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Abstract: In today’s automotive industry, digital technology trends such as Big Data, Digital Twin,
and Hardware-in-the-loop simulations using synthetic data offer opportunities that have the potential
to transform the entire industry towards being more software-oriented and thus more effective and
environmentally friendly. In this paper, we propose generative models to synthesize car features
related to vehicle speed: brake pressure, percentage of the pressed throttle pedal, engaged gear, and
engine RPM. Synthetic data are essential to digitize Hardware-in-the-loop integration testing of the
vehicle’s dashboard, navigation, or infotainment and for Digital Twin simulations. We trained models
based on Multilayer Perceptron and bidirectional Long-Short Term Memory neural network for each
feature. These models were evaluated on a real-world dataset and demonstrated sufficient accuracy
in predicting the desired features. Combining our current research with previous work on generating
a speed profile for an arbitrary trip, where Open Street Map data and elevation data are available,
allows us to digitally drive this trip. At the time of writing, we are unaware of any similar data-driven
approach for generating desired speed-related features.
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1. Introduction

One of the current trends in the automotive industry is the so-called Digital Twin
(DT). The key principle is to create a sensor-induced digital copy of a physical object,
which receives constant updates from its real-world counterpart. With DT, it is possible to
simulate different scenarios and apply acquired findings to the physical object. [1]

DT use cases in the automotive industry vary from predictive maintenance of brake
pads [2] to predicting electric vehicle energy consumption [3].

According to [4], another widely used approach in the automotive industry is Hardware-
in-the-loop (HIL) simulation. The fundamental principle of this technique is to physically
connect the tested device to a testbed that simulates the assembled product. An overview
in [4] compares DT and HIL for electric vehicle (EV) propulsion drive systems. Combining
both can yield the best result. The overview suggests initially testing different models
with HIL simulation and using the acquired results to build the propulsion system. After
performing enough measurements, the paper suggests creating a DT of EV propulsion
drive systems.

Yufang et al. [5] showed an approach to predict long-term vehicle speed. Work
published in [6] extended this idea, allowing us to generate a vehicle speed profile for an
arbitrary trip where an Open Street Map (OSM) and elevation data are available.

This work aims to extend further the work of [6], who suggests the possibility of
predicting a vehicle’s Controller Area Network (CAN) bus data, such as brake pressure and
the percentage of the pressed throttle pedal, along an a priori known trip with available
OSM data, elevation data, and synthetic speed.

This paper focuses on predicting driver-induced features: brake pressure, percentage
of the pressed throttle pedal, engaged engine gear, and corresponding engine RPM, to
answer whether it is possible to predict these features using actual measured speed. The
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findings could then be applied on an arbitrary unknown road where the OSM and elevation
data are available, allowing us to generate the already-mentioned synthetic speed. For
this purpose, we trained machine learning models using a data-driven approach. The
prediction of more features for the given trip allows us to digitally drive our test car on an
arbitrary trip specified by Global Positioning System (GPS) coordinates.

With a data-driven approach, we do not need an expert to describe complex vehicle dy-
namics. Instead, only data are necessary to develop models for an arbitrary (petrol-fueled)
vehicle. Regular retraining of the models can reflect changes in the vehicles’ dynamics if
the power declines over time, which is a crucial part of DT.

At the time of writing, we are unaware of any similar data-driven approach for
generating desired speed-related features for an arbitrary trip where the OSM and elevation
data are available.

The proposed models aid our effort in digitizing the integration testing of the vehicle’s
dashboard, navigation, or infotainment. The findings will be used in our research partner
company’s HIL testbed, as digitally driving our test vehicle allows us to perform HIL
simulations in a real-world scenario. However, there is a wide variety of other potential
applications. For example, predicting vehicle acceleration and deceleration for an arbitrary
trip, such as in the case of navigation to a specific place, could allow us to select the most fuel-
efficient route. Furthermore, in the case of EVs, we might be able to predict its range more
precisely, as according to [7], regenerative braking improves energy efficiency (and also
emissions in case of internal combustion engine vehicles capable of regenerative braking).

