α
becomes larger as the slide adjustment becomes smaller, resulting in an increased steering
burden. However, as the steering wheel angle increased, the difference in shoulder joint
angle ∆α for each slide adjustment became smaller.



Vehicles 2023, 5 854Vehicles 2023, 5, FOR PEER REVIEW 9 
 

 

 
Figure 12. Shoulder joint angle for different slide adjustments. 

4.4. Muscle Burden Evaluation Using Shoulder Joint Power 
Based on the evaluation, a longer and shorter l indicate a greater steering burden in 

terms of joint movement and angle, respectively. However, it is difficult to estimate which 
position has the most reduced burden for the driver using either of these methods. In 
addition, the amount of muscle exertion differs depending on the steering wheel angular 
velocity because it is not necessarily constant. Therefore, the shoulder joint power used 
for the body movement analysis was calculated. Joint power represents the work rate per 
unit time and can be used to estimate the approximate muscle activity. The joint power W 
is obtained by the product of the angular velocity of the joint and joint movement, as 
shown in Equation (10). 

𝑊 = 𝑀
∆ , (10)

Here, T is the time per shoulder joint angle Δα, and the steering wheel angular veloc-
ity is 45°/s. 

Figure 13 shows the results of the joint power for each slide adjustment. Values of 
0.305 m and 0.605 m showed a decrease in joint power at the minimum and maximum 
slide adjustments. 

 
Figure 13. Shoulder joint power for different slide adjustments. 

However, no other phenomena are observed. Therefore, Figure 14 illustrates the cal-
culated joint power for different steering wheel angles. From a steering wheel angle of 40° 
to 80°, the shoulder joint power increased with an increase in the slide adjustment, and in 
Section 4.2, it was shown that shoulder joint movement increased with an increase in slide 
adjustment at all steering wheel angles. However, since the shoulder joint angle Δα was 
almost the same with the increasing steering wheel angle, the shoulder joint power 
showed the same trend as the shoulder joint movement. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Sh
ou

ld
er

 jo
in

t a
ng

le
 Δ
α

[d
eg

.]

Steering wheel angle [deg.] 

0.305 m
0.355 m
0.405 m
0.455 m
0.505 m
0.555 m
0.605 m

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Jo
in

t P
ow

er
 [W

]

Steering wheel angle [deg.] 

0.305 m 0.355 m
0.405 m 0.455 m
0.505 m 0.555 m
0.605 m

Figure 12. Shoulder joint angle for different slide adjustments.

4.4. Muscle Burden Evaluation Using Shoulder Joint Power

Based on the evaluation, a longer and shorter l indicate a greater steering burden in
terms of joint movement and angle, respectively. However, it is difficult to estimate which
position has the most reduced burden for the driver using either of these methods. In
addition, the amount of muscle exertion differs depending on the steering wheel angular
velocity because it is not necessarily constant. Therefore, the shoulder joint power used for
the body movement analysis was calculated. Joint power represents the work rate per unit
time and can be used to estimate the approximate muscle activity. The joint power W is
obtained by the product of the angular velocity of the joint and joint movement, as shown
in Equation (10).

W = Ms
∆α

T
, (10)

Here, T is the time per shoulder joint angle ∆α, and the steering wheel angular velocity
is 45◦/s.

Figure 13 shows the results of the joint power for each slide adjustment. Values of
0.305 m and 0.605 m showed a decrease in joint power at the minimum and maximum slide
adjustments.
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However, no other phenomena are observed. Therefore, Figure 14 illustrates the
calculated joint power for different steering wheel angles. From a steering wheel angle of
40◦ to 80◦, the shoulder joint power increased with an increase in the slide adjustment, and
in Section 4.2, it was shown that shoulder joint movement increased with an increase in
slide adjustment at all steering wheel angles. However, since the shoulder joint angle ∆α
was almost the same with the increasing steering wheel angle, the shoulder joint power
showed the same trend as the shoulder joint movement.
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A different trend was observed from 10◦ to 30◦. They showed a decrease in joint
power at 0.305 m and 0.605 m, with a peak value around 0.455 m. Especially at 0.605 m,
the shoulder joint power decreased rapidly. This is thought to be due to the shoulder
joint angle ∆α. For a steering wheel angle of 10◦ to 30◦, the shoulder joint power rapidly
decreased at 0.605 m because there was almost no change in the joint angle ∆α. Thus, the
shoulder joint must exert power without moving, and the joint movement Ms is the largest
in this position.