The main contributions of our paper include:

• Proposing models for predicting speed-related features: brake pressure, percentage of
the pressed throttle pedal, engaged engine gear, and corresponding engine RPM.

• Assessing whether vehicle speed contains enough context to utilize models without
memory to predict speed-related features.

2. Related Work

The authors of [8] proposed a method to predict short-term, e.g., 10 or 20 s, vehicle
velocity using a Long-Short Term Memory (LSTM) neural network with OSM and elevation
data. The authors of [6] adopted a similar approach for long-term speed prediction, i.e.,
vehicle speed prediction can be made for the entire a priori known trip.

Liu et al. [9] predicted brake maneuvers from CAN bus data using the Gated Recurrent
Unit (GRU), a version of a Recurrent Neural Network (RNN), and underlined the braking
complexity in current cars with the brake assistance system.

Wang et al. [10] proposed an approach to build an LSTM model to identify driver
braking intention based on the analysis of brake pedal operation.

In their research, Min et al. [11] presented an LSTM model to predict vehicle decelera-
tion in braking situations where stopping before a traffic light is needed.

Zou et al. [12] suggested utilizing a Mixture of Hidden Markov Models to analyse
the personalized driving behaviour of drivers in a car-following scenario. They then
categorized test drivers into different groups based on their behaviour and trained a GRU
and LSTM for each group to predict the drivers’ acceleration in a car-following scenario.

Morton et al. [13] demonstrated the ability to generate predictions for vehicle accelera-
tion distributions in a car-following scenario using an LSTM model.

According to [14], neural networks (specifically LSTM and backward-propagation
neural networks) can predict the throttle of a wheel loader performing a loading maneuver.

3. Materials and Methods
3.1. MLP

Multilayer Perceptron (MLP) is a feedforward neural network consisting of multiple
computational layers: an input, one or more hidden layers, and an output layer [15]. Even
though MLP is limited in time series prediction as it has no memory, it has been used in
COVID-19 prediction [16] and long-term speed prediction [5].
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The basic building block is the linear layer that can be described by a simple equation:

y = xWT + b (1)

where x is the input vector, W is the weight matrix transforming the input shape into the
output shape and b is the bias. To introduce non-linearity into the MLP, the Rectified Linear
Unit (ReLU) is commonly chosen as an activation function [15]:

φ(x) = max(0, x) (2)

3.2. LSTM

The nature of our problem lies in time series forecasting, where it is often necessary to
elevate the use of temporal information. An RNN uses a feedback loop to use the output
from the previous prediction, hence building some context into the model. However,
Vanilla RNNs suffer from both exploding and vanishing gradients when dealing with
long-term dependencies. For this purpose, it is better to use a special type of RNN called
an LSTM neural network [6,17].

Introducing LSTM cells into the hidden layer is a crucial improvement of the LSTM
over Vanilla RNN. For every time step t, the LSTM cell processes input xt. The information
flow is controlled by forget ft, cell gt, and output ot gates [18,19].

The following equations taken from [18] summarise the information flow inside the
LSTM cell:

it = σ(Wiixt + bii + Whiht−1 + bhi) (3)

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f ) (4)

gt = tanh(Wigxt + big + Whght−1 + bhg) (5)

ot = σ(Wioxt + bio + Whoht−1 + bho) (6)

ct = ft � ct−1 + it � gt (7)

ht = ot � tanh(ct) (8)

where σ is the sigmoid function and � is an element-wise product. W·· are matrices
mapping the input xt or hidden state from the previous time step t− 1 to respective gates
with bias b··. The LSTM cell produces a cell state ct and the hidden state ht for each time
step t. The hidden state ht is the LSTM cell output. Both states ct and ht serve as the input
into the next time step t + 1.

Bidirectional LSTM (BiLSTM), an extension of LSTM, processes the data in standard
and reversed order using two unidirectional LSTMs. The visualization in Figure 1 shows
the forward LSTM pass producing hidden state

−→
ht and the backward LSTM pass pro-

ducing hidden state
←−
ht for time step t. The BiLSTM output for every time step t is a

product from both LSTM directions. In the case of Pytorch [18], LSTM outputs
−→
ht and

←−
ht

are concatenated.
LSTM neural networks’ success in time series forecasting includes fields such as travel

time [19] and vehicle speed [6,17] prediction, making them a reasonable choice for solving
our problem.

According to [20], BiLSTM allows for leveraging some additional features from the
stock market data, thus improving the prediction precision compared to standard unidirec-
tional LSTM.

For our problem, we decided to try BiLSTM as it could leverage additional features
from the data, similar to the human driver that sees the road ahead and already knows the
passed road.
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Figure 1. Visualization of the BiLSTM. For every time step t and input xt, the output is a product of

the hidden state
→
ht from the forward LSTM pass and hidden state

←
ht from the backward LSTM pass.

3.3. Comparison

To compare and describe the fidelity of the results, we selected two criteria—Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE). The following equations
define these criteria:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (10)

where n is the number of samples, yi is the actual value, and ŷi is the predicted value. We
use MAE to determine the overall fit of our prediction and RMSE to detect large errors
(such as outliers).

4. Experiments

Our objective was to create models for brake pressure (Brake), percentage of pressed
throttle pedal (Throttle), engaged engine gear (Gear), and the corresponding engine RPM
(RPM). For this purpose, we decided to try two machine learning architectures: MLP
and BiLSTM.

One question to answer is whether the necessary context is already encoded in speed.
In other words, would a simple MLP, a neural network without any memory, be precise, or
is the context-aware BiLSTM needed as in the case for speed?

4.1. Dataset

In our experiment, we used a Skoda Karoq as a data collection vehicle that a single
driver drove. The car has the following specifications:

• fuel: petrol
• transmission: six-gear manual
• power: 110 kW
• weight: 1632 kg
• wheel circumference: 2065 mm

Every ride was recorded and saved in 2 min intervals (or shorter at the end of the ride)
called a mini ride. We filtered the mini rides with logged error values or those where the
car speed variation was less than 5 (km/h)2, accounting for cases when the car was mainly
standing or the speed was constant for the entire mini ride. The obtained dataset contains
records from 13,337.85 km recorded during 229.24 h.
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The data sampling frequency was 0.1 s, i.e., one mini ride consisted of at most 1200 sam-
ples. However, we needed a fixed ride length to train our models, so we split the mini rides
into chunks with a length of 1024 samples. To train and test our models, we split the mini
ride dataset into 80% train, 10% validation, and 10% test set.

We introduced a new feature representing wheel rotations per minute (wheelsRPM)
into our dataset. The data collection vehicle’s specification contains vehicle wheel cir-
cumference in mm, and feature speed_esp is logged in km/h during the ride. To compute
wheelsRPM, we used the following formula:

wheels_rpm =
speed_esp

wheel_circum f erence
× 1000000

60
(11)

The specific gear ratios of the test car’s gearbox were not available. Therefore, we
could not directly compute RPM and decided to learn the RPM from the data.

Another introduced feature was the first difference feature. An overview of the dataset
features used for training our models is presented in Table 1.

Table 1. Overview of the dataset features.

Feature Description

engine_rpm engine RPM (rev/min)
throttle_pedal pressed throttle pedal (%)
brake_pressure raw brake pressure (bar)
engine_gear engaged engine gear
speed_esp vehicle speed estimated from ESP (km/h)
wheels_rpm wheels RPM (rev/min)
prev_speed_esp_delta first speed_esp difference with prev sample
next_speed_esp_delta first speed_esp difference with next sample
prev_nav_altitude_delta first altitude difference with prev sample
next_nav_altitude_delta first altitude difference with next sample
prev_nav_heading_delta first compass angle difference with prev sample
next_nav_heading_delta first compass angle difference with next sample
prev_engine_gear_delta first engine_gear difference with prev sample
next_engine_gear_delta first engine_gear difference with next sample
prev_wheels_rpm_delta first wheels_rpm difference with prev sample
next_wheels_rpm_delta first wheels_rpm difference with next sample
prev_throttle_pedal_delta first throttle_pedal difference with prev sample
next_throttle_pedal_delta first throttle_pedal difference with next sample

4.2. MLP Models

We selected the MLP and implemented it in Python using the Pytorch library as a basic
model. To introduce non-linearity to our MLP, we used ReLU. In Table 2, we summarise
the MLP architecture and parameters used for training. The architecture in Table 2 consists
of layers used in the MLP where the top row is the input layer and the bottom row is the
output layer. The Linear(num_in, num_out) layer means that we used a linear, i.e., fully
connected, layer with num_in input features and num_out output features.