At 0.305 m, the joint power is low because the joint movement Ms is small; however,
the driver must move the shoulder joint more because the shoulder joint angle movement is
largest in this range; therefore, the driving position is not considered to be less burdensome.
In addition, even though the steering reaction torque remains the same, the movement
generated at the shoulder joints is small, and the driver may feel that the steering reaction
torque is light because the shoulder joints must be moved further, which may impair the
driver’s steering feel.

For steering wheel angles greater than 40◦, a trend of increasing power with increasing
l was observed. It is difficult to estimate whether the driver feels burdened because the joint
movement is large, and the joint angle has minimal changes. The trend then decreased as
the steering wheel angle increased. This is because the steering reaction force F, generated
in the vertical direction of the rotating steering wheel, decreases in the y-axis direction
when the steering wheel angle increases. Moreover, the joint movement generated in the
shoulder decreases more than it does. In addition, the tendency for the joint power to
decrease with either too large or too small a slide adjustment was consistent with a trend in
muscle activity in the anterior deltoid, where the degree of steering burden can be assessed.
These results indicate that the joint power can be used to evaluate the steering burden
based on the driving position when the steering wheel angle is 30◦ or less.

5. Conclusions

A two-dimensional steering model was created to evaluate the steering burden and
estimate the appropriate driving position for each driver’s physique. In this study, the
effects of varying the slide adjustment on the steering burden were examined. First, the
muscle burden on the anterior deltoid was evaluated with different amounts of slide
adjustments. It has been clarified that the amount of muscle activity in the anterior deltoid
can be used to evaluate the steering burden. Therefore, the steering burden was evaluated
from the amount of muscle activity using the %MVC from the measurement of the surface
EMG of the anterior deltoid. The results showed that either too large or too small a slide
adjustment increased the burden. Secondly, joint movements were calculated for each
slide adjustment using the upper limb burden model. As a result, the joint movements
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increased with an increase in the amount of slide adjustment. This is because the distance
between the center of gravity and the shoulder increased, and the movement of the arm
increased. The smallest slide adjustment is the appropriate position for evaluating the joint
movement. However, if the actual slide adjustment is too small, the driver’s position will
be too cramped.

Therefore, we calculated the shoulder joint angle ∆α from the upper limb burden
model. The calculation result of ∆α decreased as the slide adjustment decreased. As a
result, it was clarified that the larger the slide adjustment, the more the steering motion
was performed without moving the shoulder joint. In addition, unlike the joint movement,
∆α converged at 0 as the steering wheel angle increased. Therefore, the more the steering
wheel angle increases, the more difficult it becomes to evaluate the steering burden for each
slide adjustment.

Consequently, it was difficult to evaluate the point with only the joint movement or
joint angle where the steering burden worsens. This is because the phenomena occurring
in the shoulder joint in the steering operation cannot be understood by the joint movement
and angle alone. Therefore, by considering the joint movements and angles simultaneously
using joint power, it is possible to estimate the driving position that causes burden, ow-
ing to the driver’s physique. Shoulder joint power was calculated using the calculated
joint movements and joint angles. These results showed that joint power decreased at
the maximum and minimum slide adjustment and increased at the intermediate slide
adjustment. Therefore, when the joint power decreased, either the joint movement or joint
angle increased, and the trade-off relationship between these can be evaluated. On the
other hand, for steering wheel angles of 40◦ or greater, the joint power increased with an
increasing slide adjustment. This is because the difference in the joint angle for each slide
adjustment becomes small as the steering wheel angle increases. The differences in joint
movements were also small as the steering wheel angle increased. Due to these effects, it is
difficult to evaluate the joint power when the steering wheel angle increases.

Since only the vertical direction was considered in this model, the vertical power and
joint angles decrease as the steering wheel angle increases for steering operations that
involve a circular motion. Therefore, the joint power could not be evaluated at steering
wheel angles of 40◦ or greater. However, the anterior deltoid is mainly involved in vertical
movement. Thus, it was found that the joint power and surface EMG were consistent up to
30◦, where the vertical component was large.

This model will be converted to a three-dimensional model in the future to investigate
the steering burden caused by the driving position in the steering wheel angle range of 0◦ to
90◦. The present study clarified the driving position in which the steering burden worsens.
However, the appropriate joint angles and joint movements are affected by the driver’s
muscle mass and other factors in the most appropriate driving position. The estimation
method in this study presented the driving position that should not be taken based on
the arm length, and an active steering wheel system will be constructed by feeding back
biological information to the steering system.
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