In Table 2 MSELoss stands for the Mean Squared Error Loss and CrossEntropyLoss for
the Cross-Entropy Loss. We used the former for regression and the latter for classification.
We trained our models by using AdamW, the Pytorch implementation of the adaptive
gradient method Adam with decoupled weights proposed in [21].
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Table 2. Summary of the MLP model architecture and parameters. Each column represents one of
our models.

Brake Throttle Gear RPM

# inputs 10 10 17 20
# outputs 1 1 7 1

Architecture

Linear(10, 256) Linear(10, 256) Linear(17, 256) Linear(20, 256)
ReLU(256, 256) ReLU(256, 256) ReLU(256, 256) ReLU(256, 256)
Linear(256, 256) Linear(256, 256) Linear(256, 256) Linear(256, 256)
ReLU(256, 256) ReLU(256, 256) ReLU(256, 256) ReLU(256, 256)
Linear(256, 256) Linear(256, 256) Linear(256, 256) Linear(256, 256)
ReLU(256, 256) ReLU(256, 256) ReLU(256, 256) ReLU(256, 256)
Linear(256, 1) Linear(256, 1) Linear(256, 7) Linear(256, 1)

Loss function MSELoss MSELoss CrossEntropyLoss MSELoss
Batch size 800 800 800 800

Epochs 100 120 100 100
Optimizer AdamW AdamW AdamW AdamW

lr 1 × 10−4 5 × 10−5 1 × 10−4 1 × 10−4

weight decay 0.05 0.05 0.05 0.05

We use regression to predict a single output value for Brake, Throttle, and RPM. The
first difference features (delta features) are the only means of providing context to the MLP.
Thus the MLP context is short. As a result, predictions vibrate/oscillate, making them
hard to use or useless for simulation purposes. Therefore, to prevent this, we applied a
rolling mean with a window size of 5 for the Brake and Throttle during post-processing.
The window for the RPM was only the size of 3. For all predictions, max(0, x) was applied
to prevent negative values, as negative feature values do not make sense in this scenario.

The nature of the Gear feature is ambiguous as it has the properties of both categorical
and ordinal variables. On the one hand, gears 1, 2, ..., 6 can be ordered. On the other hand,
neutral gear is labeled 0 in our dataset but does not fit in this order. The reason for this is
that engaging neutral is highly dependent on the driving style. Some drivers might only
use neutral when the car is not moving, while others might use it for coasting (disengaging
gear to reduce slowing down). Coasting might happen from any engaged gear. Hence, the
Gear feature cannot be considered an ordinal variable. For this reason, we decided to treat
it as categorical during training.

The Gear model predicts seven values: six gear shifts and a neutral gear, i.e., gear
is not engaged. The best result was selected by the argmax function from the seven
output features.

The Gear also suffers from a short context. As a result, the model often switches
gears up and down on consecutive samples, which is undesirable. We used a simple filter
to stabilize the gear switching: if the gear changes and returns within five consecutive
samples, i.e., within 0.5 s, we used the original value. We first applied this filter from left to
right and then in reverse.

Table 3 summarises the features used as the input for our models. The letter “T” marks
the target feature for the model in the column. The letter “x” marks the input feature of
the model. It is worth noting that using the deltas significantly improved training. Even
though models for Brake and Gear use throttle_pedal deltas as the input features and
Brake and RPM models use engine_gear deltas, we trained them on the dataset with actual
measurements instead of the predicted one. The reason for this was to preserve original
feature dependencies.
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Table 3. Summary of the features used as the input for our models. Letter “T” denotes the target
feature, and the letter “x” denotes the input feature of the model.

Brake Throttle Gear RPM

engine_rpm T
throttle_pedal x T

brake_pressure T
engine_gear x T x
speed_esp x x x x

wheels_rpm x

prev_speed_esp_delta x x x x
next_speed_esp_delta x x x x

prev_nav_altitude_delta x x x x
next_nav_altitude_delta x x x x

prev_nav_heading_delta x
next_nav_heading_delta x

prev_engine_gear_delta x x
next_engine_gear_delta x x

prev_wheels_rpm_delta x
next_wheels_rpm_delta x

prev_throttle_pedal_delta x x
next_throttle_pedal_delta x x

4.3. LSTM Models

We know the entire ride itinerary and the vehicle’s speed along this ride during the
time of prediction (and training). Considering the nature of our problem, it is reasonable to
elevate the power of the BiLSTM.

Table 4 summarises the parameters and architecture used for the BiLSTM models. The
main difference from the MLP models is the introduction of BiLSTM as the first two layers
of the model, allowing it to build the necessary context.

Table 4. Summary of the LSTM models’ architecture and parameters. Each column represents one of
our models.

Brake Throttle Gear RPM

# inputs 10 10 17 20
# outputs 1 1 7 1

Architecture

BiLSTM(10, 256) BiLSTM(10, 256) BiLSTM(17, 160) BiLSTM(20, 256)
BiLSTM(256, 256) BiLSTM(256, 256) BiLSTM(160, 160) BiLSTM(256, 256)

ReLU(256, 256) ReLU(256, 256) ReLU(160, 160) ReLU(256, 256)
Linear(256, 256) Linear(256, 256) Linear(160, 7) Linear(256, 256)
ReLU(256, 256) ReLU(256, 256) ReLU(256, 256)
Linear(256, 1) Linear(256, 1) Linear(256, 1)

Loss function MSELoss MSELoss CrossEntropyLoss MSELoss
Batch size 200 200 210 200

Epochs 300 150 200 300
Optimizer AdamW AdamW AdamW AdamW

lr 4 × 10−6 1 × 10−5 1 × 10−5 4 × 10−6

weight decay 0.05 0.05 0.05 0.05

To train our BiLSTM models we used identical features to the MLP models mentioned
in Table 3. The deltas significantly improved training as well as in the case of the MLP. The
models were trained on the dataset with actual measurements to preserve original feature
dependencies instead of using predicted values as the input features.
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In contrast to the MLP models, the BiLSTM models only needed one type of post-
processing: applying max(0, x) to prevent negative values in Brake, Throttle, and RPM.

As in the case of the MLP, we treated the Gear as a categorical variable, and its best
result was selected by the argmax function from the seven output features. Contrasting
with the MLP model, gear stabilization was not necessary.

5. Results

To objectively compare the trained models with actual measurement data, we used
RMSE and MAE. Even though these metrics provide the necessary information, we also
decided to demonstrate the model capabilities in graphs. We selected one ride with
2385 samples recorded in a city and rural roads. This ride was not part of the training or
validation dataset. The data collection vehicle was a Skoda Karoq.

To better visualize the prediction comparison, only the first 100 s (1000 samples) of the
selected ride are in each graph. Figure 2 shows the captured speed profile during the ride.
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Figure 2. Speed profile for the selected ride.

Figure 3 shows the Brake time series captured during the ride. Both models effectively
predict the trend. However, the MLP model’s output is subjectively worse as it vibrates.
Applying a longer rolling mean window can prevent vibration. However, this would
increase the RMSE and MAE.
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Figure 3. Brake pressure for the selected ride.

Figure 4 depicts the logged Throttle values. As in the case of the Brake, the actual
Throttle values and LSTM prediction look similar. MLP prediction is subjectively worse
than LSTM prediction as the output vibrates and lags behind the actual values.
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Figure 4. Percentage of pressed throttle pedal for the selected ride.

As can be seen in Figure 5, the MLP model effectively predicts the RPM’s trend, apart
from the obvious misprediction for samples around the 50th second. The LSTM model’s
prediction shows no issues.
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Figure 5. Engine RPM for the selected ride.

Figure 6 shows the Gear for the selected ride. The MLP and LSTM models learned to
disengage the gear to neutral (marked as 0 in the figure). None of the models performed
it precisely. Since disengaging the gear depends on the driver’s behavior, both models
performed reasonably well.
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Figure 6. Engaged engine gear for the selected ride. Engaged gears have values 1, 2, ..., 6 and the
disengaged gear (neutral gear) is marked as 0.

The course of the selected ride between the 20th and 30th second interval demonstrates
the complexity and certain unpredictability of modeling the interaction between the driver
and the car. In Figure 6 for the gear and Figure 2 for speed, we can see that the actual driver
stops accelerating, engages neutral, and then shifts to sixth gear. From this point, the driver
gradually downshifts while slowing down. In contrast, our LSTM model kept the gear
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engaged without any change, and the MLP model kept the gear disengaged until the driver
wanted to accelerate. From our experience, all three approaches are valid and only depend
on the driving strategy.

If we treat Gear prediction as a classification, the MLP model achieved an accuracy
of 60.29%, and the LSTM model achieved an accuracy of 84.32% on the selected ride.
Considering the driving strategy problem, we decided to treat Gear as a continuous variable
and compared the predictions with actual values using MAE and RMSE to understand and
evaluate its behaviour better.

Table 5 presents the RMSE and MAE for the selected ride to provide an objective mea-
sure. On this particular ride, the LSTM models objectively achieved a better performance.

Table 5. MAE and RMSE for the selected ride for the MLP and LSTM models.

Brake Throttle Gear RPM

MLP LSTM MLP LSTM MLP LSTM MLP LSTM

RMSE 1.869 1.380 14.824 8.618 1.020 0.680 90.520 54.138
MAE 0.845 0.567 11.138 5.731 0.540 0.244 41.074 27.787

We also present the results for the entire test dataset in Table 6. We can partially explain
the difference between the entire test set and the selected ride in brake pressure by different
predictions when the car stops. The brake pressure depends on the driver’s behaviour
(“resting foot on the brake”). Similarly, a partial explanation for the RPM differences is in
the idling RPM.

For completeness, if we treat Gear as a classification, on the entire test dataset, the MLP
model achieved 72.01% accuracy, and the LSTM model achieved an accuracy of 79.49%.

Table 6. MAE and RMSE for rides in the entire test dataset for both the MLP and LSTM models.

Brake Throttle Gear RPM

MLP LSTM MLP LSTM MLP LSTM MLP LSTM

RMSE 3.369 3.090 11.582 6.412 0.821 0.769 135.171 97.928
MAE 1.173 0.965 7.789 3.923 0.379 0.299 55.607 40.086

6. Conclusions

In this paper, we proposed models to predict the brake pressure, percentage of the
pressed throttle pedal, engaged engine gear, and engine RPM. As we are extending previ-
ously published work, this prediction is possible on an arbitrary ride where the OSM and
elevation data are available, and hence a speed profile can be created.

To test if there is enough context encoded in the speed profile, we trained models
based on two architectures: MLP and BiLSTM. The used metrics show that all models
based on BiLSTM perform better than our basic MLP models. However, both the MLP and
BiLSTM models showed promising results as their prediction followed the trend of the
actual measurements. Considering this, the BiLSTM models are better in scenarios where
more precise results are needed. The MLP models might better fit cases where we expect
frequent model retraining as they are faster to train. All of the models are suitable for our
HIL testing scenario.

One significant advantage of our approach is that we do not need an expert to describe
the vehicles’ dynamics but only data to develop models suitable for our HIL simulation of
an arbitrary (petrol-fueled) vehicle. Another advantage is that if the vehicle power declines
over time, the MLP or BiLSTM can be regularly retrained and reflect the changes without
an expert’s complex modeling of the events.

In the future, we aim to use our models for digital driving simulations with DT, such as
the already-mentioned brake pad predictive maintenance. If we can acquire the necessary
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data, we also aim to test the presented approach on other vehicles, such as diesel, plug-in
hybrid EVs, and EVs.
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